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THE EFFECT OF LONGITUDINAL STRESS ON THE SHEAR
STRESS AT THE BASE OF AN ICE SHEET

By J. F. Nye
(H. H. Wills Physics Laboratory, University of Bristol, Bristol, England)

ABsTRAGT. Robin (1967) and Budd (1968, unpublished) have succeeded in connecting the variations in
surface slope of an ice sheet with variations in the gradient of the longitudinal strain-rate. This paper tries
to improve the theoretical basis of their work. By choice of a suitable coordinate system and suitable re-
definition of the variables, Budd’s formula for the basal shear stress is derived with a minimum of restrictive
assumptions. The resulting formula, containing the gradient of a longitudinal stress, is thought to be of high
accuracy for the two-dimensional flow of cold ice sheets, and is valid for slopes of any magnitude.

ReEsuME. L'effet de la contrainte longitudinale sur la contrainte de cissaillement a la base d’une nappe de glace. Robin
1967) et Budd (1968, unpublished) ont réussi a lier les variations de la pente superficielle d’une nappe de
glace avec celles du gradient de la vitesse de déformation longitudinale. Cette contribution tend a améliorer
la base théorique de leur travail. Par le choix d’un systéme adéquat de coordonnées et d’une adéquate
redéfinition des variables, la formule de Budd pour la contrainte de cissaillement basale est dérivée avec un
minimum d’hypothéses restrictives. La formule ainsi obtenue, contenant le gradient de la contrainte longi-
tudinale, est supposée d’étre d’une haute précision pour I’écoulement a deux dimensions de nappes de glace
froide. et est valable pour des pentes de toute grandeur.

ZUSAMMENFASSUNG. Die Auswirkung der Lingsspannung auf die Scherspannung am Grund eines Inlandeises. Robin
1967) und Budd (1968, unpublished) gelang es, einen Zusammenhang zwischen den Anderungen der Ober-
flichenneigung eines Inlandeises und denen des Gradienten der Lingsspannung herzustellen. Dieser Aufsatz
versucht, die theoretische Grundlage ihrer Arbeit zu verbessern. Durch die Wahl eines geeigneten
Koordinatensystems und die Einfithrung von giinstigen Variablen wird Budds Formel fiir die Scherspannung
am Grund mit einem Minimum von einschriinkenden Annahmen hergeleitet, Der sich ergebenden Formel,
die den Gradienten der Lingsspannung enthiilt, kann grosse Genauigkeit fiir das zweidimensionale Fliessen
kalter Eiskalotten beigemessen werden; sie gilt fiir jede beliebige Neigung.

At the base of an ice sheet where the thickness is & and the surface slope is « (assumed small)
it has been held (Nye, 1952[a], [b]) that the shear stress , is given approximately by

Ty = nga’ (l)
where p is the density and g is the gravitational acceleration. This formula may be justified in
several different ways, which may be briefly reviewed.

(i) One way is to note that the hydrostatic pressure is much greater than the shear stresses
at all levels in the ice sheet except those near the top, and to assume that it is equal to pgd,
where d is the depth beneath the surface. The hydrostatic stress formula ped is, of course, only
exact when the material is a fluid, at rest, sustaining no shear stresses and having a horizontal
surface. When « is small and non-zero, and when the material supports shear stresses, it will
only hold as an approximation—and when o is large it will break down completely. @ must
therefore be assumed small. The rock bed is allowed to have a small, non-uniform, slope B
in the same direction as the non-uniform surface slope. On these assumptions the longitudinal
stress is approximately equal to the hydrostatic stress. Equation (1) then follows (Nye,
1952[a]) from a balance of forces, the interesting point being that 8 does not appear in the
final formula.

(i) For a parallel-sided slab of ice of thickness 4, resting on a uniform slope a, provided all
conditions are uniform down the slope, a balance of forces immediately shows that

Th = pghsin . (2)
In this derivation, essentially due to Orowan (1949), there is no restriction to small «, but if «
is small we find Equation (1) again. Note that there is no reference to the hydrostatic stress
formula. The longitudinal stress, along with everything else in the problem, including o and
h, is simply assumed not to vary down the slope.

(iii) Having noted in derivation (i) that 8 does not appear in Equation (1), a semi-
intuitive argument may be given (Nye, 1952[b]) in support of the idea that Equation (1) still
holds for small « and 8 even when the bed slope B is not in the same direction as the surface
slope (that is, when the strikes are not parallel).
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(iv) In an exact (numerical) calculation (Nye, 1967, p. 706) for a perfectly plastic
material flowing under gravity over a horizontal base it is found that, over the greater part of
the field, Equation (1) holds as a first approximation when « is small (and a second approxima-
tion is also given), but near the up-stream boundary the flow is disturbed from the “normal”
pattern and here, even though o is small, Equation (1) is totally invalid even as an approxima-
tion.

Clearly, there are conditions under which Equation (1) is a valid approximation and also
conditions, even when « is small, where it is not. The difficulty is to formulate the precise
conditions under which it is a valid first approximation, and to improve it satisfactorily. (i),
(ii) and (iv) all imply different, and equally valid, sets of sufficient conditions, but the set of
necessary and sufficient conditions has yet to be found.

As soon as one tries to apply Equation (1) in practice one meets the question of the
interpretation of « and, to a lesser extent, k. Over what distance are these to be averaged?
The derivations of the formula indicate that this distance should be at least of order 4 and
perhaps greater, but the mere fact that one cannot use very local values of « in the formula
emphasizes its limitations.

In face of these problems there have been various attempts to improve Equation (1), and
discussion has centred particularly on the role of the longitudinal stress. In all the derivations
(i) to (iv) above, the longitudinal stress, in a certain sense, has been assumed uniform along the
flow direction. Ifit has a gradient in this direction, Equation (1) will be changed. This was
first emphasized by Lliboutry (1958). More recently Robin (1967), Budd (1968, unpublished)
and Beitzel (in press), in interpreting field data on the surface and bed profiles of ice sheets,
have concluded that longitudinal stress gradients are an important aspect of the problem.
Shumskiy (1961) also has included them in his analyses.

The purpose of this paper, which arose after a very helpful discussion with Dr Budd, is to
try to put the theoretical derivations which he gave on a more secure foundation. By choice
of a suitable coordinate system and suitable redefinition of the variables it is possible to
derive a formula for the basal shear stress that is comparatively free from restrictive assump-
tions, and, incidentally, is valid for any slope angle. The next step, necessary before the
formula can be applied, involves a crucial assumption about the connexion between the
longitudinal stress and strain-rate that may be questionable. The present treatment does not
avoid this assumption, but it does remove certain doubts and difficulties from the earlier
stages of the analysis. One has to bear in mind that the new term that is being calculated, and
which depends on the longitudinal stress gradient, is, in some circumstances but not always, a
second-order correction term to Equation (1). Therefore, particular care is necessary in
making any approximations, and it becomes especially important to define all quantities
precisely.

Collins’s careful paper (1968), which analysed the mathematical justification for Robin’s
(1967) approach, has the same aims as this one, but it uses a different coordinate system with
axes horizontal and vertical. Physically the two treatments are very similar (although the
treatment here introduces an optional no-slip condition at the bed, which is not present in
Collins’s analysis) and there seems to be no disagreement between them. But the method
used here is simpler. Collins does indeed refer to the possibility of taking local orthogonal
axes in the surface, as is done here, but he rejects it because “the axes are curvilinear and
may be initially unknown”. Strictly speaking, the axes used here are rectilinear, not curvi-
linear. However, the equations derived are only used on the z-axis, which is normal to the
surface, and for each surface station one sets up a new rectilinear coordinate system. Thus it
is true that the coordinate directions are different for each surface station, but nevertheless
the quantities in the equations are all defined with respect to rectilinear axes. There are no
complications due to curvature terms in the equations of equilibrium. The fact that these
axes lead to simpler equations indicates that they suit the phenomenon under investigation
and thus make it easier to understand. This is a sufficient reason for using them. In some
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field applications there is an additional practical advantage in having axes referred to the
upper, accessible, surface of the ice sheet. In others it may be better to use horizontal and
vertical coordinates at the expense of equations that are less easy to interpret.

Fig. 1. Coordinate system. Ox is tangential to the tap surface at O.

We confine ourselves to two dimensions (plane strain). Choose an origin at some arbitrary
point in the top surface (Fig. 1), and choose rectilinear axes in a vertical plane, with Ox
tangential to the top surface in the direction of movement, and Oz perpendicular to it pointing
downwards. Let the angle between Ox and the horizontal be 2, and let the slope of the bed at
the point where Oz meets it be fo. Thus, although the top surface and the bed have slopes that
are non-uniform, «, and B, as defined here are constants. They need not be small and may be
positive or negative. Figure 1 shows their positive senses. Since accelerations are negligible
we may use the equations of equilibrium for the stress components o4, 0z, 72:

0T ¢ OT 2z

= —}—pg sin o = 0, (3)
CT:;+CUa+pg COS oo = O, (4)

for all ¥ and z within the ice, and let us allow p, the density, to be a function of x and z.
Integrate Equation (g) with respect to z from z = o to z = hs, where ko is the thickness
of the ice at x = o:
f ao-z

ho ho
I 1 -
Gz(x) = % ozx(x, z) dz and plx) = = fp(x, z)dz (6)
for all x. ho, being the thickness at x = o, is a constant independent of x (but the thickness of
the ice is, of course, non-uniform and does depend on x). Therefore ¢,(x) and 5(x), so defined,
are nol the mean values of o, and p through the thickness of the ice sheet, except at x = o,
They are the mean values between the planes z = 0 and z = ho. (Where the two planes

.fJ.. ha

inso [ pdz =0 (5)

o]

for all x. Write
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enter rock or air the values are undefined, but we shall see that this causes no essential diffi-
culty.) In the first term of Equation (5) we may interchange the order of integration and
differentiation (since ho is independent of x) and hence obtain

dé

ho E{J‘l‘("xz)z-hog (T2z) =01 p(x) ghosin oo = 0

2|

for all x. The top surface being free, we have (7,;).—, =0 at x = o.

It is gencrally supposed that when the basal ice is below the melting point it does not slip
on the bed. If the basal ice does not slip, a line in the basal ice drawn parallel to the bed
does not extend. Assume that the volume change of the basal ice is zero. It follows that the
bed is in a direction of maximum shear strain-rate; the basal ice is deforming by simple shear.
We conclude that the bed is also a direction of maximum shear stress. This would be true by
symmetry if the ice were isotropic; but even if the ice were anisotropic in its flow properties it is
still true, provided the flow properties have a plane of symmetry parallel or perpendicular to
the bed, which seems a very plausible assumption. Now at x = o the bed makes an zngle
oo — o with the x axis, and the positive sense of 74, is opposite to that of 74, the shear traction
on the bed at x = o (since x was taken positive in the direction of motion). Therefore, for
=1

(*72"3):7.’1@ = Tp COS Q(a“iﬁ"):

and, substituting in Equation (7) written for x = o,
A daz

B«

" dx

The term on the left in Equation (8) involves a longitudinal stress gradient. But, as we
have pointed out, &, is not the mean &, through the thickness of the ice sheet, except at
x = 0, and therefore d&/dx in Equation (8) is not the gradient of the mean o, through the
thickness even at x = 0. Likewise, ho déz/dx = d(ho &5)/dx is not the gradient of the longi-
tudinal force in the ice sheet at x = 0. These distinctions arise because G is defined by
integration between the parallel planes z = 0 and z = ho rather than between the wavy
top and bottom surfaces of the ice sheet.

That the distinctions are far from trivial may be seen by considering the “hydrostatic”
model we began with under heading (i), taking the base as a flat horizontal plane, and letting
the density be uniform. Then &, equals §pgho on ¥ = o and equals }pgho+ O(x*) near x = o.
Hence ho déz/dx = d(ho G2)/dx = 0 on x = 0. On the other hand, the longitudinal force
in the ice sheet is }pgh?, where h = h(x) is the thickness, and the derivative of this at x = o
is pgho (dh/dx)o = —pgho oo, for small a,. Thus, in this example the left-hand side of
Equation (8) is in fact zero, whereas if the left-hand side were wrongly interpreted as the
longitudinal force gradient it would give a term equal to the last term on the right-hand side.

If 20 = Bo and dé,/dx = o in Equation (8) we regain Equation (2). If x and fo are small
and dé,/dx = o, as it would be if the hydrostatic stress formula were used for 6, we regain
Equation (1). Equation (8) is therefore a generalization of these two formulae.

Continuing the general analysis, let us assume that at x = o, ép/éx = 0. Then, following
Budd, we may differentiate Equation (4) with respect to x, remembering that e is a constant,
to obtain

= 7, cos 2({oo— Po) — pgho sin ao (x = 0). 8)

N2 a2
0'Tzz 00z

ox* | oxoz

and then integrate twice with respect to z, from o to z and then from 0 to ho:

0 =10,

he z ko

ﬂ‘z xe 0 ‘\ !
jf%dzdz—}-f :g——(g) }dz= o (x = o).
ox ox ex 2 0
0o o

o
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Since Ox is tangential to the free top surface at x = o it follows that (fo;/8x) 5 0, .0 = 0,
SO we may write

by 2z ho
o bl
f.[ «szd2d2+ rfozdzzo (% = 0). (9)
ox ow
Subtracting Equation (9) from Equation (8) we obtain
fe he
0 . 7
By (0r—0z) d2 = 74 cos 2(xo— o) — fgha sin a0+ —F);;dz dz (x =0). (10)

(Since the plane z = 0 may enter air on both sides of x = o, and since the plane z = Ao
will certainly enter rock on one side or other of x = o, it is necessary to define the x derivatives
in the equations at x = o. This may be consistently done by regarding the derivatives as
limiting values obtained by letting z 0 and z A h,, that is, by approaching the limits
from within the ice.)

The assumptions and restrictions on which Equations (8) and (10) are based are: (a) two-
dimensional flow, (b) equilibrium, (c) p/2x = 0 on x = o, (d) top surface free, (e) no slip
on the bed, (f) no volume change in the basal ice, (g) the assumption about the anisotropy
of the flow properties of the basal ice. There are no others. If the basal ice were not below
the melting point, so that there was slip on the bed, the direction of maximum shear stress
could cease to be parallel to the bed, and then the term 7, cos 2(ao—B,) would not be exact—
but the term would still continue to be approximately =, for small «, and . except at places of
high longitudinal strain-rate. For cold ice in two-dimensional flow, however, all the assump-
tions are very plausible and, accordingly, Equations (8) and (10) are expected to be true to
high accuracy in this case.

Robin bases his work on an equation similar to Equation (8) (after subtracting a hydro-
static pressure from G,), while Budd uses onc similar to Equation (10), but the assumptions
they make in reaching these equations and the precisc meanings of some of the quantities
involved are different. Collins’s exact equation contains several more terms, which disappear
in our coordinate system. The main points needing emphasis in Equations (8) and (10) are:
(i) the rectilinear coordinate system is defined by the upper surface and, although the surface
and bed have arbitrary shapes, ao and f, are constants; (i) the integrations are from o to ko
and not through a variable thickness A; (iii) Ao dGx/dx is not the longitudinal force gradient;
(iv) & and B, may be large.

The objective, which was to derive Equations (8) and (10) as rigorously as possible, has
now been reached. Tt remains to summarize the continuation of the argument, which is due
to Budd and Robin. Write

ho
i}
| (ez—02) dz =25,

(1]
Budd supposes that the longitudinal strain-rate ¢ measured at the surface is related to &, by

the flow law
'5.::’_ n
S (E ’
or better, since 6, may be negative, by
€ = B*ﬂl&élﬂ—l&é’ 6’_{- o Blél(l/?l—])é'
This is the key assumption, and Robin makes a similar one. It may be questioned, as they
recognize, because, among other difficulties, 74, as well as o4 is involved in a more accurate

statement of the flow law. Collins discusses the circumstances in which it is a valid approxima-
tion. Here we need only note that, although a worthwhile simplification, it is on an entirely
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different footing, with regard to accuracy, from the previous assumptions listed above as
(a) to (g). Ifitis accepted Equation (10) becomes
ho z

& o
Qho;—x (B|é| /=" €) = Ty, cos 2(ato—Po) —pgho sin &o+f f %dz dz (x:=:0). (11)
o o

All the quantities in Equation (11), including a0 and fo, are to be measured at x = o.
But, since the origin was chosen arbitrarily, the equation may equally well be applied any-
where, provided of course that oo and B, and all the other quantities are measured in the new
local coordinate system. (The assumption (2p/x)z_o = 0 then means simply that the ice is
stratified parallel to the wavy top surface.)

To facilitate further discussion write the terms in Equation (11) as

G=r—71u+T
(G for the gradient term, = for the basal shear stress term, 7, for the shear stress as given by
Equation (2), and 7 for the last term). In his application to the Wilkes ice cap Budd averages
the equivalent of Equation (11) over a distance of 15 to 20 km (& 20ho) at a series of points
and finds that, on this scale, terms G and 7 become relatively unimportant. Thus approxi-
mately

7 =Ty (12)

where bars denote averages over & 20ho. For small slopes, as in this application, this is
simply Equation (1). Budd then averages over about 4 km (say = 4ho) thus

G =r—7,+1T, (13)
where G indicates this shorter averaging distance. He gives theoretical reasons for supposing
that 7 is negligible. (An alternative form for 7 in terms of o, is given, of course, by Equation
(9). According to Budd the 7 term becomes important for fluctuations with a wavelength
3.6ko or less. Fluctuations on this scale are largely smoothed out by an averaging distance
of 4ho; but Budd holds that in short-distance studies, such as those by Robin and Beitzel and
his own later spectrum analyses, it is essential to include the 7 term.) Observationally he
finds that, for the Wilkes ice cap,

G = ’Fx-_';'.\u (14)
74— 75 being essentially obtained from the fluctuations of « about the 20k, mean value. Hence,
by combining Equations (12), (13) and (14) we have

F=7F = Ty.

The conclusion is that the basal shear stress does not fluctuate in sympathy with the
surface slope o over distances & 4ho (since 7 # ), but it does follow the surface slope changes
over distances of =~ 20k, (since # = 7). Thus the basal shear stress fluctuates much less
than «. The observed fluctuations in « on the scale x4ho (given by 7y —7) are connected
with the fluctuations G in the strain-rate gradient term.

It is to be noted that the argument in this form essentially depends on the observational
fact of Equation (14). Why the ice sheet should behave in such a way that Equation (14)
is true is a deeper question that does not seem to have been answered.

I am grateful to Dr I. F. Collins for his helpful comments on the first draft of this paper.

MS. recetved 14 December 1968
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