Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T12:13:08.110Z Has data issue: false hasContentIssue false

A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes

Published online by Cambridge University Press:  14 July 2015

Matt Friedman
Affiliation:
Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Illinois 60637,
Henning Blom
Affiliation:
Subdepartment of Evolutionary Organismal Biology, Department of Physiology and Developmental Biology, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden,

Abstract

A new actinopterygian, Cuneognathus gardineri new genus and species, is described from the Devonian (Famennian) Obrutschew Bjerg Formation of East Greenland on the basis of multiple incomplete specimens. Cuneognathus most closely resembles Limnomis from the Famennian Catskill Formation of Pennsylvania, and, like that taxon, is known exclusively from freshwater deposits. A cladistic analysis with an ingroup of 13 actinopterygians and an outgroup of five sarcopterygians explores the relationships between the new genus and some of its better-known Devonian contemporaries, and recovers the same four topologies regardless of the implementation of limited character ordering. Cheirolepis is resolved as the most basal of well-known Devonian actinopterygians, consistent with a majority of previous studies. A novel sister-group relationship between Howqualepis and Tegeolepis is found in all trees. Disagreement between the most parsimonious cladograms is concentrated in a clade whose members are often informally referred to as ‘stegotrachelids.’ Cuneognathus and Limnomis are resolved as sister taxa within this large radiation along with the pairings of Moythomasia dugaringa plus M. nitida and Krasnoyarichthys plus Stegotrachelus. the arrangement of taxa is conserved when the enigmatic Dialipina is added to the analysis, although the reconstructed position of that genus above both Cheirolepis and Osorioichthys seems improbable. Our scheme of relationships suggests that actinopterygians invaded freshwater environments at least four times during the Devonian, while age constraints indicate that many of the cladogenic events between ingroup taxa included in this study occurred during or before the Givetian.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1835. Recherches sur les Poissons Fossiles, II. Imprimerie de Petitpierre et Prince, Neuchâtel, 115 p.Google Scholar
Agassiz, L. 1844. Monographie des Poissons Fossiles du Vieux Grès Rouge ou Système Dévonien (old red sandstone) des Iles Britanniques et de Russie. Imprimerie de Petitpierre et Prince, Neuchâtel, 171 p.Google Scholar
Ahlberg, P. E. 1989. Paired fin skeletons and the relationships of the fossil group Porolepiformes (Osteichthyes: Sarcopterygii). Zoological Journal of the Linnean Society, 96:119166.Google Scholar
Ahlberg, P. E. 1991. A re-examination of sarcopterygian interrelationships, with special reference to the Porolepiformes. Zoological Journal of the Linnean Society, 103:241287.Google Scholar
Andrews, S. M. 1973. Interrelationships of crossopterygians, p. 137177. In Greenwood, P. H., Miles, R. S., and Patterson, C. (eds.), Interrelationships of Fishes. Academic Press, London.Google Scholar
Arratia, G., and Cloutier, R. 1996. Reassessment of the morphology of Cheirolepis canadensis (Actinopterygii), p. 165197. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Verlag Dr. Frederich Pfeil, München.Google Scholar
Arratia, G., and Cloutier, R. 2004. A new cheirolepidid fish from the Middle-Upper Devonian of Red Hill, Nevada, USA, p. 583598. In Arratia, G., Wilson, M. V. H., and Cloutier, R. (eds.), Recent Advances in the Origin and Early Radiation of Vertebrates. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Basden, A. M., and Young, G. C. 2001. A primitive actinopterygian neurocranium from the Early Devonian of Southeastern Australia. Journal of Vertebrate Paleontology, 21:754766.Google Scholar
Basden, A. M., Young, G. C., Coates, M. I., and Ritchie, A. 2000. The most primitive osteichthyan braincase? Nature, 403:185188.Google Scholar
Bendix-Ahlmgreen, S. 1976. Palaeovertebrate faunas of Greenland, p. 536573. In Escher, A. and Watt, A. S. (eds.), Geology of Greenland. The Geological Survey of Greenland, Copenhagen.Google Scholar
Burrow, C. J. 1995. A new lophosteiform (Osteichthyes) from the Lower Devonian of Australia. Geobios Mémoire Spécial, 19:327333.Google Scholar
Campbell, K. S. W., and Barwick, R. E. 1988. Uranolophus: A reappraisal of a primitive dipnoan. Memoir of the Association of Australasian Palaeontologists, 7:87114.Google Scholar
Casier, E. 1952. Contributions a l'étude des poissons fossiles de la Belgique. Bulletin de l'Institut Royal des Sciences naturelles de Belgique, 28(47), 17 p.Google Scholar
Casier, E. 1954. Contributions l'étude des poissons fossiles de la Belgique. XI. Note additionnelle relative á “Stereolepis“ (= Osorioichthys nov. nom.) et à l'origine de l'interoperculaire. Bulletin de l'Institut royal des Sciences naturelles de Belgique, 30(2), 12 p.Google Scholar
Chang, M.-M. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, south-western China. , , 113 p.Google Scholar
Chang, M.-M., and Yu, X.-B. 1981. A new crossopterygian, Youngolepis praecursor, gen. et sp. nov., from Lower Devonian of E. Yunnan, China. Scientia Sinica, 24:8997.Google Scholar
Chang, M.-M., and Yu, X.-B. 1997. Reexamination of the relationship of Middle Devonian osteolepids—fossil characters and their interpretation. American Museum Novitates, 3189, 20 p.Google Scholar
Chidiac, Y. 1996. Paleoenvironmental interpretation of the Escuminac Formation based on geochemical evidence, p. 4753. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Verlag Dr. Frederich Pfeil, Munich.Google Scholar
Clément, G. 2001. Evidence for the lack of choanae in the Porolepiformes. Journal of Vertebrate Paleontology, 21:795802.Google Scholar
Clément, G., and Janvier, P. 2004. Powichthys spitsbergensis sp. nov., a new member of the Dipnomorpha (Sarcopterygii, lobe-finned fishes) from the Lower Devonian of Spitsbergen, with remarks on basal dipnomorph anatomy. Fossils & Strata, 50:92112.Google Scholar
Cloutier, R. 1996. The primitive actinistian Miguashaia bureai Schultze, p. 227247. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Verlag Dr. Frederich Pfeil, Munich.Google Scholar
Cloutier, R., and Ahlberg, P. E. 1996. Morphology, characters, and the interrelationships of basal sarcopterygians, p. 445479. In Stiassny, M. L. J., Parenti, L. R., and Johnson, G. D. (eds.), Interrelationships of Fishes. Academic Press, San Diego.Google Scholar
Cloutier, R., and Arratia, G. 2004. Early diversification of actinopterygians, p. 217270. In Arratia, G., Wilson, M. V. H., and Cloutier, R. (eds.), Recent Advances in the Origin and Early Radiation of Vertebrates. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Coates, M. I. 1993. New actinopterygian fish from the Namurian Manse Burn Formation of Bearsden, Scotland. Palaeontology, 36:123146.Google Scholar
Coates, M. I. 1998. Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zoological Journal of the Linnean Society, 122:2759.Google Scholar
Coates, M. I. 1999. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, UK, and the interrelationships of primitive actinopterygians. Philosophical Transactions of the Royal Society: Biological Sciences, 354:435462.Google Scholar
Daeschler, E. B. 2000. An early actinopterygian fish from the Catskill Formation (Late Devonian, Famennian) in Pennsylvania, U.S.A. Proceedings of the Academy of Natural Sciences of Philadelphia, 150:181192.Google Scholar
Daeschler, E. B., Frumes, A. C., and Mullison, C. F. 2003. Groenlandaspidid fishes from the Late Devonian of North America. Records of the Australian Museum, 55:4560.Google Scholar
Denison, R. H. 1968. Early Devonian lungfishes from Wyoming, Utah, and Idaho. Fieldiana: Geology, 17:353413.Google Scholar
Denison, R. H. 1979. Acanthodii, p. 162. In Schultze, H.-P. (ed.), Handbook of Paleoichthyology. Gustav Fischer Verlag, Stuttgart.Google Scholar
Dunkle, D. H. 1964. Preliminary description of a palaeoniscoid fish from the Upper Devonian of Ohio. Scientific Publications of the Cleveland Museum of Natural History, 3:124.Google Scholar
Dunkle, D. H., and Schaeffer, B. 1973. Tegeolepis clarki (Newberry), a palaeonisciform from the Upper Devonian Ohio Shale. Palaeontographica Abteilung A, 143:151158.Google Scholar
Eastman, C. R. 1907. Devonic fishes of the New York Formations. New York State Museum Annual Report, 60(5), 235 p.Google Scholar
Eastman, C. R. 1908. Devonian fishes of Iowa. Iowa Geological Survey Annual Report, 18:29386.Google Scholar
Elder, R. L., and Smith, G. R. 1988. Fish taphonomy and environmental inference in paleolimnology. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:577592.Google Scholar
Elliott, D. K., and Johnson, H. G. 1997. Use of vertebrates to solve biostratigraphic problems: Examples from the Lower and Middle Devonian of western North America, p. 179188. In Klapper, G., Murphy, M. A., and Talent, J. A. (eds.), Paleozoic Sequence Stratigraphy, Biostratigraphy, and Biogeography: Studies in Honor of J. Granville (“Jess”) Johnson. Geological Society of America Special Paper, 321.Google Scholar
Forey, P. L. 1998. History of the Coelacanth Fishes. Chapman & Hall, London, 419 p.Google Scholar
Forey, P. L., Ahlberg, P. E., Lukševičs, E., and Zupinš, I. 2000. A new Devonian coelacanth from the Middle Devonian of Latvia. Journal of Vertebrate Paleontology, 20:243252.Google Scholar
Friedman, M. In press. Styloichthys as the oldest coelacanth: Implications for early osteichthyan interrelationships. Journal of Systematic Palaeontology.Google Scholar
Gagnier, P.-Y., and Wilson, M. V. H. 1996. Early Devonian acanthodians from northern Canada. Palaeontology, 39:241258.Google Scholar
Gardiner, B. G. 1963. Certain palaeoniscoid fishes and the evolution of the snout in actinopterygians. Bulletin of the British Museum (Natural History): Geology, 8:254325.Google Scholar
Gardiner, B. G. 1967. Further notes on palaeoniscoid fishes with a classification of the Chondrostei. Bulletin of the British Museum (Natural History): Geology, 14:145206.Google Scholar
Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History): Geology, 37:173428.Google Scholar
Gardiner, B. G. 1993. Osteichthyes: Basal actinopterygians, p. 611619. In Benton, M. J. (ed.), The Fossil Record 2. Chapman & Hall, London.Google Scholar
Gardiner, B. G., and Bartram, A. W. H. 1977. The homologies of ventral cranial fissures in osteichthyans, p. 227245. In Andrews, S. M., Miles, R. S., and Walker, A. D. (eds.), Problems in Vertebrate Evolution. Academic Press, London.Google Scholar
Gardiner, B. G., and Schaeffer, B. 1989. Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society, 97:135187.Google Scholar
Gross, W. 1950. Umbenennung von Aldingeria Gross (Palaeoniscidae; Oberdevon) in Moythomasia n. nom. Neues Jahrbuch für Mineralogie, Geologie, und Paläontologie. Monatschefte, 1950:145.Google Scholar
Gross, W. 1953. Devonische palaeonisciden-reste in Mittel- und Osteuropa. Paläontologische Zeitschrift, 27:85112.Google Scholar
Gross, W. 1968. Fragliche actinopterygier-schuppen aus dem Silur Gotlands. Lethaia, 1:184218.Google Scholar
Gross, W. 1973. Kleinschuppen, Flossenstacheln un Zähne von Fischen aus europäischen und nordamerikanischen Bonebeds des Devons. Palaeontographica Abteilung A, 142:51155.Google Scholar
Halstead, L. B. 1985. The vertebrate invasion of fresh water. Philosophical Transactions of the Royal Society of London, series B, 309:243258.Google Scholar
Hamilton, R. F. M., and Trewin, N. H. 1988. Environmental controls on fish faunas of the Middle Devonian Orcadian Basin, p. 589600. In MacMillan, N. J., Embry, A. F., and Glass, D. J. (eds.), Devonian of the world. Volume III. Paleontology, Paleoecology and Biostratigraphy. Canadian Society of Petroleum Geologists, Calgary.Google Scholar
Hansen, M. C. 1996. Phylum Chordata—vertebrate fossils, p. 288369. In Feldmann, R. M. and Hackathorn, M. (eds.), Fossils of Ohio. Ohio Department of Natural Resources, Division of Geological Survey, Columbus.Google Scholar
Huxley, T. H. 1880. On the applications of the laws of evolution to the arrangement of the Vertebrata and more particularly of the Mammalia. Proceedings of the Zoological Society of London, 1880:649662.Google Scholar
Janvier, P. 1971. Nouveau matériel d' Androlepis hedei Gross, Actinoptérygien enigmatique du Silurien de Gotland (Suède). Comptes Rendus de la Académie des Sciences, 273:22232224.Google Scholar
Janvier, P. 1978. On the oldest known teleostome fish, Andreolepis hedei Gross (Ludlow of Gotland) and the systematic position of the lophosteids. Eesti NSV Teaduste Akadeemia Toimetised, Geoloogia, 27:8695.Google Scholar
Janvier, P. 1980. Osteolepid remains from the Devonian of the Middle East, with particular reference to the endoskeletal shoulder girdle, p. 223254. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, London.Google Scholar
Janvier, P. 1996. Early Vertebrates. Clarendon Press, Oxford, 393 p.Google Scholar
Janvier, P., Lethiers, F., Monod, O., and Balkaş, Ö. 1984. Discovery of a vertebrate fauna at the Devonian–Carboniferous boundary in SE Turkey (Hakkari Province). Journal of Petroleum Geology, 7:147168.Google Scholar
Jarvik, E. 1952. On the fish-like tail in the ichthyostegid stegocephalians with descriptions of a new steogcephalian and a new crossopterygian from the Upper Devonian of East Greenland. Meddelelser om Grønland, 114, 90 p.Google Scholar
Jarvik, E. 1961. Devonian vertebrates, p. 197204. In Raasch, G. O. (ed.), Geology of the Arctic, 1. University of Toronto Press, Toronto.Google Scholar
Jarvik, E. 1972. Middle and Upper Devonian Porolepiformes from East Greenland with special reference to Glyptolepis groenlandica n. sp. Meddelelser om Grønland, 187, 307 p.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates. Volume 1. Academic Press, London, 575 p.Google Scholar
Jessen, H. 1966. Die crossopterygier des Oberen Plattenkalkes (Devon) der Bergisch-Gladbach—Paffrather Mulde (Rheinisches Schiefergebirge) unter berücksichtigung von amerikanischem und europäischem Onychodus-material. Arkiv för Zoologi, 18:305389.Google Scholar
Jessen, H. 1968. Moythomasia nitida Gross und M. cf. striata Gross, Devonische palaeonisciden aus dem oberen Plattenkalk der Bergisch-Gladbach-Paffrather Mulde (Rheinisches Schiefergebirge). Palaeontographica Abteilung A, 128:87114.Google Scholar
Jessen, H. L. 1975. A new choanate fish, Powichthys thorsteinssoni, n.g., n.sp., from the early Lower Devonian of the Canadian Arctic Archipelago, p. 213222. In Lehman, J. P. (ed.), Problèmes actuels de Paléontologie. Evolution des Vertébrés. Colloques Internationaux du Centre National de la Recherche Scientifique, 218. Editions du CNRS, Paris.Google Scholar
Jessen, H. L. 1980. Lower Devonian Porolepiformes from the Canadian Arctic with special reference to Powichthys thorsteinssoni Jessen. Palaeontographica Abteilung A, 167:180214.Google Scholar
Kazantseva, A. A. 1971. K sistematike Palaeonisciformes (On the systematics of Palaeonisciformes). Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 130:160167. (In Russian) Google Scholar
Kedo, G. I. 1957. Spores from the supra salt Devonian deposits of the Pripyat Depression and their stratigraphic significance. Trudy Instituta geologicheskikh nauk. Seriia stratigrafii i plaeontologii, 2:343.Google Scholar
Lacepède, B. G. E. 1803. Histoire Naturelle des Poissons. V. Plassan, Paris, 803 p.Google Scholar
Lelièvre, H., Janvier, P., and Blieck, A. 1994. Silurian–Devonian vertebrate biostratigraphy of western Gondwana and related terranes (South America, Africa, Amorica-Bohemia, Middle East), p. 139173. In Long, J. A. (ed.), Palaeozoic Vertebrate Biostratigraphy and Biogeography. Johns Hopkins University Press, Baltimore.Google Scholar
Long, J. A. 1982. Late Devonian fish taphonomy in Victoria: A cautionary note to biostratigraphers, p. 120127. In Rich, P. V. and Thompson, E. M. (eds.), The Fossil Vertebrate Record of Australasia. Monash University Offset Printing Unit, Clayton, Victoria.Google Scholar
Long, J. A. 1988. New palaeoniscoid fishes from the Late Devonian and Early Carboniferous of Victoria. Memoirs of the Association of Australasian Palaeontologists, 7:168.Google Scholar
Long, J. A. 1993. Cranial ribs in Devonian lungfishes and the origin of dipnoan air breathing. Memoir of the Association of Australasian Palaeontologists, 15:199209.Google Scholar
Lu, L.-W. 2002. A new Namurian palaeoniscoid fish from Zhongwei, Ningxia. Vertebrata PalAsiatica 40:18. (In Chinese with English summary) Google Scholar
Lund, R., and Poplin, C. 1997. The rhadinichthyids (paleoniscoid actinopterygians) from the Bear Gulch Limestone of Montana (USA, Lower Carboniferous). Journal of Vertebrate Paleontology, 17:466486.Google Scholar
Lund, R., and Poplin, C. 2002. Cladistic analysis of the relationships of tarasiids (Lower Carboniferous actinopterygians). Journal of Vertebrate Paleontology, 22:480486.Google Scholar
Lund, R., Poplin, C., and McCarthy, K. 1995. Preliminary analysis of the interrelationships of some Paleozoic Actinopterygii. Geobios Mémoire Spécial, 19:215220.Google Scholar
Maddison, D. R., and Maddison, W. P. 2000. MacClade 4.0. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Märss, T. 2001. Andreolepis (Actinopterygii) in the Upper Silurian of northern Eurasia. Proceedings of the Estonian Academy of Sciences Geology, 50:174189.Google Scholar
McPherson, J. G. 1978. Stratigraphy and sedimentology of the Upper Devonian Aztec Siltstone, southern Victoria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 21:677683.Google Scholar
Miller, S. A. 1892. North American Geology for the use of Amateurs, Students, and Scientists. Western Methodist Book Concern, Cincinnati, Ohio, 718 p.Google Scholar
Newberry, J. S. 1888. On the fossil fishes of the Erie Shale of Ohio. Transactions of the New York Academy of Science, 7:178180.Google Scholar
Nicholson, J., and Friend, P. F. 1976. Devonian sediments of East Greenland. V. The central sequence, Kap Graah Group and Mount Celsius Supergroup. Meddelelser om Grønland, 206:1117.Google Scholar
Obruchev, D. V. 1964. Agnatha, Pisces, p. 1825. In Orlov, Y. A. (ed.), Fundamentals of Paleontology. Volume XI. Nauka, Moscow.Google Scholar
Olsen, H. 1993. Sedimentary basin analysis of the continental Devonian basin in North-East Greenland. Bulletin of the Grønlands Geologiske Undersøgelse, 168:180.Google Scholar
Olsen, H., and Larsen, P.-H. 1993. Lithostratigraphy of the continental Devonian sediments in North-East Greenland. Bulletin of the Grønlands Geologiske Undersøgelse, 165:1108.Google Scholar
Ørvig, T. 1969. Vertebrates from the Wood Bay Group and the position of the Emsian–Eifelian boundary in the Devonian of Vestspitsbergen. Lethaia, 2:273328.Google Scholar
Pander, C. H. 1856. Monographie der fossilen Fische der silurischen Systems der Russisch-Baltischen Gouvernments. Obersilurische Fische. Kaiserlichen Akademie des Wissenschaften, St. Petersburg, p. 3791.Google Scholar
Pander, C. H. 1860. Über die Saurodipterinen, Dendrodonten, Glyptolepiden und Cheirolepiden des devonischen Systems. Kaiserlichen Akademie des Wissenschaften, St. Petersburg, 89 p.Google Scholar
Patterson, C. 1973. Interrelationships of holosteans, p. 233305. In Greenwood, P. H., Miles, R. S., and Patterson, C. (eds.), Interrelationships of Fishes. Academic Press, London.Google Scholar
Patterson, C. 1982. Morphology and interrelationships of primitive actinopterygian fishes. American Zoologist, 22:241259.Google Scholar
Pearson, D. M. 1982. Primitive bony fishes, with especial reference to Cheirolepis and palaeonisciform actinopterygians. Zoological Journal of the Linnean Society, 74:3567.Google Scholar
Pearson, D. M., and Westoll, T. S. 1979. The Devonian actinopterygian Cheirolepis Agassiz. Transactions of the Royal Society of Edinburgh, Earth Sciences, 70:337399.Google Scholar
Playford, G. 1976. Plant microfossils from the Upper Devonian and Lower Carboniferous of the Canning Basin, Western Australia. Palaeontographica Abteilung B, 158:171.Google Scholar
Prichonnet, G., Divergilio, M., and Chidiac, Y. 1996. Stratigraphical, sedimentological and paleontological context of the Escuminac Formation: Paleoenvironmental hypotheses, p. 2336. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Canada, Quebec. Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
Prokofiev, A. M. 2002. First finding of an articulated actinopterygian skeleton from the Upper Devonian of Siberia and a reappraisal of the family Moythomasiiidae Kazantseva, 1971 (Osteichthyes). Paleontological Research, 6:321327.Google Scholar
Rayner, D. H. 1951. On the cranial structure of an early palaeoniscid, Kentuckia gen. nov. Transactions of the Royal Society of Edinburgh, 62:5883.Google Scholar
Rayner, D. H. 1963. The Achanarras Limestone of the Middle Old Red Sandstone, Caithness, Scotland. Proceedings of the Yorkshire Geological Society, 34:117138.Google Scholar
Reed, J. W. 1992. The actinopterygian Cheirolepis from the Devonian of Red Hill, Nevada, and its implications for acanthodian-actinopterygian relationships, p. 243249. In Mark-Kurik, E. (ed.), Fossil Fishes as Living Animals. Institute of Geology, Tallinn.Google Scholar
Richter, M., and Smith, M. 1995. The microstructural study of the ganoine of selected lower vertebrates. Zoological Journal of the Linnean Society, 114:173212.Google Scholar
Richter, M., Neis, P. A., and Smith, M. 1999. Acanthodian and actinopterygian fish remains from the Itaituba Formation, Late Carboniferous of the Amazon Basin, Brazil, with a note on acanthodian ganoin. Neues Jahbuch für Geologie und Paläontologie—Monatshefte, 1999:728744.Google Scholar
Romer, A. S. 1945. Vertebrate Paleontology. University of Chicago Press, Chicago, 687 p.Google Scholar
Romer, A. S., and Grove, B. H. 1935. Environment of the early vertebrates. American Midland Naturalist, 16:805862.Google Scholar
Rotondo, K. A., and Over, D. J. 2000. Biostratigraphic age of the Belpre Ash (Frasnian), Chattanooga and Rhinestreet shales in the Appalachian Basin. Abstracts with Programs—Geological Society of America, Northeastern Section, 35th annual meeting, 32:A–70.Google Scholar
Säve-Söderbergh, G. 1932. Preliminary note on Devonian stegocephalians from East Greenland. Meddelelser om Grønland, 94, 107 p.Google Scholar
Schaeffer, B. 1973. Interrelationships of chondrosteans, p. 207226. In Greenwood, P. H., Miles, R. S., and Patterson, C. (eds.), Interrelationships of Fishes. Academic Press, London.Google Scholar
Schmitz, B., Åberg, G., Werdelin, L., Forey, P., and Bendix-Ahlmgreen, S. E. 1991. 87Sr/86Sr, Na, F, Sr, and La in skeletal fish debris as a measure of the paleosalinity of fossil-fish habitats. Geological Society of America Bulletin, 103:786794.Google Scholar
Schultze, H.-P. 1968. Palaeoniscoidea-Schuppen aus dem Unterdevon Australiens und Kanadas und aus dem Mitteldevon Spitzbergens. Bulletin of the British Museum (Natural History): Geology, 16:342368.Google Scholar
Schultze, H.-P. 1973. Crossopterygier mit heterozerker Schwanzflosse aus dem Oberdevon Kanadas, nebst einer beschreibung von Onychodontida-resten aus dem Mitteldevon Spaniens und aus dem Karbon der USA. Palaeontographica Abteilung A, 143:188208.Google Scholar
Schultze, H.-P. 1977. Ausgangsform und Entwicklung der rhombischen Schuppen der Osteichthyes (Pisces). Paläontologische Zeitschrift, 51:152168.Google Scholar
Schultze, H.-P. 1992. Early Devonian actinopterygians (Osteichthyes, Pisces) from Siberia, p. 233242. In Mark-Kurik, E. (ed.), Fossil Fishes as Living Animals. Institute of Geology, Tallinn.Google Scholar
Schultze, H.-P. 1993. Patterns of diversity in the skulls of jawed fishes, p. 189254. In Hanken, J. and Hall, B. K. (eds.), The Skull. Volume 2. Patterns of Structural and Systematic Diversity. University of Chicago Press, Chicago.Google Scholar
Schultze, H.-P., and Cloutier, R. 1996. Comparison of the Escuminac Formation ichthyofauna with other late Givetian/early Frasnian ichthyofaunas, p. 348368. In Schultze, H.-P. and Cloutier, R. (eds.), Devonian Fishes and Plants of Miguasha, Quebec, Canada. Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
Schultze, H.-P., and Cumbaa, S. L. 2001. Dialipina and the characters of basal actinopterygians, p. 316332. In Ahlberg, P. E. (ed.), Major Events in Early Vertebrate Evolution. Palaeontology, Phylogeny, Genetics and Development. Taylor & Francis, London.Google Scholar
Smith, J. A. 1865. Notice of a new ganoid fish allied to the genus Polypterus (Geoff.-St-Hillaire), recently received from Old Calabar. Proceedings of the Royal Physical Society of Edinburgh, 3:273278.Google Scholar
Storrs, G. W. 1987. An ichthyofauna from the subsurface Devonian of northwestern Iowa and its biogeographic and paleoecologic significance. Journal of Paleontology, 61:363374.Google Scholar
Swofford, D. L. 2002. PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Taverne, L. 1996. Ostéologie et position systématique des Tarasiiformes, Actinoptérygiens (Pisces) du Carbonifère de l'Ècosse et des États-Unis. Biologisch Jaarboek Dodonaea, 64:138159.Google Scholar
Taverne, L. 1997. Osorioichthys marginis, “Paéonisciforme” du famennien de Belgique, et la phylogénie de Actinoptérygiens dévonians (Pisces). Bulletin de l'institut Royal des Sciences Naturelles de Belgique, 67:5778.Google Scholar
Thomson, K. S. 1980. The ecology of Devonian lobe-finned fish, p. 187222. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. Academic Press, London.Google Scholar
Traquair, R. H. 1877–1914. The Ganoid Fishes of the British Carboniferous Formations. 7 vols. The Paleontographical Society, London, 186 p.Google Scholar
Traquair, R. H. 1881. Report on fossil fishes collected by the Geological Survey of Scotland in Eskdale and Liddesdale, Pt. I, Ganoidei. Transactions of the Royal Society of Edinburgh, 30:1571.Google Scholar
Trewin, N. H. 1986. Palaeoecology and sedimentology of the Achanarras fish bed of the Middle Old Red Sandstone, Scotland. Transactions of the Royal Society of Edinburgh, Earth Sciences, 77:2146.CrossRefGoogle Scholar
Trinajstic, K. M. 1999. Scales of palaeoniscoid fishes (Osteichthyes: Actinopterygii) from the Late Devonian of Western Australia. Records of the Western Australian Museum, supplement, 57:93106.Google Scholar
Wang, N. Z., and Dong, Z. Z. 1989. Discovery of Late Silurian microfossils of Agnatha and fishes from Yunnan, China. Acta Palaeontologica Sinica, 28:192206. (In Chinese with English summary) Google Scholar
Weigelt, J. 1989. Recent Vertebrate Carcasses and their Paleobiological Implications. University of Chicago Press, Chicago, 227 p.Google Scholar
Whiteaves, J. F. 1881. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, P.Q., with descriptions of a new genus and three new species. Canadian Naturalist, 10:2735.Google Scholar
Woodward, A. S. 1891. Catalogue of Fossil Fishes in the British Museum (Natural History), Pt. II. British Museum (Natural History), London, 567 p.Google Scholar
Woodward, A. S., and White, E. I. 1926. The fossil fishes of the Old Red Sandstone of the Shetland Islands. Transactions of the Royal Society of Edinburgh, Earth Sciences, 54:567571.Google Scholar
Young, G. C. 1989. The Aztec fish fauna of southern Victoria Land—evolutionary and biogeographic significance, p. 4362. In Crame, J. A. (ed.), Origins and Evolution of the Antarctic Biota. Geological Survey of London Special Publication, 47.Google Scholar
Young, G. C. 1991. Fossil fishes from Antarctica, p. 538567. In Tingey, R. J. (ed.), The Geology of Antarctica. Oxford University Press, Oxford.Google Scholar
Yu, X. 1998. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. Journal of Vertebrate Paleontology, 18:261274.Google Scholar
Zhu, M., and Schultze, H.-P. 2001. Interrelationships of basal osteichthyans, p. 289314. In Ahlberg, P. E. (ed.), Major Events in Early Vertebrate Evolution. Palaeontology, Phylogeny, Genetics and Development. Taylor & Francis, London.Google Scholar
Zhu, M., and Yu, X. 2002. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature, 418:767770.Google Scholar
Zhu, M., and Yu, X. 2004. Lower jaw transitions among major sarcopterygian groups—a survey based on new materials from Yunnan, China, p. 271286. In Arratia, G., Wilson, M. V. H., and Cloutier, R. (eds.), Recent Advances in the Origin and Early Radiation of Vertebrates. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Zhu, M., Yu, X., Wang, W., Zhao, W., and Jia, L. 2006. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature, 441:7780.Google Scholar