
J ourllll l (Jf G/aci%gy, Vol. 8, No. 53,1969 

THE EFFECT OF LONGITUDINAL STRESS ON THE SHEAR 
STRESS AT THE BASE OF AN ICE SHEET 

By J. F. NYE 

(H. H. Wills Physics Laboratory, University of Bristol, Bristol, England) 

ABSTRACT. R obin ( 1967) and Budd ( 1968, unpublished) have succeeded in connect ing the variations in 
surface slope of an ice sheet with variations in the gradient of the longitudinal strain-rate. This paper tries 
to improve the theoretical basis of their work. By choice of a suitable coordinate system and suitable re­
definition of the variables, Budd's formula for the basa l shear stress is derived with a minimum of restrictive 
assumptions. The resulting formula, containing the gradient of a longitudinal stress, is thought to be of high 
accuracy for the two-dimensional flow of cold ice sheets, and is valid for slopes of any magnitude. 

RESUME. L'eJfel de la cOlllraillle IOllgiludillale sllr la cOlllrainte de cissaillement cl la base d'llIze lIappe de glace. Robin 
( 1967) et Budd ( 1968, unpublished) ont reuss i a lier les variations de la pente superficielle d'une nappe de 
glace avec eel les du gradient de la vitesse de deforma tion long itudina le. Cette contribution tend a a meliorer 
la base theorique de leur travail. Par le choix d 'un systeme adequat de coordonnees et d 'une a dequate 
redefinition d es variables , la formule de Budd pour la cont ra inte de cissa illement basale est deri vee avec un 
minimum d 'hypotheses restrictives . La fOl·mule ainsi obtenue, contenant le gradient de la contrainte longi­
ludinale , est supposee d'Ctre d'une haute prec ision pour l'ecoulement a deux dimensions de nappes de glace 
froi de, et est valable pour des pentes d e toute grandeur. 

ZUSAMMENFASSUNG. D ie AlIswirkllng der Liillgsspallmmg my die Scherspallllllng am Grulld ~.illes Inlalldeises. Robin 
( 1967) und Budd ( 1968, unpublished) gelang es, e inen Zusammenhang zwischen den Anderungen der Ober­
Aachenneigung eines Inlandeises und denen des Gradienten d er Langsspannung herzustellen. Di eser Aufsa lz 
\-ersucht, die theoretische Grundlage ihrer Arbeit zu vcrbessern. Durch die W a hl eines geeigneten 
Koordinatensystcms und die Einfuhrung von gunstigen Variablen wird Budds Formel fur die Scherspannung 
am Grund mit einem Minimum von einschra nkenden Annahmen hergeleitet. Der sich ergebenden Fonnel. 
die den Gradienten der Langsspannung enthalt, ka nn grosse Genauigkeit fur das zweidimensionale Fliessen 
kalter Eiskalotten beigemessen werden ; sie gilt fur jede belieb ige Neigung. 

kr the base of an ice sheet where the thickness is h and the surface slope is IX (assumed small ) 
it has been held (Nye, 1952[a] , Cb] ) that the shear stress Tb is given approximately by 

Tb = pghlX, ( I) 

where p is the density and g is the gravitational acceleration. This formula may be justified in 
several different ways, which may be briefly reviewed . 

(i) One way is to note that the hydrostatic pressure is much greater than the shear stresses 
at all levels in the ice sheet except those near the top, and to assume that it is equal to pgd, 
where d is the depth beneath the surface . The hydrostatic stress formula pgd is, of course, only 
exact \\-hen the material is a fluid , at rest, sustaining no shear stresses and having a horizontal 
surface_ When IX is small and non-zero, and when the material supports shear stresses, it will 
only hold as an approximation- and when IX is large it will break down completely. IX must 
therefore be assumed small. The rock bed is allowed to have a small, non-uniform , slope f3 
in the same direction as the non-uniform surface slope. On these assumptions the longitudinal 
stress is approximately equal to the hydrostatic stress. Equation ( I) then follows (Nye, 
1952[a] ) from a balance of forces, the interesting point being that f3 does not appear in the 
final formula. 

(ii ) For a parallel-sided slab of ice of thickness h, resting on a uniform slope IX, provided all 
conditions are uniform down the slope, a balance of forces immediately shows that 

Tb = pgh sin IX. 

In thi s derivation , essentially due to Orowan (1949), there is no restriction to small IX, but if IX 

is small we find Equation ( I) again. Note that there is no reference to the hydrostatic stress 
formula. The longitudinal stress, along with everything else in the problem , including IX and 
h, is simply assumed not to vary down the slope. 

(iii ) Having noted in derivation (i) that f3 does not appear in Equation ( I), a semi­
intuitive argument may be given (Nye, 1952[b] ) in support of the idea that Equation ( I) still 
holds for small IX and f3 even when the bed slope f3 is not in the same direction as the surface 
slope (that is, when the strikes are not parallel ). 
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(iv) In an exact (numerical) calculation (Nye, 1967, p . 706) for a perfectly plas tic 
material flowing under gravity over a horizontal base it is found that, over the greater part of 
the field , Equation ( I ) holds as a first approximation when et is small (and a second approxima­
tion is a lso given), but near the up-stream boundary the flow is disturbed from the " normal" 
pattern and here, even though et is small, Equation ( I) is tota lly invalid even as an approxima­
tion. 

Clearly, there are conditions under which Equation (I) is a valid approximation and a lso 
conditions, even when et is small, where it is not. The difficulty is to formula te the precise 
conditions under which it is a valid fi rs t approximation , and to improve it satisfactorily . (i) , 
(ii) and (iv) all im ply different, and equally valid , sets of sufficient conditions, but the set of 
necessary and sufficient conditions has yet to be found . 

As soon as one tries to apply Equation ( I) in practice one meets the question of the 
interpretation of et and, to a lesser extent, h. Over wha t distance are these to be averaged ? 
The derivations of the formula indicate that this distance should be a t least of order h and 
perhaps grea ter , bu t the m ere fact that one cannot use very local values of et in the formula 
emphasizes its limita tions. 

In face of these problems there have been various attempts to improve Equation ( I ), a nd 
discussion has cen tred particula rly on the role of the longitudinal stress. In all the derivations 
(i) to (iv) above, the longitudinal stress, in a certain sense, has been assumed uniform along the 
flow direction . If it has a gradient in this direction , Equation (I) will be changed . This was 
first emphasized by Lliboutry (1958). More recently R obin (1967), Budd (1968, unpublished ) 
and Beitzel (in press), in interpreting field da ta on the surface and bed profiles of ice sheets, 
have concluded tha t longitudinal stress gradients are an impor tant aspect of the problem . 
Shumskiy (196 1) also has included them in his analyses. 

The purpose of this paper, which arose after a very helpful discussion with Dr Budd, is to 
try to pu t the theoretical derivations which he gave on a m ore secure foundation . By choice 
of a sui table coordinate system and sui table r edefinition of the variables it is possible to 
derive a formula for the basal shear stress tha t is comparatively free from restrictive assump­
tions, and , incidenta lly, is valid for any slope angle. The next step, necessary before the 
formula can be applied , involves a crucia l assumption about the connexion between the 
longitudinal stress and stra in-rate tha t may be questionable. The p resent treatmen t does not 
avoid this assumption , bu t it d oes rem ove certain doubts and difficul ties from the earlier 
stages of the analysis. One has to bear in mind tha t the new term that is being calculated , and 
which depends on the longitudinal stress gradient, is, in some circumstances but not always, a 
second-order correction term to Equation ( I). Therefore, particular care is necessary in 
making a ny approxima tions, and it becomes especially important to define all quanti ties 
precisely. 

Coli ins's careful paper (1968), which a nalysed the mathematical justification for R obin 's 
( 1967) approach , has the same aims as this one, but it uses a different coordina te system with 
axes horizonta l and vertical. Physically the two treatments are very similar (although the 
treatment here introduces an optional no-slip condition at the bed, which is not present in 
Coli ins's a nalysis) and there seems to be no disagreem ent between them. But the method 
used here is simpler. Collins does indeed refer to the possibility of taking local orthogonal 
axes in the surface, as is done here, but he rej ects it because " the axes are curvilinear a nd 
may be initia lly unknown". Strictly speaking, the axes used here a re rectilinear, not curvi­
linear. However, the equations derived are only used on the z-axis, which is normal to the 
surface, and for each surface station one sets up a new rectilinear coordinate system . Thus it 
is true that the coordinate directions are different for each surface station, but nevertheless 
the quantities in the equa tions are all defined with respect to rectilinear axes. There are no 
complications due to curvature terms in the equa tions of equilibrium. The fact that these 
axes lead to simpler equations indicates that they sui t the phenom enon under investigation 
and thus make it easier to understand. This is a sufficient reason for using them. In some 
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field applications there is an additional practical advantage in having axes referred to the 
upper, accessible, surface of the ice sheet. In others it may be better to use horizontal and 
vertical coordinates at the expense of equations that are less easy to interpret. 

z 

Fig. I. Coordinate system. Ox is tangential to the tap surface at O. 

We confine ourselves to two dimensions (plane strain ). Choose an origin at some arbitrary 
point in the top surface (Fig. I), and choose rectilinear axes in a vertical plane, with Ox 
tangential to the top surface in the direction of movement, and Oz perpendicular to it pointing 
downwards. Let the angle between O x and the horizonta l be ao, and let the slope of the bed at 
the point where Oz meets it be /30, Thus, although the top surface and the bed have slopes that 
are non-uniform, ao and /30 as defined here are constants. They need not be small and may be 
positive or negative. Figure I shows their positive senses. Since accelerations are negligible 
we may use the equations of equilibrium for the stress components Ux, Uz, TXZ: 

du x dTxz . 
-",- + - ",- + pg sm ao = 0 , 
ox uz 

dTxz dUz 
Tx + az-+ pg cos Cl o = 0 , 

for a ll x and z within the ice, and let us allow p, the density, to be a function of x and z. 
Integrate Equation (3) with respect to z from z = 0 to Z = ho, where ho is the thickness 

of the ice at x = 0 : 
/to 11 o li o 

J dux J dTxz J Tx dz+ d; dz+g sin Cl o p dz = 0 

o o o 
for a ll x. Write 

h, h, 

o x(x ) = h: J u x(x, z) dz and p(x ) = fa J p(x, z) dz (6) 

o o 

for all x. ho, being the thickness at x = 0, is a constant independent of x (but the thickness of 
the ice is, of course, non-uniform and does depend on x). Therefore 0 x(x ) and p(x), so defined, 
are 110t the mean values of Ux and p through the thickness of the ice sheet, except at x = o. 
They are the mean values between the planes z = 0 and z = ho• (Where the two planes 
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enter rock or air the values are undefined , but we shall see that this causes no essential diffi­
culty. ) In the first term of Equation (5) we may interchange the order of integration a nd 
differentiation (since ho is independent of x) and hence obtain 

du x . 
ho cix-+ (Tu) z=h, - (Txz) z=o+ ,0 (x) gho sm ao = 0 7) 

fo r all x. The top surface being free, we have (Txzl , = 0 = 0 at x = o. 
It is generally supposed that when the basal ice is below the melting point it does no t slip 

on the bed. If the basal ice does not slip, a line in the basal ice drawn parallel to the bed 
does no t extend. Assume that the volume change of the basal ice is zero. It follows that the 
bed is in a direction of maxim urn shear strain-rate; the basal ice is deforming by simple shear. 
We conclude that the bed is also a direction of maximum shear stress . This would be true by 
symmetry if the ice were isotropic; but even if the ice were anisotropic in its flow properties it is 
still true, provided the flow properties have a plane of symmetry parallel or perpendicula r to 
the bed , which seems a very plausible assumption. Now a t x = 0 the bed makes an :::.ngle 
ao - fJo with the x axis, and the positive sense of TXZ is opposite to that of Tb, the shear traction 
on the bed at x = 0 (since x was taken positive in the direction of motion) . Therefore, for 
x = 0 , 

(- TXZ)Z =h, = Tb cos 2(ao - fJo), 
and, substituting in Equation (7) written for x = 0, 

du x . 
ho dx = Tb cos 2 (ao - fJo ) - ,ogho sm ao (x = 0). 8) 

The term on the left in Equation (8) involves a longitudinal stress gradient. But, as we 
have pointed out, Ux is not the m ean Ux through the thickness of the ice sheet, except at 
x = 0, and therefore du x/dx in Equation (8) is not the gradient of the mean Ux through the 
thickness even at x = o. Likewise, ho dux /dx = d (ho u x)/dx is not the gradient of the longi­
tudinal force in the ice sheet at x = o. These distinctions arise because u x is d efin ed by 
integration between the parallel planes z = 0 and z = ho rather than between the wavy 
top and bottom surfaces of the ice sheet. 

That the distinctions are far from trivial may be seen by considering the " hydros tatic" 
model we began with under heading (i), taking the base as a flat horizontal plane, and letting 
the density be uniform. Then u.'"C equals tpgho on x = 0 and equals tpgho+ O(x2

) near .\ = o. 
Hence ho du x/dx = d (ho u x) /dx = 0 on x = o. On the other hand, the longitudinal force 
in the ice sheet is !pgh\ where h = h(x) is the thickness, and the derivative of this at .\" = 0 

is pgho (dh /dx )o = - pgho ao , for small ao. Thus, in this example the left-hand side of 
Equation (8) is in fact zero, whereas if the left-hand side were wrongly interpreted as the 
longitudinal force gradient it would give a term equal to the last term on the right-hand side. 

Ifao = Bo anddux/dx = oinEquation (8) we regain Equation (2). If aoand{3o aresmall 
and du x/dx = 0, as it would be if the hydrostatic stress formula were used for u x, we reg::1 in 
Equation (I). Equation (8) is therefore a generalization of these two formulae. 

Continuing the general analysis, let us assume that at x = 0, 'iJp/'iJx = o. Then, foll owing 
Budd, we may differentiate Equation (4) with respect to x, remembering that ao is a constant, 
to obtain 

O'TXZ O'UZ 
--+ -- = 0 ox' ox GZ 

(x = 0), 

and then integrate twice with respect to z, from 0 to Z and then from 0 to ho: 
ho z ho 

J J a' Txz J {GUZ (Guz) } --,- dz dz -+- -;;- - -;;- dz = 0 
ox ox ox Z= O 

(x = 0). 
o 0 o 
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Since Ox is tangential to the free top surface at x = 0 it follows that (oaZ/ Ox)x~O, Z~O = 0, 

So we may write 
ho z ho 

f f0 2TXZ 0 f 
ox' dz dz + OX azdz = 0 (x = 0). (9) 

o 0 o 

Subtracting Equation (9) from Equation (8) we obtain 
h. ho z 

(x = 0). (10) 

o o 0 

(Since the plane z = 0 may en ter air on both sides of x = 0, and since the plane z = ho 
will certainly enter rock on one side or other of x = 0 , it is necessary to define the x derivatives 
in the equations at x = o. This may be consistently done by regarding the derivatives as 
limi ting values obtained by letting z ~ 0 and z,71 ho, that is, by approaching the limits 
from within the ice. ) 

The assumptions and restrictions on which Equations (8) and (10) are based are: (a ) two­
dimensional flow, (b) equilibrium, (c) op/ox = 0 on x = 0 , (d ) top surface free, (e) no slip 
on the bed, (f ) no volume change in the basal ice, (g) the assumption about the anisotropy 
of the flow properties of the basal ice. There are no others. If the basal ice were not below 
the melting point, so that there was slip on the bed, the direction of maximum shear stress 
could cease to be parallel to the bed, and then the term T b cos 2(ao - {3o) would not be exact­
but the term would still continue to be approximately Tb for small ao and {3o except at places of 
high longitudinal strain-rate. For cold ice in two-dimensional flow , however, a ll the ass ump­
tions are very plausible and , accordingly, Equations (8) and ( 10) are expected to be true to 
high accuracy in this case. 

R obin bases his work on an equation similar to Equation (8) (after subtracting a hydro­
stati c pressure from a 1.)' while Budd uses one similar to Equation (10), but the assumptions 
they make in reaching these equations and the precise meanings of some of the quantities 
involved are different. Collins's exact equation contains several more terms, which disappear 
in our coordinate system. The main points needing emphasis in Equations (8) and ( 10) are : 
(i) the recti linear coordinate system is defined by the upper surface and, a l though the surface 
and bed have arbitrary sha pes, ao and {3o are constants ; (ii) the integrations are from 0 to ho 
and not through a variable thickness h ; (iii ) ho da x/dx is not the longitudina l force gradient; 
(iv) ao and {3o may be large. 

The objective, which was to derive Equations (8) and (10) as rigorously as possible, has 
now been reached. It remains to summarize the continuation of the argument, which is due 
to Budd and Robin. Write 

h. 

h: f (ax- az) d z = '2ii;. 
o 

Budd supposes that the longitudinal strain-rate i measured at the surface is related to a; by 
the flow law 

or better, since a; may be negative, by 

i = B- nl a;ln- la;, a; = B li lc l/n- I)i. 

This is the key assumption , and R obin makes a simila r one. It may be questioned, as they 
recognize, because, among o ther difficulties, T XZ as well as a; is involved in a more accurate 
statement of the flow law. Collins discusses the circumstances in which it is a valid approxima­
tion . H ere we need only note that, although a worthwhile simplification, it is on an entirely 
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different footing, with regard to accuracy, from the previous assumptions listed above as 
(a) to (g) . Hit is accepted Equation ( 10) becomes 

(x = 0). ( 11 ) 

a a 

All the quantities in Equation ( I J), including aa and {3a, are to be measured at x = o. 
But, since the origin was chosen arbitrarily, the equation may equally well be applied any­
where, provided of course that a o and {3o and all the other quantities are measured in the new 
local coordinate system. (The assumption (op / ox)x~o = 0 then m eans simply that the ice is 
stratified parallel to the wavy top surface. ) 

To facilitate further discussion write the terms in Equation ( I I) as 

G = T-T ... + T 
(G for the gradient term, T for the basal shear stress term, T ... for the shear stress as given by 
Equation (2), and Tfor the last term) . In his application to the Wilkes ice cap Budd averages 
the equivalent of Equation ( I I) over a distance of 15 to 20 km ( ';::;; 20ho) at a seri es of points 
and finds that, on this scale, terms G and T become relatively unimportant. Thus approxi­
mately 

where bars denote averages over ';::;;20ho. For small slopes, as in this application, this IS 

simply Equation (1) . Budd then averages over about 4 km (say ';::;;4ho) thus 

G = T- T ... + 7, (13) 
where G indicates this shorter averaging distance. H e gives theoretical reasons for supposing 
that 7 is negligible. (An alternative form for T in terms of U z is given, of course, by Equation 
(9) . According to Budd the T term becomes important for fluctuations with a wavelength 
3.6ho or less. Fluctuations on this scale are largely smoothed out by an averaging distance 
of 4ho; but Budd holds that in short-distance studies, such as those by Robin and Beitzel and 
his own later spectrum analyses, it is essential to include the T term. ) Observationally he 
finds that, for the Wilkes ice cap, 

G = f ... - T ... , 
f ... - T ... being essentially obtained from the fluctuations of a about the 20ho m ean value. H ence, 
by combining Equations (12 ), (13) and (14) we have 

T = f = f ... . 

The conclusion is that the basal shear stress does not fluctuate in sympathy with the 
surface slope a over distances ';::;; 4ho (since T ¥- -T If)' but it d oes follow the surface slope changes 
over distances of ';::;; 20ho (since f = flf ). Thus the basal shear stress fluctuates much less 
than a. The observed fluctuations in a on the scale ';::;;4ho (given by f ... - 7-... ) are connected 
with the fluctuations G in the strain-rate gradient term. 

It is to be noted that the argument in this form essentially depends on the observational 
fact of Equation (14) . Why the ice sheet should behave in such a way that Equation (14) 
is true is a d eeper question that does not seem to have been answered. 

I am grateful to Dr 1. F. Collins for his helpful comments on the first draft of this paper. 

MS. received 14 December 1968 
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