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Abstract

The early life history traits of the labrisomid blenny Auchenionchus crinitus (Jenyns, 1842)
from subtidal rocky reefs were studied, based on microstructure analysis of sagittae of their
pelagic larvae (4.01 mm NL —12.50 mm SL). Ichthyoplankton was collected in shallow
(<20 m) nearshore waters off Isla Santa Maria, Antofagasta, northern Chile every 15 days dur-
ing austral autumn-winter 2014 (five sampling days). During late May and early June, larval
abundance was low (median + MAD, 39.06 + 5.08 ind. 100 m ™), increasing significantly dur-
ing mid-June to early August (110.98 + 47.66 ind. 100 m~>). Using 354 sagittae, the back-cal-
culated hatch dates indicated the occurrence of three hatching events, two in autumn and one
in winter. Hatching occurred mainly during the illuminated phases of the lunar cycle. All
three batches had similar estimated larval sizes at hatch (3.2-3.7 mm SL), as well as similar
growth rates (0.19-0.22 mm day ") during the first 30 days of life. During the study period,
shallow waters were well mixed, with seawater temperature of 14.73 +0.58°C and salinity of
34.84 + 0.04. This is the first estimation of early life history traits of this cryptobenthic species
from rocky reefs of Chile.

Introduction

Cryptobenthic fishes have been defined as adult fishes of typically <5 cm that are visually and/
or behaviourally cryptic, and maintain a close association with the benthos (Depczynski &
Bellwood, 2003). Nonetheless, there are exceptions, with some species (e.g. the giant goby
Gobius cobitis) reaching up to 30 cm (Gibson, 1970). Except for some viviparous benthic spe-
cies (such as the eelpout Zoarces viviparus), most of them have a bipartite life cycle, with a
pelagic larval phase that ends at reef settlement (Leis, 1991), and benthic juvenile and adults.
Because of the restricted movement of the latter between reefs, species rely on their pelagic
larval duration to disperse and maintain biogeographic ranges as well as connectivity between
populations (Riginos & Victor, 2001; Kohn & Clements, 2011).

By revealing early life history traits it is possible to understand pre-settlement processes
(Bergenius et al., 2002; Plaza et al., 2013). A powerful tool to reveal early life traits of fishes
is the analysis of otolith microstructure (Panella, 1971; Campana & Neilson, 1985). These
structures have identifiable banding patterns or rings of daily periodicity that reflect the punc-
tuated nature of growth (Chambers & Miller, 1995), which has been validated in several cryp-
tobenthic fish species (Mansur et al, 2013; Carvalho et al, 2015). By applying otolith
microstructure analysis in larval stages of fish it is possible to estimate population and individ-
ual growth rates, individual size at time to hatch, yolk sac resorption and onset of exogenous
feeding, mortality rates, or to separate larvae which have grown under different environmental
conditions or under different moon phases (Robertson ef al., 1990; Stenevik et al., 1996; Fontes
et al., 2011; Landaeta et al., 2012; Contreras et al., 2017; La Mesa et al., 2017).

One large (up to 18 cm length) cryptobenthic fish typical of shallow waters of north and
central Chile is the labrisomid blenny, Auchenionchus crinitus (Jenyns, 1842). This subtidal
species is distributed from Pucusana, Peru (12°28'S 76°48'W) to Vina del Mar, Chile
(33°01’S 71°33'W), and is sympatric with two other species of the genus Auchenionchus:
A. variolosus and A. microcirrhis (Stephens & Springer, 1973; Séez & Pequefio, 2009). Adult
labrisomids are carnivorous, predating on crabs, shrimps, isopods and amphipods (Mufioz
& Ojeda, 1997), while larvae of A. variolosus feed mostly on eggs and nauplii of calanoid cope-
pods (Vera-Duarte & Landaeta, 2016). Daily deposition of microincrements in the sagittae
otolith has been validated for A. crinitus (Mansur et al., 2013). Nonetheless, there is a lack
of information about the early life traits of A. crinitus. Therefore, the goal of this study was
to analyse the early life history of this labrisomid blenny, during autumn-winter conditions,
by using otolith microstructure analysis.
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Fig. 1. Location of the study site, Isla Santa Maria (ISM), Mejillones Peninsula, Antofagasta, northern Chile. The location of the meteorological station, at Cerro

Moreno airport, is also indicated.

Table 1. Sampling periods, standardized abundance (ind. 100 m~) and size structure (NL or SL, mm) of larval labrisomid Auchenionchus crinitus from northern Chile during

austral autumn-winter 2014

Abundance Abundance Size Size Size SE SE
Sampling date Median MAD N range median MAD Skewness skewness Kurtosis kurtosis
27 May 2014 79.9 2411 139 4.03-8.47 5.68 0.62 0.28 0.21 -1.2 0.41
15 June 2014 15.99 321 83 4.01-7.59 4.92 0.32 1.52 0.26 3.29 0.52
30 June 2014 107.2 58.53 98 4.30-10.0 6.97 0.88 0.27 0.24 1.74 0.48
14 July 2014 72.89 35.54 72 4.36-9.61 6.63 1.02 0.31 0.28 —0.41 0.56
1 August 2014 133.24 74.2 94 6.65-12.50 8.27 0.55 0.62 0.25 2.6 0.49

MAD, median absolute deviation; SE, standard error.

Materials and methods
Study area

The study area is located off northern Chile (Humboldt Current
System), at Isla Santa Maria (ISM) (23°26'S 70°36'W) in
Mejillones Peninsula (Figure 1). The location is a sheltered area,
with artisanal fishing, spear fishing and kelp harvesting. It is char-
acterized by rocky bottom, barren ground and kelp forests of
Lessonia trabeculata and Macrocystis integrifolia. The bathymetry
does not exceed 18 m (Uribe et al., 2015).

Fieldwork

The daily prevailing wind was available from a Meteorological
Station at Cerro Moreno Airport (23°27'S 70°26'W; Figure 1)
supervised by the Direccion Meteorologica de Chile. The
Ekman transport was estimated to assess the effect of winds on
the offshore displacement of surface coastal waters. The equation
Mg = —1/f was used, where Mg is the Ekman transport (1000 kg
m~'s7"), f is the Coriolis parameter and —1 is the along-shore
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wind stress at the surface of the water (Pond & Pickard, 1983).
Tau (t) was estimated using the equation: 7=paxCdxW;
where pa is the air density (1.2 kg m~>), Cd is the drag coefficient
(0.0014) and W is the along-shore wind speed (m s7h.

Every 15 days between May (austral-autumn) and August
(austral-winter) 2014, five dates (S1-S5) were sampled off ISM
(Table 1). Temperature and salinity of the water column were
obtained with a CTD (Seabird SBE-19 plus) at the beginning
and end of every sampling day from surface to 15m depth.
Ichthyoplankton samples were collected using a Bongo net
(60 cm mouth diameter; 300 um mesh size), equipped with one
TKS flow meter (The Tsurumi-Seiki Co., Ltd; Tsurumi-ku,
Yokohama, Japan) to quantify the filtered water. The plankton
was collected parallel to the coastline, at 1-2 knots during 10-
15min from a depth of 10-18 m to surface (double-oblique
tow) during the morning, on board an artisanal boat. Every sam-
pling date, eight collections were made. The samples were fixed
with 5% formalin buffered with sodium borate (N =40). After
24 h, formalin-fixed samples were preserved in 96% ethanol to
avoid negative effects on otolith microstructure of fish larvae.
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Fig. 2. Larva of the labrisomid blenny Auchenionchus crinitus (Jenyns, 1842), 5.5 mm SL, and sagittal otoliths of several specimens. N, nucleus; HM, hatch mark; M,
microincrements. Notice the lack of damage on the edges of the sagittae due to fixation in buffered 5% formalin for 24 h.

Laboratory work

In the laboratory, all larval fish were separated, counted and iden-
tified into the lowest possible taxon. Labrisomid blenny larvae,
Auchenionchus crinitus, were identified based on characteristic
pigments, i.e. presence of a punctuated pigment in the base of
the anus and a dendritic melanophore ventrally in the mid-tail,
and genetically confirmed. Larval abundance was standardized
to individuals (ind.) 100 m™3 using the flowmeter counts. The
notochord length (NL), from the tip of the snout to the tip of
the notochord in pre-flexion larvae or the standard length (SL),
from base of the hypural bones in flexion and post-flexion larvae,
was measured (N =486) to the nearest 0.0l mm under an
Olympus SZ-61 stereomicroscope with a Moticam 2500 (5.0 M
pixel) video camera connected to a PC with the Moticam
Image Plus 2.0 software. The larval measurements were not cor-
rected for shrinkage.

Larval abundance per sampling day was compared using
Kruskal-Wallis H test, because data departed from normality
(Shapiro-Wilk test, W=0.81, P<0.001). Median and MAD
(median absolute deviation) were used to describe basic statistics,
when data departed from normality.
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The left and right sagittal otoliths were removed from 405
well-preserved  larvae (4.01 mm NL-12.50 mm SL; Figure 2).
No previous grinding or polishing was necessary for the otolith
reading. The otoliths were embedded in epoxy resin on a glass
slide. The daily age was estimated by counting the number of oto-
lith primary increments with a Motic BA310 light microscope at
1000x magnification under oil immersion.

Following Campana (1992), three independent counts were
performed by the same reader (Valentina Nowajeswki, VN) on
both the right and left sagittae (N =395 pairs). Ages estimated
using a subset of sagittae by the main reader (VN) and an experi-
enced reader (Mauricio Landaeta) were not significantly different
(Wilcoxon test, P=0.31). Counts were performed after a promin-
ent hatch mark (HM, Figure 2). The daily periodicity of microin-
crement deposition in A. crinitus has been previously validated by
Mansur et al. (2013). Nonetheless, the first mark was not vali-
dated as a hatch mark. When the coefficient of variation (CV =
standard deviation/mean x 100) of the increment counts among
the three readings was <10%, the mode of the three counts was
calculated and utilized for the analysis. When the CV was
>10%, the otolith reading was discarded (N = 24). Once selection
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Fig. 3. Environmental conditions during the sampling period, austral autumn-winter
2014 off northern Chile. (A) Temporal series of wind-derived Ekman transport; (B) ver-
tical section of water temperature (°C); (C) vertical section of salinity. S1-S5 corre-
sponds to the sampling dates.

of the values was done, comparison of readings was carried out
with a Wilcoxon matched pairs test, testing the null hypothesis
that reading of the left sagitta is the same as that of the right
sagitta. Because the null hypothesis of the same result in both oto-
liths cannot be rejected (W =71.50; P=0.51), any of the otoliths
can be utilized for analyses.

The hatch day composition of all aged larvae was subsequently
estimated in a calendar year, and cohorts were identified accord-
ing to the temporal pattern of hatching. Additionally, back-
calculated hatching dates were related to the lunar cycle. For
each sampling date, the days since new moon were counted
(DNM), and thereby assigned DNM values for 0 to 29 for each
date, in which 0 represented the new moon. The DNM values
were converted to angles (°) by dividing by 29 (the length, in
days, of the lunar cycle) and then multiplying by 360° so that
the data could be analysed using circular statistics. To assess
whether the hatching events showed lunar periodicity, the data
were analysed with Rayleigh and Rao’s spacing tests (Batschelet,
1981) using Past 3.11 software.

Least-squares simple linear regressions (SL=a+bA +¢;)
between the microincrement counts (age, A) and larval lengths
(NL and SL) were adjusted, separately for each batch identified
during autumn-winter 2014. In the model, the slope corre-
sponded to the batch growth rate, and the intercept corre-
sponded to the estimated hatch size. The comparison of
the slopes of the regression models was carried out following
Zar (2010).
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Fig. 4. Temporal variations in the standardized abundance (ind. 100 m~3) of larval
labrisomid blenny Auchenionchus crinitus. Different letters indicate significant differ-
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Results
Physical settings

At mesoscale, several upwelling events were detected through the
temporal series of wind-derived Ekman transport of autumn-
winter 2014 (Figure 3A). Prior to the S1, there was ~10 days of
winds favourable for upwelling events. After that, peaks of
Ekman transport occurred only for few (<4) days, such as those
occurring during 5 July (17749 kgm™" s™") and 23 July 2014
(2555.9 kg mtsh) (Figure 3A). Moreover, the biological sam-
pling did not match with large events of offshore transport.
During the sampling period, seawater temperature in shallow
areas ranged between 13.97 and 16.32°C (mean +SD, 14.73 +
0.58°C). The warmest waters occurred during mid-May
(Figure 3B), when the greatest vertical gradient was also detected
(1.59-2.09°C). During the rest of the study, the water column was
well-mixed, with temperature varying from 13.97 to 14.99°C
(14.43 £0.27°C). Similarly, salinity was conservative, ranging
between 34.65-34.95 (34.84 + 0.04); an intrusion of relatively salt-
ier waters was observed during late June 2014 (Figure 3C). Except
for the first sampling day, no clear evidence of upwelling waters
was detected in nearshore areas during autumn-winter 2014.

Larval abundance and size structure

During 27 May and 15 June 2014 (austral autumn), larval abun-
dances were 39.06 +5.08 ind. 100 m™> (median + MAD), with a
significant increase during 30 June and 1 August 2014 (110.98
+47.66 ind. 100 m™>) (Kruskal-Wallis test, Hy40=16.32, P=
0.002, Figure 4, Table 1).

Larval length varied between 4.01 and 12.50 mm SL (N =486,
median + MAD, 6.55 + 1.13 mm SL) (Figure 5, Table 1). Size dis-
tribution did not follow a normal distribution (Shapiro-Wilk’s
test, W=0.97; P<0.001, Figure 5). The length distribution
showed positive skewness and a leptocurtic distribution with a
value greater than would be expected under the normal distribu-
tion on 15 June 2014 (Table 1); furthermore, the size distribution
of collected larvae on other sampling days showed low skewness;
some days had negative kurtosis values that would suggest an
almost uniform distribution (Table 1).

Back-calculated hatch dates

The back-calculated hatch dates indicate the presence of three
cohorts during the study period, two from autumn (cohort 1
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Fig. 5. Histogram of notochord or standard length (NL or SL, mm) of larval labriso-
mid blenny Auchenionchus crinitus collected during the whole studied period. Grey
dotted line corresponds to the expected normal distribution.

from 6 May to 24 May; cohort 2 from 27 May to 19 June) and one
from winter (cohort 3 from 20 June to 18 July) (Figure 6A). The
first two main hatching events occurred during neap tides, and
the third one was spread over most of the lunar cycle. Hatching
was not homogeneous throughout the lunar cycle (Rayleigh test,
R=0.37, P<0.001; Rao’s spacing test, U=330.4, P<0.001)
(Figure 6B), and centred during full moon (circular mean = day
13.09, 95% confidence interval: 12.02-14.18 day of the lunar
cycle).

Size at hatch and larval age and growth by batch

For all three batches, the estimated age of larval A. crinitus varied
between 3 and 30 days old. Estimated size at hatch varied from
3.23+£0.16 mm NL during May to 3.70+0.35 mm NL during
late July. Batch 1 experienced a mean growth rate of 0.22+
0.01 mm day ™", while larvae hatched during early June (batch 2)
and late July (batch 3) grew at 0.20 £ 0.01 mm day~ ' and 0.19 +
0.02 mm day ™", respectively (Figure 7). Estimated larval growth
rates were similar among batches (homogeneity of slope test,
F=0.85, P=0.43).

Discussion

Microstructure analysis of sagittal otoliths of larval labrisomid
blenny Auchenionchus crinitus allows inferring the hatching of
three batches during autumn-winter 2014 in nearshore waters off
Isla Santa Maria, Antofagasta, northern Chile. Back-calculated
hatch dates occurred throughout the lunar cycle, except during
the new moon. This indicates that there is no timing periodicity
with the moon, and it may be related to the adult timing of the
reproductive events in labrisomid fish (Gibran et al., 2004).

Larval A. crinitus increased in abundance from autumn to
winter. During winter, a relatively large concentration of Chl-a
in the inshore areas has been described (Morales ef al., 1996), sup-
porting a large abundance of copepods (Hidalgo et al., 2010), the
main prey item of labrisomid larval fishes (Vera-Duarte &
Landaeta, 2016).

Seawater hydrographic features were kept relatively similar dur-
ing autumn and winter, as well as the estimated size-at-hatch and
growth rates of larval A. crinitus. For cryptobenthic fish species,
larval growth rates seem to vary at larger temporal scales, such
as in stargazers (family Dactyloscopidae, Rodriguez-Valentino
et al., 2015; Castillo-Hidalgo et al., 2018). The lack of seasonality
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in the early life history traits of A. crinitus may be linked to the
environmental stability of the water column structure.

Growth rates estimated for larval A. crinitus were similar to
those described for other cryptobenthic fish larvae (clingfishes,
Contreras et al., 2013; triplefin, Palacios-Fuentes et al., 2014;
sand stargazer, Rodriguez-Valentino et al, 2015) and adults
(e.g. gobiids Eviota spp., 0.20-0.25 mm day~', Depczynski &
Bellwood, 2006). Instead, mesopelagic larval species grew slower
(0.05-0.06 mm day_l) in shallow waters of northern Chile
(Landaeta et al., 2015), while epipelagic species, such as anchovy
Engraulis ringens, grow faster (0.50-0.85 mm day ') during their
early life stages in the same period (May-June, Contreras et al.,
2017). This suggests that growth patterns, which may be affected
by oceanographic conditions, are species-specific in their
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responses, considering pelagic vs benthic adults. In species
with benthic adults, larval growth rates are remarkably similar,
suggesting that the life history strategy explains changes in growth
rate.

Larval A. crinitus collected with Bongo nets in the water col-
umn varied between 3 and 30 days old. According to otolith
microstructure analysis of young-of-the-year collected in tidal
pools, the pelagic larval duration (PLD) for the species is 73-75
days (Mansur et al., 2014). It is plausible that after the first
month of life, postlarvae inhabit near-bottom, subtidal environ-
ments, entering next to the tide rock pools.
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