Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T22:18:19.576Z Has data issue: false hasContentIssue false

Development and application of a delayed-release anthelmintic intra-ruminal bolus system for experimental manipulation of nematode worm burdens

Published online by Cambridge University Press:  15 March 2012

ANJA M. CARLSSON*
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK Department of Arctic Biology, University Centre in Svalbard, PO Box 156, NO-9171 Longyearbyen, Norway
KENNETH WILSON
Affiliation:
Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
R. JUSTIN IRVINE
Affiliation:
The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK
*
*Corresponding author: Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. Tel: 01524 93406. E-mail: a.carlsson@lancs.ac.uk

Summary

In order to quantify the impact of parasites on host population dynamics, experimental manipulations that perturb the parasite-host relationship are needed but, logistically, this is difficult for wild hosts. Here, we describe the use of a delayed-release anthelmintic delivery system that can be administered when the hosts can be captured and its activity delayed until a more appropriate period in the host-parasite cycle. Our model system is Svalbard reindeer infected with a nematode parasite, Marshallagia marshalli, which appears to accumulate during the Arctic winter. To determine the extent to which this occurs and the effect on host fitness, reindeer need to be treated with anthelmintics in late autumn but they can only be caught and handled in April. To solve this problem, we devised an intra-ruminal capsule that releases the anthelmintic from up to 6 months after being administered. The capsule was trialed in cannulated sheep and red deer to determine optimum capsule orifice size and release rates. Capsules were estimated to release placebo for 100–153 days followed by abamectin for 22–34 days. To test the efficacy of treatment in reindeer, capsules were administered in April and retrieved in October. All capsules had fully released the anthelmintic and treated reindeer had significantly lower worm burdens than controls. Thus, success of this system allows repeated treatment over several years to test the effect of winter parasitism on host fitness.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albon, S. D., Stien, A., Irvine, R. J., Langvatn, R., Ropstad, E. and Halvorsen, O. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London, B 269, 16251632. doi: DOI: 10.1098/rspb.2002.2064.CrossRefGoogle ScholarPubMed
Alison, P. G. (2003). Immunity, antigenic heterogeneity, and aggregation of helminth parasites. The Journal of Parasitology 89, 232241.Google Scholar
Anderson, R. and May, R. (1978). Regulation and stability of host-parasite population interaction. I. Regulatory processess Journal of Animal Ecology 47, 219247.CrossRefGoogle Scholar
Cardinal, J. R. (1997). Intraruminal devices. Advanced Drug Delivery Reviews 28, 303322.CrossRefGoogle ScholarPubMed
Craig, B. H., Jones, O. R., Pilkington, J. G. and Pemberton, J. M. (2009). Re-establishment of nematode infra-community and host survivorship in wild Soay sheep following anthelmintic treatment. Veterinary Parasitology 161, 4752. doi: 10.1016/j.vetpar.2008.11.027.CrossRefGoogle ScholarPubMed
Dallas, J. F., Irvine, R. J. and Halvorsen, O. (2000). DNA evidence that Ostertagia gruehneri and Ostertagia arctica (Nematoda: Ostertagiinae) in reindeer from Norway and Svalbard are conspecific. International Journal for Parasitology 30, 655658.CrossRefGoogle ScholarPubMed
Dallas, J. F., Irvine, R. J. and Halvorsen, O. (2001). DNA evidence that Marshallagia marshalli Ransom, 1907 and M-occidentalis Ransom, 1907 (Nematoda: Ostertagiinae) from Svalbard reindeer are conspecific. Systematic Parasitology 50, 101103.CrossRefGoogle ScholarPubMed
Drozdz, J. (1965). Studies on helminths and helminthiases in Cervidae. I. Revision of the subfamily Ostertagiinae Sarwar, 1965 and an attempt to explain the phylogenesis of its representatives. Acta Parasitologica Polonica, 13, 445481.Google Scholar
Flueck, W. T. (1994). Effect of trace-elements on population-dynamics-selinium deficiency in free-ranging black-tailed deer. Ecology 75, 807812.CrossRefGoogle Scholar
Gulland, F. M. D. (1995). The Impact of Infectious Diseases on Wild Animal Populations – A Review. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gulland, F. M. D., Albon, S. D., Pemberton, J. M., Moorcroft, P. R. and Cluttonbrock, T. H. (1993). Parasite-associated polymorphism in a cyclic ungulate population. Proceedings of the Royal Society of London, B 254, 713.Google Scholar
Halvorsen, O. and Bye, K. (1999). Parasites, biodiversity, and population dynamics in an ecosystem in the High Arctic. Veterinary Parasitology 84, 205227.CrossRefGoogle Scholar
Hudson, P. J., Dobson, A. and Newborn, D. (1998). Prevention of population cycles by parasite removal. Science 282, 22562258.CrossRefGoogle ScholarPubMed
Irvine, R. J. (2000). Use of moxidectin treatment in the investigation of abomasal nematodiasis in wild reindeer (Rangifer tarandus platyrhynchus). Veterinary Record 147, 570573.CrossRefGoogle ScholarPubMed
Irvine, R. J., Corbishley, H., Pilkington, J. G. and Albon, S. D. (2006). Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (Cervus elaphus). Parasitology 133, 465475. doi: 10.1017/s0031182006000606.CrossRefGoogle ScholarPubMed
Irvine, R. J., Stien, A., Halvorsen, O., Langvatn, R. and Albon, S. D. (2000). Life-history strategies and population dynamics of abomasal nematodes in Svalbard reindeer (Rangifer tarandus platyrhynchus). Parasitology 120, 297311.CrossRefGoogle ScholarPubMed
Kuzyk, G. W. and Hudson, R. J. (2006). Using n-alkane markers to estimate forage intake of mule deer. Canadian Journal of Zoology-Revue Canadienne de Zoologie 84, 15761583. doi: 10.1139/z06–156.CrossRefGoogle Scholar
Marley, S. E. and Conder, G. A. (2002). The Use of Macrocyclic Lactones to Control Parasites of Domesticates Wild Ruminants. In Macrocyclic Lactones in Antiparasitic Therapy (ed. Vercruysse, I. and Rew, R. S.), pp. 371394. CABI International, Wallingford, UK.CrossRefGoogle Scholar
May, R. and Anderson, R. (1978). Regulation and stability of host-parasite population interaction. II. Destabalizing processes. Journal of Animal Ecology 47, 249267.CrossRefGoogle Scholar
McKellar, Q. A. and Jackson, F. (2004). Veterinary anthelmintics: old and new. Trends in Parasitology 20, 456461. doi: 10.1016/j,pt.2004.08.002.CrossRefGoogle ScholarPubMed
Milner, J. M., Stien, A., Irvine, R. J., Albon, S. D., Langvatn, R. and Ropstad, E. (2003). Body condition in Svalbard reindeer and the use of blood parameters as indicators of condition and fitness. Canadian Journal of Zoology-Revue Canadienne de Zoologie 81, 15661578.CrossRefGoogle Scholar
Morgan, E. R., Shaikenov, B., Torgerson, P. R., Medley, G. F. and Milner-Gulland, E. J. (2005). Helminths of saiga antelope in Kazakhstan: Implications for conservation and livestock production. Journal of Wildlife Diseases 41, 149162.CrossRefGoogle ScholarPubMed
Murray, D. L., Cary, J. R. and Keith, L. B. (1997). Interactive effects of subleathal nematodes and nutritional status on Snowshoe hare vulnerability to predation. The Journal of Animal Ecology 66, 250264.CrossRefGoogle Scholar
Murray, D. L., Keith, L. B. and Cary, J. R. (1996). The efficacy of anthelmintic treatment on the parasite abundance of free ranging snowshoe hares. Canadian Journal of Zoology-Revue Canadienne de Zoologie 74, 16041611.CrossRefGoogle Scholar
Newey, S., Shaw, D. J., Kirby, A., Montieth, P., Hudson, P. J. and Thirgood, S. J. (2005). Prevalence, intensity and aggregation of intestinal parasites in mountain hares and their potential impact on population dynamics. International Journal for Parasitology 35, 367373.CrossRefGoogle ScholarPubMed
O´Connor, L. J., Walkden-Brown, S. W. and Kahn, L. P. (2006). Ecology of the free-living stages of major trichostorngylid parasites of sheep. Veterinary Parasitology 14, 115.CrossRefGoogle Scholar
Pedersen, A. B. and Greives, T. J. (2008). The interaction of parasites and resources cause crashes in a wild mouse population. Journal of Animal Ecology 77, 370377.CrossRefGoogle Scholar
Perry, B. D. and Randolph, T. F. (1999). Improving the assessment of the economic impact of parasitic diseases and of their control in production animals. Veterinary Parasitology 84, 145168.CrossRefGoogle ScholarPubMed
R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna, Austria. URL http://www.R-project.orgGoogle Scholar
Shoop, W. L., Mrozik, H. and Fisher, M. H. (1995). Structure and activity of avermectins and milbemycins in animal health. Veterinary Parasitology 59, 139156.CrossRefGoogle ScholarPubMed
Smith, K. F., Acevedo-Whitehouse, K. and Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation 12, 112. doi: 10.1111/j.1469–1795.2008.00228.x.CrossRefGoogle Scholar
Stien, A., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R. and Albon, S. D. (2002). The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. Journal of Animal Ecology 71, 937945.CrossRefGoogle Scholar
Vandamme, T. F. and Ellis, K. J. (2004). Issues and challenges in developing ruminal drug delivery systems. Advanced Drug Delivery Reviews 56, 14151436. doi: 10.1016/j.addr.2004.02.011.CrossRefGoogle ScholarPubMed
Wilson, K., Bjørnstad, O. N., Dobson, A. P., Merler, S., Poglayen, G., Randolph, S. E., Read, A. F. and Skorping, A. (2002). Heterogeneities in macroparasite infections: patterns and processes. In The Ecology of Wildlife Diseases (ed. Hudson, P. J., Rizzoli, A., Grenfell, B. T., Heesterbeek, J. A. P. and Dobson, A. P.), pp. 644. Oxford University Press, Oxford, UK.CrossRefGoogle Scholar
Wilson, K., Grenfell, B. T. and Shaw, D. J. (1996). Analysis of aggregated parasite distributions: a comparison of methods. Functional Ecology 10, 592601.CrossRefGoogle Scholar