Hostname: page-component-5c6d5d7d68-qks25 Total loading time: 0 Render date: 2024-08-26T09:25:50.215Z Has data issue: false hasContentIssue false

A Hemisessile Sea Anemone from the Porcupine Abyssal Plain, North Atlantic Ocean: Iosactis Vagabunda gen. nov., sp. nov.

Published online by Cambridge University Press:  11 May 2009

Karin Riemann-Zürneck
Affiliation:
Biologische Anstalt Helgoland (Taxonomische Arbeitsgruppe) and Alfred-Wegener-Institut für Polarund Meeresforschung, D-27568 Bremerhaven, Germany

Extract

The Porcupine Abyssal Plain in the north-eastern Atlantic Ocean is subject to periodical deposition of phytodetritus and has a highly diverse benthic fauna dependent on this source of organic matter. Among the most abundant species from the northern study site of the Institute of Oceanographic Sciences Deacon Laboratory (IOSDL) at ~48°50′N 16°30′W, 4850 m, is Iosactis vagabunda gen. nov., sp. nov. (Cnidaria: Actiniaria, Iosactiidae fam. nov.), a small endomyarian sea anemone. The fact that this species is a burrower, with a smooth, unspecialized column, and a rounded aboral end provided with a central pit, makes it stand out from the other families of endomyarian anemones and prompted the establishment of the new family Iosactiidae. There is evidence that the closest relatives of the new family are the ‘deep water actiniids’ (e.g. Bolocera, Liponema, Leipsiceras), and the Andresiidae. Long-term in situ time-lapse photographs indicate a unique behaviour of this anemone in that it moves out of its hole at times, presumably exhibiting a hemisessile lifestyle in this peculiar abyssal habitat.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andres, A., 1884. Le attinie. Fauna und Flora des Golfes von Neapel, 9, 1459.Google Scholar
Billett, D.S.M., Lampitt, R.S, Rice, A.L. & Mantoura, R.F.C., 1983. Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature, London, 302, 520522.CrossRefGoogle Scholar
Carlgren, O., 1940. A contribution to the knowledge of the structure and distribution of the Cnidae in the Anthozoa. Lunds Universitets Årsskrift 2, 36(3), 162.Google Scholar
Carlgren, O., 1942. Actiniaria. Part II. Danish Ingolj-Expedition, 5(12), 192.Google Scholar
Carlgren, O., 1949. A survey of the Ptychodactiaria, Corallimorpharia and Actiniaria. Kungliga Svenska Vetenskapsakademiens Handlingar, series 4, 1, 1121.Google Scholar
Dunn, D.F. & Bakus, G.J., 1977. Redescription and ecology of Liponema brevicornis (McMurrich, 1893) with definition of the family Liponematidae (Coelenterata, Actiniaria). Astarte, 10, 7785.Google Scholar
McMurrich, J.P., 1904. The Actiniae of the Plate Collection. Zoologische Jahrbücher, 6, supplement, 215306.Google Scholar
Merrett, N.R. & Marshall, N.B., 1981. Observations on the ecology of deep-sea bottom-living fishes collected off northwest Africa (08°–27°N). Progress in Oceanography, 9, 185244.CrossRefGoogle Scholar
Rice, A.L., Aldred, R.G., Billett, D.S.M. & Thurston, M.H., 1979. The combined use of an epibenthic sledge and a deep-sea camera to give quantitative relevance to macro-benthos samples. Ambio, Special Report, no. 6, 5972.Google Scholar
Rice, A.L., Aldred, R.G., Darlington, E. & Wild, R.A., 1982. The quantitative estimation of the deep-sea megabenthos: a new approach to an old problem. Oceanologica Acta, 5, 6372.Google Scholar
Rice, A.L., Thurston, M.H. & Bett, B.J., 1994. The Iosdl deepseas programme: introduction and photographic evidence for the presence and absence of a seasonal input of phytodetritus at contrasting abyssal sites in the northeastern Atlantic. Deep-Sea Research I, 41, 13051320.CrossRefGoogle Scholar
Riemann-Zürneck, K., 1986. Zur Biogeographie des Südwestatlantik mit besonderer Berücksichtigung der Seeanemonen (Coelenterata: Actiniaria). Helgoländer Meeresuntersuchungen, 40, 91149.CrossRefGoogle Scholar
Riemann-Zürneck, K. & Gallardo, V. A., 1990. A new species of sea anemone (Saccactis coliumensis n. sp.) living under hypoxic conditions on the central Chilean shelf. Helgoländer Meeresuntersuchungen, 44, 445—457.CrossRefGoogle Scholar
Schmidt, H., 1972a. Prodromus zu einer Monographic der mediterranen Aktinien. Zoologica, 121, 1146.Google Scholar
Schmidt, H., 1972b. Die Nesselkapseln der Anthozoen und ihre Bedeutung für die phylogenetische Systematik. Helgoländer Wissenschaftliche Meeresuntersuchungen, 23, 422458.CrossRefGoogle Scholar
Schmidt, H., 1974. On evolution in the Anthozoa. In Proceedings of the second international symposium on coral reefs, 22 June – 2 July 1973, vol. 1 (ed. A.M., Cameron et al.), pp. 533560. Brisbane: The Great Barrier Reef Committee.Google Scholar
Schmidt, H. & Zissler, D., 1979. Die Spermien der Anthozoen und ihre phylogenetische Bedeutung. Zoologica, 129, 197.Google Scholar
Shick, J.M., 1991. A functional biology of sea anemones. London: Chapman & Hall.CrossRefGoogle Scholar
Stephenson, T.A., 1921. On the classification of Actiniaria. Part II. Consideration of the whole group and its relationships, with special reference to forms not treated in part I. Quarterly Journal of Microscopical Science, 65, 493576.Google Scholar
Stephenson, T.A., 1922. On the classification of Actiniaria. Part III. Definitions connected with the forms dealt with in part II. Quarterly Journal of Microscopical Science, 66, 247319.Google Scholar
Stephenson, T.A., 1928. The British sea anemones, vol. 1. London: The Ray Society.Google Scholar
Stephenson, T.A., 1935. The British sea anemones, vol. II. London: The Ray Society.Google Scholar
Thurston, M.H., Bett, B.J., Rice, A.L. & Jackson, P.A.B., 1994. Variations in the invertebrate abyssal megafauna in the North Atlantic Ocean. Deep-Sea Research I, 41, 13211348.CrossRefGoogle Scholar
Van-Praét, M., 1985. Nutrition of sea anemones. Advances in Marine Biology, 22, 6599.CrossRefGoogle Scholar