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ABSTRACT. From field observations, dry snow slab avalanche initiation is associated with fracture within
relatively thin weak layers under stronger, cohesive slabs. For risk-based avalanche prediction, it is
important to understand the fracture properties of alpine snow. Alpine snow is a quasi-brittle material
with a fracture mechanical size effect on nominal shear strength meaning that strength decreases
with increasing specimen size. A related size effect is the critical length required for rapid propagation
of a shear fracture. In that case, the probability of fracture increases with increasing crack length. In this
paper, 45 sets of field-measured critical lengths are presented based on 591 individual tests. From ana-
lysis, a probabilistic size effect law based on critical lengths is derived analogous to the deterministic size
effect law for nominal shear strength related to fracture mechanics. The new size effect law may be
useful in applications, particularly since the critical length is easily measured in the field and it is a prin-
cipal component of weak layer fracture toughness.
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1. INTRODUCTION
Dry snow slab avalanches are observed to release by propa-
gating fractures in thin weak layers underneath cohesive
snow slabs. The propagating disturbances are interpreted
as shear fractures (McClung, 1979, 1981; Schweizer and
others, 2003). Since dry snow slab avalanches are observed
to initiate by propagating fractures within the weak layer, it
is natural to apply fracture mechanics to the problem.
There are two aspects to the problem which are very import-
ant. The first of these is to provide a framework for under-
standing the physical mechanism for avalanche release and
this leads to the conclusion that avalanche prediction is a
risk or probabilistic-based activity. Application of fracture
mechanics to alpine snow shows that slab avalanches occur
on the basis of failure of weak zones within the weak layer
which are of macroscopic size (Bažant and others, 2003).
These weak zones cannot generally be found and their prop-
erties cannot be measured. This constitutes the residual risk
in avalanche forecasting which cannot be eliminated
(McClung and Schaerer, 2006; McClung, 2011a).

The second aspect for application of fracture mechanics to
avalanche formation has received much less attention. The
second aspect is concerned with whether the application of
fracture mechanics can help to forecast avalanches. Our
paper is concerned with this second aspect. Our paper is
based on the application of probabilistic methods combined
with field measurements consistent with the experimentally
verified mechanical and fracture properties of alpine snow.

Conventional fracture mechanics was developed by
Griffith (1920, 1925) nearly 100 years ago for brittle materials
such as glass. It is termed: linear elastic fracture mechanics
(LEFM). LEFM contains two important assumptions: (1) that
the fracture process zone (FPZ) at the tip of the crack
where failure is taking place is infinitesimal and (2) the

material is linear elastic (rate-independent). Neither of the
two important brittle fracture assumptions apply accurately
to alpine snow in natural slab avalanche initiation (Mellor,
1968; McClung, 2015). Alpine snow, in which avalanches
form, is not a brittle material. It is found within 90% of the
melt point and the volume fraction of ice is typically ∼20%
(or equivalently 80% air). Instead, alpine snow is termed
quasi-brittle with respect to fracture since it has a finite-
sized FPZ and it is highly rate-dependent. Quasi-brittle frac-
ture mechanics has been experimentally verified to apply to
alpine snow by hundreds of laboratory tests (Sigrist, 2006;
Borstad, 2011). The quasi-brittle character of alpine snow
implies that there is a fracture mechanical size effect law
on snow strength: larger specimens have lower strength
than smaller ones. Bazant and others (2003) provided a frac-
ture mechanical size effect law on snow strength and applied
it to avalanche release.

Our paper is concerned with a probabilistic formulation of
a size effect law consistent with quasi-brittle fracture
mechanics but compatible with a risk basis for avalanche
forecasting. Our size effect law is based on a set of field-mea-
sured critical lengths, instead of snow strength. However, it
applies to fracture initiation in weak layers consistent with
the original fundamental basis of brittle fracture mechanics
by Griffith (1920, 1925). Since our analysis is probabilistic,
rather than mechanical, the constraints necessary for appli-
cation of LEFM such as linear elasticity are avoided.

Brittle fracture strength data have also been analyzed
probabilistically (e.g. Freudenthal, 1968). Weibull (1939,
1951) showed that larger samples in tension are weaker
than smaller samples with a probability density function
(pdf) describing the effect given by a distribution which
bears Weibull’s name. The idea is that a larger sample has
a higher probability of having a weaker flaw to produce
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earlier failure under loading. Bažant and Planas (1998) and
Bažant (2005) have discussed the application of the
Weibull brittle fracture theory to quasi-brittle materials and
they have listed serious objections to the application of the
theory. First, snow is not a brittle material. In addition, the
scaling law of Weibull theory (Bažant, 2005) is scale invari-
ant but with no characteristic length but this is not true for
snow by the experiments of Sigrist (2006) and Borstad
(2011). Their experiments showed that a macroscopic FPZ
implies a deterministic size effect which is different from
that in the Weibull theory.

Quasi-brittle fracture is expected to follow the principle
sincea smaller crack ina sample should result inhigher strength
than one with a larger crack (Bažant and Planas, 1998). A
sample with a crack size not much larger than the FPZ should
have very high strength, while a longer crack should approach
the low-strength limit required for LEFMwhere the crack length
is much greater than the FPZ. A fundamental difference in the
approaches of Weibull and quasi-brittle fracture is that
Weibull is purely statistical, whereas quasi-brittle is a fracture
mechanical formulation. Our formulation is probabilistic but
it is consistent with quasi-brittle fracture mechanics.

In addition to the probabilistic size effect law, the paper
contains an Appendix which helps illustrate the relationship
of the probabilistic size effect law to the fracture mechanical
strength size effect law of Bažant and others (2003). We have
also included information about how the new probabilistic
size effect law might be used in practice.

2. BASIC FRACTURE MECHANICS, AVALANCHE
FORMATION AND ALPINE SNOW
The development here is related to avalanche initiation involv-
ing fracture mechanics. The important quantities in fracture
mechanics are bound together in the quasi-static energy equa-
tion: Ki ¼

ffiffiffiffiffiffiffiffiffi
E0Gi

p
(Irwin, 1958) where i denotes mode of

loading taking values: I, II, III (in-plane tension, in-plane shear,
anti-plane shear) in this paper. The parameter Ki is the stress
intensity factor containing the driving stress at the crack tip
(units: Pa(m)1/2) and Gi is the fracture energy: the energy to
create a unit area of fracture surface (units: N/m or J/m2). The
reader is referred to Rice (1968) and Tada and others (2000)
for more information. The modulus is: E′= E/(1− ν2) (plane
strain) or E′= E (plane stress) where E, ν are the Young’s
modulus and Poisson’s ratio. For the viscoelastic case, 1/E′ is
replaced by the viscoelastic compliance in plane strain
tension (Rice, 1973; McClung, 2015).

In this paper, we distinguish between the loading form
which is in terms of the applied stresses and the fracture
pattern which is observed (Rao and others, 2003). The
loading form may be described using descriptive terms
such as shear loading or compressive loading. The term frac-
ture mode here refers to the observed fracture pattern. The
loading is characterized by stress intensity factors (KI, KII,
KIII), whereas the mode of fracture is determined by observa-
tion of how the crack propagates. Formulation of stress inten-
sity factors is beyond the scope of this paper.

At critical conditions just before self-propagation, the
symbols: KIc, KIIc are used to denote the fracture toughness
associated with the observed fracture mode. The fracture
toughness normally includes the critical length beyond
which dynamic fracture occurs and the applied driving
stress load. The third fracture mode (III) (anti-plane shearing)
is observed under three-dimensional dynamic conditions in

avalanche release (McClung, 2009a). However, in this
paper, only quasi-static conditions for in-plane conditions
are analyzed, so mode III is discussed but not analyzed.

For the case of natural dry-slab avalanche release, the
loading consists of compression and shear on the weak layer
by the slab weight. However, the fracture propagates within
the weak layer for distances on the order of 10s to 100s of
meters. There is no observed kinking or branching up into the
slab until the tensile fracture line appears on the order of 50
slab depths upslope (McClung, 2009a). Observationally, the
initial fracture is mixed mode II (in-plane: upslope) and III
(anti-plane: across slope) within the weak layer which persists
until the tensile fracture line forms far upslope under rapid,
dynamic conditions. Figure 1 shows a dry-slab avalanche in
the initial stages of motion released by explosive control.
When combined with field observations, which show the frac-
ture to propagate upslope and across slope from the initiation
area, Figure 1 suggests that the fracture propagated upslope
(mode II) and across slope (mode III) within the weak layer to
produce tensile failure at the crown.

Our data were obtained from propagation saw tests (PST)
(Gauthier, 2007; Gauthier and Jamieson, 2008b) by cutting a
notch in the weak layer under a slab until a critical length
L(m) was achieved resulting in rapid propagation within the
weak layer. For the PST data (Fig. 2), the fracture is observed
to propagate (in-plane) within the weak layer with no kinking
or branching into the slab above or material below so the
mode of fracture is called mode II. For PST, the sample
width is 30 cm, so mode III is not evident.

In order to initiate and propagate fractures, an energy-based
model is required. Several energy-based models are available
at present. The model of Palmer and Rice (1973) is based on
quasi-static shear fracture (mode II) initiation within the weak
layer (McClung, 1979, 1981, 2015). Another is from Heierli
and others (2008) which requires a macroscopic void in the
weak layer. This paper is concerned with natural slab ava-
lanche release using probabilistic methods, so detailed analysis
of energy-based models is beyond the scope here.

A quasi-brittle, fracture mechanical size effect law on
weak layer strength was proposed by Bažant and others
(2003) and is compatible with the model of Palmer and
Rice (1973). The quasi-brittle character of alpine snow was
verified by hundreds of beam bending tension fracture tests
in the Ph.D. theses of Sigrist (2006) and Borstad (2011).

Fig. 1. Dry-slab avalanche in the initial stage of motion initiated by
explosive control. The weak layer fracture spread upslope (mode II)
and across slope (mode III) to cause tensile fracture at the crown.
Photo by: T. Salway.

158 McClung and Borstad: Probabilistic size effect law for mode II fracture from critical lengths in snow slab avalanche weak layers

https://doi.org/10.1017/jog.2018.88 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2018.88


Estimates of the size of the FPZ are typically in the range 2–
10 cm (Sigrist, 2006; Borstad, 2011).

3. DATA DESCRIPTION AND CHARACTERISTICS
The dataset was collected in the Columbia Mountains of
eastern British Columbia. The dry snow avalanche stratig-
raphy (planar, cohesive slab over thin weak layer) was recog-
nized by examining snow pits and from simple instability
tests (e.g. McClung and Schaerer, 2006) to reveal the slab/
weak layer combinations.

The data were obtained from field-measured weak layer
shear fracture tests (PST) (Gauthier, 2007). The measurements
were from the Ph.D. thesis of Gauthier (2007): Gauthier and
Jamieson (2008a) as well as our own personal collection.
They consisted of 591 tests for 45 slab/weak layer combina-
tions. The tests were conducted by cutting a notch within the
weak layer underneath a slab until the critical length L was
reached and slope parallel, rapid propagation was achieved.
Figure 2 contains a schematic representation of the test
geometry. The data consisted of L;D;ψ ; �ρ where D;ψ ; �ρ
are: slab depth, slope angle and mean slab density. Weak
layer crystal forms and size were also recorded for most
tests. On average, more than ten tests were done to record
a median value of L for each slab/weak layer combination.
Each slab/weak layer combination is different. Therefore,

analysis of the dataset does not yield results like laboratory
tests where similar or nearly identical samples can be
tested. Instead, the analysis yields only trends for the
dataset as a whole. Table 1 contains basic descriptive statis-
tics for the measurements and Table 2 has percentile values
for L. Figure 3 is a dot histogram of the 45 critical lengths.

By cutting a notch with a snow saw, we suggest that slope
parallel and slope perpendicular displacement are produced
in the weak layer and potential energy is released during
unloading by slab motion in combination with weak layer
deformation. The process eventually leads to the observed
upslope propagation in the weak layer which is interpreted
as the mode II weak layer fracture. The slope perpendicular
displacement from the saw cut is compressive so it alone
cannot drive the fracture in the slope parallel (upslope)
direction as observed (McClung and Borstad, 2012a).
Measurements of slope normal slab displacement prior to
propagation (McClung and Borstad, 2012a) showed that it
produces minor slab bending unless a thick snow saw is used.

An important limitation of the PST is that the weak layer
must be thick enough (∼1 cm) such that the saw can be
guided through the layer without intersecting the slab
above or the material below. We have observed avalanches
to release on new, stellar crystals on the order of 1 mm thick.
Avalanches have also been observed on surface hoar (≈1
mm thick) and facet layers (≈1 mm thick) over ice crusts
and facet layers alone (≈1 mm thick) (Personal communica-
tions: D. Cochrane, K.Wyss, and C. Israelson: senior moun-
tain guides). For all four such cases, PST would not be
appropriate. Our field measurements have consistently
shown that, without a sufficiently cohesive slab above,
shear fracture propagation within the weak layer is not
observed for PST.

As with any material test, PST must be interpreted care-
fully to yield information relevant to avalanche release.
Natural dry-slab avalanches are observed to initiate by
mixed mode II and mode III fracture in the weak layer for
slope angles in the range: 25−55° (McClung, 2013),
whereas PST give mode II fracture results for any slope

Fig. 2. Schematic representation for the propagation saw test (PST).
The cut is made within the weak layer starting from the free surface.
The block is 30 cm wide and long enough that the end of the critical
cut length (L) is not close to the end of the block. Typically, the block
length is 1 m or more. In the figure, 2cf is the size of the fracture
process zone.

Table 2. Percentile values for L

Percentile L (m)

Min 0.07
5% 0.10
10% 0.18
25% 0.21
50% (Median) 0.30
75% 0.38
90% 0.51
95% 0.56
Max 0.61

Table 1. Descriptive statistics for PST from 45 slab–weak layer
combinations (591 tests)

Variable L (m) D (m) ψ (o) �ρ ðkg=m3Þ

Range 0.07–0.61 0.08–1.30 0–43 85–266
Median 0.30 0.36 30 163
Mean 0.31 0.43 27 165
SD 0.13 0.30 10 41
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angle, even for ψ= 0°.The same is true through human inter-
vention (skiing or walking) for ψ= 0°, propagation is some-
times observed which implies a positive weak layer driving
stress and deformation along the weak layer both of which
are not present under slab weight alone (McClung, 2011b).
Thus, the stress and deformation conditions for PST and
human intervention are not the same as for natural ava-
lanche release. For the PST, the increasing weak layer
shear strain and stress as the saw is moved (under constant
slab load) help initiate the mode II fracture (McClung,
2015). Since the experiments showed that weak layer
propagation takes place even for ψ= 0°, it is not possible
that gravitational stresses alone drive the fracture unlike
natural dry-slab release.

The dataset took ∼10 field seasons to acquire and this type
of dataset is probably unique in nature among mode II critical
lengths measured in the field. Similar datasets were analyzed
by Schweizer and others (2014) and van Herwijnen and
others (2016). No comparable dataset exists for earthquakes,
landslides, ice or rock. The data are from different slab–weak
layer combinations with slab depth, density and slope angle
variations commonly found in avalanche applications. We
performed Spearman rank correlation calculations for
L; �ρ;D;ψ . We found that L has significant positive correla-
tion with D (0.61; p < 0.0005) but we found no other statis-
tically significant correlations among directly measured
variables. Rank correlation of L with the depth averaged
slope perpendicular normal stress: σ ¼ �ρgD cosψ gave
0.64 (p< 0.0005) and with the depth averaged slope parallel
shear stress: τ ¼ �ρgD sinψ gave 0.60 (p< 0.0005) where g is
the magnitude of gravity acceleration. The significance (p) for
Spearman rank correlation, rs, was calculated from the t-stat-
istic (Harnett, 1975) as: t ¼ rs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN� 2Þ=ð1� r2s Þ
p

with N− 2
as the number of degrees of freedom and use of tables of t to
estimate p with significance defined as p< 0.05.

We also performed t-tests for the mean of L in relation to
two groups of weak layer crystal forms: persistent forms
(surface hoar, facets, depth hoar) and non-persistent forms
(decomposing and fragmented). We found that the means of
L are significantly different (p= 0.004) between the two
groups: persistent forms compared with non-persistent forms.
The persistent forms imply longer values of L. The longer
values of L for persistent forms could result from the generally
larger grains normally found in comparison to non-persistent
(McClung and Schaerer, 2006). Bažant and Planas (1998)
showed that the FPZ tends to increase with grain size for
quasi-brittle materials which can imply longer critical lengths.

Another, more likely, possibility is that the persistent forms
tend to last for longer periods in the snowpack. The strength
and fracture toughness of surface hoar layers increase with
time to ensure longer cut lengths L. We tracked surface
hoar layers using the blade hardness gauge (Borstad and
McClung, 2011) which correlates with tensile (mode I) frac-
ture toughness and layer stiffness. For sets of measurements
over 2 months, the results showed layer stiffness/fracture

toughness increased by ∼210% in one case and 970%
after 1 1/2 months in another case (Pogue and McClung,
2016). For the same time frame, non-persistent layers nor-
mally bond and they do not display instability for such
long periods. The increase of L with weak layer age is also
compatible with the positive rank correlation of L with D
since with as time passes weak layers should be buried
more deeply from snow falls.

A related and very important source of information comes
from slope angle results. For PST done on the same day at dif-
ferent slope angles (McClung, 2009b), the critical cut length
can be significantly shorter for ψ= 0° than for ψ ∼30°. A
simple explanation is that the saw cut produces both slope
normal and slope parallel weak layer deformation by loss of
gravitational potential energy from the slab motion even for
ψ= 0°.McClung (2015) suggested that more slope normal dis-
placement (low slope angle) also implies more slope parallel
displacement and a shorter cut length (L). However, weak
layer deformation has not been reported for PST. The slope par-
allel (shear) deformation also implies a positive weak layer
shear stress term. The slope normal deformation alone cannot
help drive the fracture in the slope parallel direction since it is
working to close, not open the weak layer crack. Birkeland
and van Herwijnen (2016) showed a related effect: added
load for the same slope angle produces a shorter critical length.

Reiweger and Schweizer (2010, 2013) measured the weak
layer deformation components for surface hoar, facets and
depth hoar in the laboratory. Their measurements showed
shear strain localization within the weak layer with ∼90%
of the system deformation concentrated in the weak layer
instead of the slab.

The slope angle results (McClung, 2009b), the load results
(Birkeland and van Herwijnen, 2016) and the highly signifi-
cant positive correlation (0.64) of L with σ suggest that
there are two important timescales for PST. For the same
day or over short timescales for the same or very similar slab
and weak layer, the slope angle and load results (Birkeland
and van Herwijnen, 2016) show that L can decrease strongly
as ψ decreases (or σ increases). Both of the added load and
slope angle effects are on a short timescale. On the other
hand, the correlation results for the entire data base show
that L increases withD or σ (opposite to the short-term behav-
ior) but no significant correlation with ψ, which we attribute
partly to aging effects for the persistent forms which consti-
tute most of the data base (or increase in KIIc).

Another important feature of PST, if they are to be of most
use in describing avalanche release, is that the saw used
should be as thin as possible. The reason is that a thick saw
produces a void or hole, which is an artifact of the saw cut,
to produce slab bending. For a PST, our observations have
shown the observed weak layer fracture is always mode II
with propagation observed within the weak layer and with
no kinking or branching into the slab from the weak layer.
However, use of a thick saw can produce excess slab
bending causing slab tensile fracture ∼1 D upslope from
the end of the saw cut. We filmed the slab fractures (300
fps) and we found the slab fractures initiated at the top of
the slab. This is not a mixed mode observed fracture condi-
tion since there are two separate cracks. Observation of
mixed mode in fracture mechanics (Bažant and Planas,
1998; p. 95) refers to change in direction (kinking or branch-
ing) from a single crack. Thus, for a thick saw or low-density
slab snow, slope parallel propagation (mode II) can occur
along with an artificial tensile slab fracture (McClung and

Fig. 3. Dot histogram of critical lengths. The range is: 0.07 m≤ L≤
0.61 m with mean: �L ¼ 0:30m.
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Borstad, 2012a; Schweizer and others, 2014; McClung,
2015). The PST data reported here were all done with saw
thickness ≤2 mm. Since the saw thickness is often compar-
able to the weak layer grain size, a crack made for a PST
must be considered blunt at the tip and any conclusions
about weak layer fracture properties using fracture
mechanics must be regarded as approximate at best.

The slab fractures which do occur in PST are very near to
the end of the saw cut (within about one slab depth, D
upslope) and they appear unrelated to the tensile failures
that are observed in the formation of the crown in avalanche
release (Fig. 1), which are typically ∼50 D upslope of the
weak layer initiation point (McClung, 2009a) and under
fully dynamic conditions. Perla and LaChapelle (1970),
Perla (1971) and McClung and Schweizer (2006) predicted
that the tensile fractures at the crown in avalanche release
originate near the bottom of the slab from shear fractures.

4. PROBABILITY ANALYSIS OF THE DATASET
Analysis was performed to find the best-fitting pdf for the
45 values of L. The analysis was done for 65 distributions
with a fit found for 60. The best-fitting distribution was
found to be a gamma distribution based on the results of
five goodness-of-fit tests. The tests included the
Kolmogorov–Smirnov (K-S), Anderson–Darling (A-D) and χ2

(C-S) statistics plus Q-Q (quantile) and P-P (probability)
plots. The choice of the gamma distribution was made on
the basis of preference of a two-parameter distribution over
more complicated distributions of three and four parameters.
For the gamma distribution, the statistics were (critical values
for the significance parameter: α= 0.2 in parentheses): K-S:
0.09 (0.16); A-D: 0.37 (1.37); C-S: 2.9 (6.0). The higher the
value of α is, the lower the critical values are, to yield a
more stringent condition on the fit. The three-parameter
gamma distribution yielded nearly identical fit statistics to
the chosen two-parameter gamma distribution but it intro-
duces added complexity.

For the gamma distribution, the scale parameter was L0=
0.05 m and the shape factor: n= 5.92 ≈ 6. The gamma pdf is
given by:

f ðLÞ ¼ Ln�1

Ln0ΓðnÞ
exp

�L
L0

� �
; (1)

where Γ(n) is the gamma function.
A very good fit was also found for the Weibull distribution.

For the Weibull distribution, the statistics (α= 0.2) were: K-S:
0.09 (0.16); A-D: 0.43(1.37); C-S: 6.0 (6.0). TheWeibull distri-
bution passed the C-S at α= 0.1 where the critical value was
7.8. The Weibull distribution had Weibull modulus (shape
parameter) m= 2.57 and scale parameter: 0.34 m. Of the
extreme value distributions (Weibull, Gumbel, Fréchet,
Generalized), the Weibull provided the best fit but it was not
quite as good as the gamma distribution. Since our paper
applies to natural avalanche release for which ψ≥ 25°, we
repeated the calculations for that condition (36 slab-weak
layer combinations; 443 tests). The distribution parameters
for the gamma pdf were: L0= 0.05 m; n= 6.1 and for the
Weibull pdf, they were: m= 2.76; scale parameter: 0.34 m.

The skewness calculated from the data is: 0.48 (sample
size 45). The skewness for the gamma distribution is: 2=

ffiffiffi
n

p ¼
2=

ffiffiffi
6

p ¼ 0:82 and for the Weibull distribution withm= 2.6 it
is: 0.32 (Rousu, 1973) where both of the latter values imply

infinite sample size. Thus, the data skewness lies between
the theoretical values of the two distributions.

For the gamma distribution, the mean �L ¼ ðnÞL0 ¼
6ð0:05Þ ¼ 0:30m (vs 0.31 m from the data), the most prob-
able value (mode) is (n− 1)L0= 5(0.05)= 0.25 m and the
Std dev. is: σst= (n)1/2L0= 0.12 m (vs 0.13 m from the data).
Figure 4 is a quantile plot (Q-Q plot) for L(m) measured (ordin-
ate) vs. L(m) calculated from the inverse of the gamma func-
tion. The regression line had adjusted coefficient of
determination: R2= 0.99.

5. PROBABILISTIC MODEL FOR MODE II CRITICAL
LENGTHS
Bažant (2004) formulated a probabilistic strength framework
for quasi-brittle materials and McClung and Borstad (2012b)
applied probabilistic methods to the strength of alpine snow.

Here, a probabilistic model for the measured critical frac-
ture lengths by PST is derived. The model consists of dividing
the length L (per unit width) into small representative linear
elements (RLE) of length equal to cf (half the length of the
FPZ) (Bažant and Pang, 2006, 2007) for mode II fracture in
the weak layer (Fig. 2). From Sigrist (2006) and Borstad
(2011), the mean value �cf ¼ 0:02m based on 143 tensile
laboratory beam bending tests. There are no values available
from shear tests, so the tensile data are relied upon here. We
expect the recorded cut length (L) to be a very good approxi-
mation of that shown in Figure 2. Once propagation is
sensed, it takes a short amount of time to stop the saw
cutting which implies the recorded length includes a few
centimeters extra which is approximately the same as cf.

Each RLE is deemed too small to cause fracture of the layer
itself but traversing the weak layer with the saw causes a
crack to form, which weakens the system (slab+weak layer).
The longer the crack, the weaker the system which implies a
size effect based on measured length L to cause fracture. Each
RLE is small and governed by a small size, constant high
strength value ðτ�0Þ considered to fail in a plastic (or size-inde-
pendent) manner when the applied stress ratio: τ=ðτ�0Þ at a suit-
able shear strain γ* produced by the saw cut. Plasticity here
refers simply to constant yield stress, not that plasticity is
being applied to model the snow. For the notation here (*)
refers to properties of each small RLE assumed constant for
the simplest model. Each RLE is characterized by a probability
of fracture P* and aWeibull modulusm (Weibull, 1939, 1951)
which represents an index of the number of micro-fractures in
an RLE (Bažant and Pang, 2006, 2007). From McClung and

Fig. 4. Quantile–quantile plot: L(m): measured vs L(m): model for the
gamma distribution.
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Borstad (2012b), it is assumed P*−1/m; m≥ 1 as the condi-
tional density of micro-fractures for each RLE. If m= 1, an
RLE sustains only one micro-fracture and its probability of sur-
vival is zero for the next micro-fracture. When m is large, the
material can survive many micro-fractures within an RLE and
its probability of survival increases when m micro-fractures
can be sustained prior to fracture. For any quasi-brittle material
such as snow,m >1.

As an initial, simple model, we assume the weak layer
consists of many identical RLEs. All RLEs have the same con-
ditional density of micro-fractures. The survival probability
for one RLE is: 1− P*. As the saw cut is lengthened, the
system becomes weaker and the overall survival probability
decreases. For finite N individual RLEs cut in succession, the
probability of survival, for the system is: PS= 1− PF, is
(Bažant and Planas, 1998):

1� PF ¼ ð1� P�Þð1� P�Þ . . . ð1� P�Þ ¼ ð1� P�ÞN

¼ eNlnð1�P�Þ: (2)

Given that P*must be small, ln(1− P*)≈ P* and with N= L/cf,
we arrive at:

PF ¼ 1� exp� LP�

cf
¼ 1� exp� L

cfm

¼ 1� exp � L
L0

� �
: (3)

In (3), 1/L0= 1/(mcf) is an average linear concentration of
material fracture probability (units per meter).

Equation (3) is basic and it relates PF to the length L for the
first occurrence of a Poisson event (Benjamin and Cornell,
1970). It contains the elements of fracture and size effect.
As L→ 0, PF→ 0 which implies low probability of failure,
and small size, high strength plastic failure. As L becomes
large, PF→ 1 which implies low strength and large size
with crack length much greater than the FPZ size (2cf).
Thus, for large enough, L, from a fracture mechanics perspec-
tive, the system approaches the condition of LEFM which
implies L ≫ cf (Appendix A).

Application of Eqn (3) with the PST for the mean of the
data (�L ¼ 0:31m) for the exponential distribution yields
L0= 0.31 m and m= 15.5 (with cf= 0.02 m). The estimated
value of m is much too high for alpine snow and it exceeds
the best estimate for concrete:m= 12 (Bažant and Planas,
1998). In addition, the initial simple model (Eqn 3) does
not match the data. For L= 0.10 m PF= 0.21 which is
much too high based on the descriptive statistics for the
data (Table 2) which give a cumulative value PF= 0.05.
The conclusion is that the implied value of L0 is too high
from this simple model. The next section contains a refined
analysis to correct these deficiencies with connection to
the observed gamma distribution.

6. THE GAMMA DISTRIBUTION FOR MODE II
CRITICAL LENGTHS L
Equation (3) can be recognized as the spatial encounter prob-
ability for Poisson events: the probability that at least one
event can cause fracture with Poisson parameter: L/L0:

PF ¼ 1� exp � L
L0

� �
¼ exp � L

L0

� �X∞
k¼1

1
k!

L
L0

� �k

: (4)

Freudenthal (1968) derived the same expression for statistical
brittle fracture from purely probabilistic means without the
use of mechanics with L referring to sample size (length)
instead of crack length.

An ‘event’ is defined from the damage incurred by travers-
ing a length such that the minimum critical length for fracture
is realized. This length is close to the size of the FPZ ≈ 2cf.
Instead of at least one event potentially causing fracture, frac-
ture is considered associated with N prior damage events
with fracture potentially occurring on the next event(n+ 1).
Eqn (4) is then replaced by (Freudenthal, 1968; Olkin and
others, 1980):

PFðLÞ ¼ exp � L
L0

� �X∞
k¼n

1
k!

L
L0

� �k

¼ 1� exp � L
L0

� �Xn�1

k¼0

1
k!

L
L0

� �k

; (5)

which implies fracture is associated with at leastN independ-
ent prior events in succession. Eqn (5) represents the cumula-
tive probability of fracture for a gamma distribution with Nas
an integer (the Erlang distribution). In (5), the formalism L0=
mcf is retained from physical principles as above. The
Weibull modulus calculated from the data was m= 2.57
which gives: L0= cfm= (0.02)(2.57)= 0.05 m in agreement
with the calculated value for the gamma distribution. The
near-perfect agreement is fortuitous since cf is expected to
vary with density (Sigrist, 2006) and/or grain size (Borstad,
2011).

Differentiation of (5) with respect to L yields the gamma pdf.
Physically Eqn (5) represents irreversible cumulative damage
as the saw traverses a number of damage events (about the
size of the FPZ or two RLE). Each event is too small to cause
fracture (very low PF). Eqn (5) predicts PF= 0.0006 for L=
L0= 0.05 m. Each RLE is characterized by high strength in
the plastic limitðτ�0Þ, a length cf andWeibull modulusm repre-
senting an index number of micro-fractures over the distance
cf (Bažant and Pang, 2006, 2007).

In the probabilistic size effect law, PS is a proxy for
strength. Figure 5 contains the probabilistic size effect law
with a log–log plot of the probability of survival based on
the measured lengths: PS= 1− PF vs L/L* for 0.07 m≤ L≤
0.61 m; L*≃ L0= 0.05 m. The symbol L*, as roughly equiva-
lent to L0, is derived in Appendix A from the strength size
effect law of Bažant and others (2003) compatible with the
PST data. The probability of survival is mathematically
equivalent to an exceedance probability. The values of PS

Fig. 5. Log–log plot of probability of survival: PS vs L/L*.
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were calculated from the gamma distribution with the PST
data: PS= 1−I(n, β); L*= 0.05 m;n= 6 where I(n, β) is the
incomplete gamma function and L/L*= β. For integer n, the
survival probability, PS(β, n), is then from Eqn (5):

PSðn; βÞ ¼ 1þ β þ β2

2!
þ :::þ βn�1

ðn� 1Þ!
� �

e�β : (6)

Appendix A contains the empirical fracture mechanical
strength size effect law for dry-slab avalanche initiation by
Bažant and others (2003). Figures 5 and 6 (Appendix A)
represent a companion pair of size effect laws which are
conceptually very different. Figure 6 represents a case
derived for a crack already in place, whereas Fig. 5 represents
a sample for which a notch is cut. In both cases, L represents
about half the total crack length for the scenario of avalanche
release (Bažant and others, 2003; McClung, 2011a;
McClung, 2015). Figure 6 is derived empirically from fracture
mechanics with matching to plasticity (small size) and LEFM
(large size) limits. Figure 5 is developed entirely from analysis
of field and laboratory data.

Both size effect laws apply to quasi-brittle fracture. For
example, the probabilistic size effect law predicts PS≈ 1 for
crack lengths less than or equal to the size of the FPZ. Both
contain the same fundamental length scales L and L0, L*
with the latter two being approximately equal and close to
the FPZ size ∼2cf. For the brittle fracture limit (Griffith,
1920, 1925), the FPZ is infinitesimal so it need not appear
in a formulation. Freudenthal (1968) studied brittle fracture
statistically from the perspective of sample size and the FPZ
length does not appear. Here quasi-brittle fracture is ana-
lyzed statistically from the perspective of critical lengths
and the FPZ appears as an important length scale.

Equation (6) may also be expressed directly in terms of the
strength size effect law ((A2): Appendix A) by the substitution:
β ¼ (τ�0=τN)

2 � 1 to illustrate the non-linear relationship be-
tween the two size effect laws. From (6) as β→ 0, PS(n,
β)→ 1 and if β ≫ 1, PS(n, β)→ 0.

The plot (Fig. 5) shows very high PS for small L indicating
the high strength plastic limit and low PS for large L approach-
ing the condition within 4% (L/L*= 12.2) of the LEFM limit
in the sense that L≫ cf.

For both size effect laws, it is important to emphasize that
snow is not generally an elastic material and, in particular, the
PST are not elastic nor does LEFM strictly apply (McClung,
2015). The LEFM limit, in this case, applies if L≫ 2cf (or
β≫ 1) as in the original treatment of fracture (Griffith,
1920, 1925). The brittleness number (Bažant and Planas,
1998): β≃ L/L* from the PST here had a median 7 and a
range 1.4–12.2. Thus, many of the tests imply, from the per-
spective of the finite size: 2cf, that LEFM is, at best, a rough
approximation for the data even if the rate condition on
inapplicability of linear elasticity is ignored. The role of elas-
ticity for the PST is explained in detail by McClung (2015).

7. PRACTICAL USE OF THE PROBABILISTIC SIZE
EFFECT LAW
The critical length L(m) is easily measured in the field and the
driving applied shear stress, τ, at the weak layer for natural
avalanche release may be calculated. Since avalanches are
observed to initiate by mode II fracture propagation, KIIc is
of more interest than the weak layer strength and L is an

important component of KIIc. Suggested values for KIIc for
avalanches and PST have been given by McClung (2015).

For PST, a short value of L implies easy attainment of a
fracture condition which implies a higher degree of instabil-
ity than a longer value since more energy input is implied to
generate an unstable fracture for the latter. More formally, a
short critical length coupled with a low value of τ implies
relatively low fracture toughness. Experience also suggests
that if a dynamic propagating fracture is not observed
during a PST, the situation is likely stable. In addition, a prob-
abilistic formulation in terms of L, fits in well with risk ana-
lyses which are couched in terms of probability (McClung,
2011a, 2014). It is clear that either PF or PS represent condi-
tional probabilities since a cohesive slab over the weak layer
is needed in order to get a fracture to propagate.

With a crack in place (as may be encountered in back-
country travel), the strength size effect law implies lower
strength for increasing length and the probabilistic law predicts
lower probability of survival. Thus, for either law, higher
instability is implied for a longer in situ crack or imperfection.
However, when a PST is performed, a longer cut implies more
energy had to be input to reach a fracture condition reflecting
higher resistance to fracture and propagation.

If one was to use measured values of L as an approximate,
partial component of fracture toughness, we suggest testing
around the median value of our slope angles: ψ= 30° for
future measurements. One could use either the percentile
values (Table 2) to represent non-exceedance probabilities
or the gamma distribution for more accurate results.
Important values from Table 2 and the analysis include:
L= 0.10 m (very short); L= 0.55 m (very long) and L=
0.25 m (most probable).

Gauthier and Jamieson (2008b) outlined a method to
evaluate avalanche potential based on the dynamic char-
acteristics of the fracture after initiation for the PST. It is
expected that both the critical length prior to propagation,
as analyzed here, and the dynamic characteristics after
propagation (Gauthier and Jamieson, 2008b) provide useful
information in practice. Gauthier and Jamieson (2008b)
correlated PST results with weak layer failure initiation and
adjacent slope instability tests. They found best correlation
with adjacent slope instability using the simple rule that
high propagation potential and high slope instability were
defined by short values of L (e.g. low fracture toughness)
and dynamic propagation across the entire column length
without arrest. The analysis in this paper provides a way to
define quantitatively what is meant by a short value of L for
their method and its link to KIIc. We suggest that purely
stress-based methods of avalanche instability evaluation,
such as the infinite slope model, be abandoned in favor of
an energy-based approach which is needed to describe the
observed initiation of mode II weak layer fracture.

8. CONCLUSIONS
1. Natural dry-slab avalanches are observed to initiate by

mixed mode II (upslope) and III (across slope) fracture
propagation in the weak layer. Figure 1 illustrates the II,
III fracture modes for an avalanche generated by explo-
sive control. For PST, the observed fracture propagation
is mode II. Since both dry-slab avalanches and PST are
observed to exhibit mode II propagation, the assumption
is that both initiated as mode II. Since the PST samples
have 30 cm width, mode III is not evident.
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Observations along with PST show (Schweizer and
others, 2014; McClung, 2015) that use of a thick saw or
low-density slab material or both, tensile fracture can
occur at the top of the slab. In such cases, there are two
cracks and this is not mixed mode fracture. In fracture
mechanics, mixed mode fracture refers to kinking or
branching at the tip of one crack (Bažant and Planas,
1998, p. 95). Instead for PST, artificial slab bending can
occur and the sample may fracture in tension at the top
of the slab just ahead of the saw cut which is not observed
in avalanche initiation. In order that the PST are most rele-
vant to avalanche release (mode II), we suggest thin saws
should be used to minimize the bending caused by the
saw cut.

2. For natural avalanche instability evaluation, KIIc is much
more fundamental than any purely stress-based approach
(McClung and Schaerer, 2006, p. 80–81). Two of the
important components of KIIc are directly measureable or
calculated along with the PST for the simplest models: the
critical length L and the depth averaged gravitational
loading shear stress τ on the weak layer.

3. In practical usage of the PST, the observed dynamic
propagation all along the weak layer and a short value
of L correlate best with observed instability (Gauthier
and Jamieson, 2008b). The analysis in this paper provides
a quantitative framework compatible with the known
quasi-brittle fracture properties of alpine snow to define
what is meant by a short value of L. The measured slope
angle dependence of the tests (McClung, 2009b) over
short timescales is a disadvantage of using lengths from
PST as indices of instability. However, tests at the same
slope angle (e.g. ψ= 30°) may provide guidance about
strength/fracture toughness and its increase with time.

4. Models based on yield stress, linear elasticity or LEFM
cannot explain the known quasi-brittle fracture mechan-
ical size effect for alpine snow. For conditions of natural
dry-slab avalanche release, alpine snow is not linear
elastic, nor does it follow LEFM (Mellor, 1968; McClung,
2015). Measured shear strain rates in storm snow are
∼10−7/s and about 10−8/s for well-settled snow
(McClung, 1974). In order to approach linear elasticity
and rate independence, strain rates of about 102/s are
required (Mellor, 1975; Sigrist, 2006). Stress-based yield
models are size-independent and analogous to plasti-
city (Bažant and Planas, 1998). A stress-based yield
model was given by Reiweger and others (2015). Chiaia
and others (2008) compared stress- and energy-based
models. In this paper, models based on yield stress,
linear elasticity, dynamics and LEFM could not be consid-
ered in the probabilistic size effect law development.
However, that does not mean such models are not
useful or important.

5. Tests from PST cannot be considered linear elastic since
they exhibit temperature dependence (Reuter and
Schweizer, 2012; McClung, 1996; McClung, 2015). The
elastic modulus of the parent material (ice) varies only
by ∼5% down to −50°C (Schulson and Duval, 2009). In
addition, the deformation rate during PST is too slow to
justify linear elasticity (McClung, 2015).

6. Tests from PST are not determined by gravitational slab
weight loading alone in contrast to natural slab release
(25°≤ ψ≤ 55°). The observed propagation from a PST
or human triggering for flat terrain (ψ= 0°) is due to a
complex pattern of deformation from human influence

either by the saw cut (PST) or human motion (McClung,
2011b). The observed slope angle dependence for PST
done on over a short timescale (McClung, 2009b) is arti-
ficial and cannot be directly related to natural avalanche
release since the weak layer deformation and stress con-
ditions are expected to be different and fracture is noted
for low slope angles (even for ψ= 0°). Again, this is why
we recommend performing the tests at the same or
similar slope angles to compare results.

7. The size effect law based on L in this paper is built entirely
from field and laboratory measurements from alpine snow
and it does not have nearly the limitations of the strength
size effect law of Bažant and others (2003). However, the
probabilistic size effect law is consistent with the strength
size effect law. The use of survival probability as a proxy
for shear strength fits naturally into risk analyses.
Specifying a shear strength always requires a model com-
bined with measurements to calculate the strength
whereas L is easily measured directly.

8. The probabilistic model here is meant to be consistent
with the known fact that alpine snow is a quasi-brittle
material and the model is kept simple for practical appli-
cation. In particular, the model does not include the
expected, progressive stress redistribution as the saw cut
is made. Introduction of stress redistribution into the
model is beyond the scope here. The critical length mea-
surements (Section 3) and the gamma distribution fit to the
data (Section 4), based on five goodness-of-fit tests,
should hold even if a more complex model involving
stress is developed. The measurements should implicitly
include any stress redistribution even though such is not
explicitly included in the model.

9. Figures 5 and 6 represent two conceptually different
situations probabilistically. With regard to strength,
McClung and Borstad (2012b) suggested that the shear
strength of un-notched samples from avalanche weak
layers follows a gamma distribution (Sommerfeld and
King, 1979) and the gamma distribution converges
asymptotically to a Weibull distribution in the large
size (low strength) limit, as it must (Bažant, 2005,
p. 62). However, when the physical size becomes very
large (as in an avalanche weak layer), the possibility of
macroscopic imperfections increases. The system is
then likely to be controlled by a deterministic type 2
energetic size effect law (Fig. 6). Figure 5 is meant to
convey an index of the probability of fracture for the
system based on PST measurements. Figure 6 is meant
to display the deterministic behavior expected for ava-
lanche initiation with a macroscopic imperfection in
place for which the probabilistic distribution of strength
is of less significance.
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APPENDIX A
RELATION TO TYPE 2 ENERGETIC SHEAR
STRENGTH SIZE EFFECT LAW
The presence of a notch or crack in a sample implies a type 2
energetic, fracture mechanical size effect for a quasi-brittle
material (Bažant and Planas, 1998; Bažant, 2005) such as
alpine snow. Bažant and others (2003) gave an empirical
quasi-brittle size effect law for nominal shear strength to
represent the slab–weak layer system by asymptotic match-
ing for between the small size plastic limit shear strength
ðτ�0Þ and the large size LEFM limit on the other extreme.
The term plastic is meant to denote the small, size-independ-
ent limit of shear strength (Bažant and Planas, 1998) not that
plasticity applies in alpine snow mechanics. The mode II size
effect law, neglecting residual shear strength, is:

τN
τ�0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðD=D0Þ

p : (A1)

In (A1), τN is the nominal (size-dependent) shear strength, D
is the slab depth (Fig. 1) measured perpendicular to the plane
of the slab–weak layer system and D0 is a transitional size
which represents an inflection point size for transition be-
tween the small size asymptote: D=D0 ! 0; τN ! τ�0 and
the large size limit D/D0≫ 1(LEFM) with τN=τ�0 ∝ 1=

ffiffiffiffi
D

p
.

For Eqn (A1) (Bažant and others, 2003), D0= 2cf/(Ls/D−
cf /D). In this expression, Ls represents half the length of a

crack embedded in a weak layer. However, the length mea-
sured(L) in a propagation saw test is shorter than that in the
size effect law (Bažant and others, 2003; McClung, 2015)
since a free surface is present at the beginning of the cut
(Fig. 1) with intact material beyond the end of the cut. This
mismatch results in relief of longitudinal pressure (Palmer
and Rice, 1973) to help promote fracture. McClung (2015)
provided field measurements and analysis to give an empir-
ical expression: Ls= L+ 0.1D to relate the lengths.

Substitution in (A1) yields an approximate equivalent
strength size effect law:

τN
τ�0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ððLþ 0:1D� cfÞ=ð2cfÞÞ

p ≈
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðL=L�Þp ; (A2)

where L* represents a transitional crack length (approximated
as constant below) between small size plastic behavior (very
small PF or high overall strength, τ�0) and large size LEFM
behavior (very high PF and low nominal strength). If L < cf
then τN ¼ τ�0 (the small size plastic limit) and if L≫ cf the
LEFM limit is implied. For practical cases, it makes no
sense to consider crack sizes smaller than cf so Eqn (A2) is
considered for L≥ cf.

Equation (A2) implies L*= 2cf /(1+ 0.1D/L− cf /L) which
yields: 0.03 m< L* < 0.05 m (mean and median 0.04 m) for
cf= 0.02 m; 0.07 m≤ L≤ 0.61 m as measured for the PST.
For comparison of the size effect laws, the value: L*≈ L0=
0.05 m is assumed here. With L*= 0.05 m, the approxima-
tion in Eqn (A2) holds well for L≥ 0.12 m.

Either (A1) or (A2) are approximations which will not hold
in the limit of very small cracks (Bažant and others, 2003).
For Eqn (A2) the expression under the square root radical
in the denominator is a result of a two-term Taylor series
approximation (Bažant and others, 2003) with respect
to: cf /D. The complete expression within the radical is:

Fig. 6. Schematic log–log plot of strength ratio: τN=τ�0 vs L/L*. The
vertical line represents the limit on the abscissa: L/L*= 2.4 above
which the calculations are approximately valid.
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1+ (L− cf)/2cf+ cf /2(L− cf). If the second term is ≥25 times
the third term, then it is implied that L≥ 6cf which yields L≥
0.12 m for cf= 0.02 m. From Figure 3, this condition applies
to 43 of 45 slab–weak layer combinations in the dataset or
τN=τ�0 � 0:54.

Figure 6 contains a schematic log–log plot for
τN=τ�0 vs L=L

� for 0.02 m≤ L≤ 0.60 m with L*= 0.05 m.
The figure shows the same form as the classical size effect
law for mode II formulated by Bažant and others (2003).
The horizontal asymptote for plasticity is approached at
small size and the Griffith (1920; 1925) condition of LEFM
is approached for large size (L): τN

ffiffiffi
L

p
= constant. Thus, as

with Eqns (A1) and (A2) represents proper asymptotic match-
ing between the small and large size limits. The vertical line

represents the approximate limit: L/L*= 2.4 below which the
data here would not be accurate within the strength size
effect approximation (Eqn A2) as explained by Bažant and
others (2003).

For rough comparison of the size effect laws (Fig. 5, (A1)),
the scaling length was chosen as: L*= 0.05 m. For the
strength size effect law (A2), the scaling length is: 2cf
whereas for the gamma distribution it is the scale parameter
(L0). The two differ by only 1 cm under the assumptions in
this paper. We believe the closeness of the two values is for-
tuitous. The value used for the comparison was chosen since
it was derived from the PST, whereas the value of 2cf was esti-
mated from lab tensile tests which show variations with
density and rate (Borstad, 2011).
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