Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-29T15:13:23.009Z Has data issue: false hasContentIssue false

Development and availability of the free-living stages of Ostertagia gruehneri, an abomasal parasite of barrenground caribou (Rangifer tarandus groenlandicus), on the Canadian tundra

Published online by Cambridge University Press:  13 April 2012

BRYANNE M. HOAR*
Affiliation:
Faculty of Veterinary Medicine, University of Calgary, 3350 Hospital Drive NW, Calgary AB, CanadaT2N 4N1 Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB, CanadaT2N 1N4
KATHREEN RUCKSTUHL
Affiliation:
Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary AB, CanadaT2N 1N4
SUSAN KUTZ
Affiliation:
Faculty of Veterinary Medicine, University of Calgary, 3350 Hospital Drive NW, Calgary AB, CanadaT2N 4N1
*
*Corresponding author: 50 Guy Street, New Victoria, Nova Scotia, CanadaB1H 5B3. E-mail: bmhoar@ucalgary.ca

Summary

Climate change in the Arctic is anticipated to alter the ecology of northern ecosystems, including the transmission dynamics of many parasite species. One parasite of concern is Ostertagia gruehneri, an abomasal nematode of Rangifer ssp. that causes reduced food intake, weight loss, and decreased pregnancy rates in reindeer. We investigated the development, availability, and overwinter survival of the free-living stages of O. gruehneri on the tundra. Fecal plots containing O. gruehneri eggs were established in the Northwest Territories, Canada under natural and artificially warmed conditions and sampled throughout the growing season of 2008 and the spring of 2009. Infective L3 were present 3–4 weeks post-establishment from all trials under both treatments, except for the trial established 4 July 2008 under warmed conditions wherein the first L3 was recovered 7 weeks post-establishment. These plots were exposed to significantly more time above 30°C than the natural plots established on the same date, suggesting a maximum temperature threshold for development. There was high overwinter survival of L2 and L3 across treatments and overwintering L2 appeared to develop to L3 the following spring. The impact of climate change on O. gruehneri is expected to be dynamic throughout the year with extreme maximum temperatures negatively impacting development rates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albon, S. D., Stien, A., Irvine, R. J., Langvatn, R., Ropstad, E. and Halvorsen, O. (2002). The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London, B 269, 16251632.CrossRefGoogle ScholarPubMed
Alley, R., Berntsen, T., Bindoff, N. L., Chen, Z., Chidthaisong, A., Friedlingstein, P., Gregory, J., Hegerl, G., Heimann, M., Hewitson, B., Hoskins, B., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Qin, D., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Solomon, S., Somerville, R., Stocker, T. F., Stott, P., Stouffer, R. J., Whetton, P., Wood, R. A. and Wratt, D. (2007). Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
Altizer, S., Bartel, R. and Han, B. A. (2011). Animal migration and infectious disease risk. Science 331, 296302. 10.1126/science.1194694.CrossRefGoogle ScholarPubMed
Andersen, F. L., Wang, G.-T. and Levine, N. D. (1966). Effect of temperature on survival of the free-living stages of Trichostrongylus colubriformis. The Journal of Parasitology 52, 713721.CrossRefGoogle ScholarPubMed
Arft, A. M., Walker, M. D., Gurevitch, J., Alatalo, J. M., Bret-Harte, M. S., Dale, M., Diemer, M., Gugerli, F., Henry, G. H. R., Jones, M. H., Hollister, R. D., Jonsdottir, I. S., Laine, K., Levesque, E., Marion, G. M., Molau, U., Molgaard, P., Nordenhall, U., Raszhivin, V., Robinson, C. H., Starr, G., Stenstrom, A., Stenstrom, M., Totland, O., Turner, P. L., Walker, L. J., Webber, P. J., Welker, J. M. and Wookey, P. A. (1999). Responses of tundra plants to experimental warming: meta-analysis of the International Tundra Experiment. Ecological Monographs 69, 491511.Google Scholar
Arneberg, P. and Folstad, I. (1999). Predicting effects of naturally acquired abomasal nematode infections on growth rate and food intake in reindeer using serum pepsinogen levels. Journal of Parasitology 85, 367369.CrossRefGoogle ScholarPubMed
Arneberg, P., Folstad, I. and Karter, A. J. (1996). Gastrointestinal nematodes depress food intake in naturally infected reindeer. Parasitology 112, 213219.CrossRefGoogle ScholarPubMed
Berberian, J. F. and Mizelle, J. D. (1957). Developmental studies on Haemonchus contortus Rudolphi (1803). American Midland Naturalist 57, 421439.CrossRefGoogle Scholar
Ciordia, H. and Bizzell, W. E. (1963). The effects of various constant temperatures on the development of the free living-stages of some nematode parasites of cattle. The Journal of Parasitology 49, 6063.CrossRefGoogle ScholarPubMed
Coyne, M. J. and Smith, G. (1992). The development and mortality of the free-living stages of Haemonchus contortus in laboratory culture. International Journal for Parasitolog, 22, 641650.CrossRefGoogle ScholarPubMed
Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C. and Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, USA 105, 66686672. 10.1073/pnas.0709472105.CrossRefGoogle ScholarPubMed
Egwang, T. G. and Slocombe, J. O. D. (1982). Evaluation of the Cornell Wisconsin centrifugal flotation technique for recovering trichostrongylid eggs from bovine feces. Canadian Journal of Comparative Medicine 46, 133137.Google ScholarPubMed
Forrester, S. G. and Lankester, M. W. (1997). Extracting protostrongylid nematode larvae from ungulate feces. Journal of Wildlife Diseases, 33, 511516.CrossRefGoogle ScholarPubMed
Hassol, S. J. (2004). Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, New York, USA.Google Scholar
Hoar, B. M., Oakley, M., Farnell, R. and Kutz, S. J. (2009). Biodiversity and springtime patterns of egg production and development for parasites of the Chisana Caribou herd, Yukon Territory, Canada. Rangifer 29, 2537.CrossRefGoogle Scholar
Hoberg, E. P., Polley, L., Jenkins, E. J., Kutz, S. J., Veitch, A. M. and Elkin, B. T. (2008). Integrated approaches and empirical models for investigation of parasitic diseases in northern wildlife. Emerging Infectious Diseases 14, 1017.CrossRefGoogle ScholarPubMed
Hudson, P. J., Dobson, A. P. and Lafferty, K. D. (2006). Is a healthy ecosystem one that is rich in parasites? Trends in Ecology & Evolution 21, 381385.CrossRefGoogle Scholar
Hummel, M. and Ray, J. C. (2008). Caribou and the North: a Shared Future. Dundurn Press, Toronto, Canada.Google Scholar
Kruse, J. A., White, R. G., Epstein, H. E., Archie, B., Berman, M., Braund, S. R., Chapin, F. S., Iii, Charlie, J., Sr.Daniel, C. J., Eamer, J., Flanders, N., Griffith, B., Haley, S., Huskey, L., Joseph, B., Klein, D. R., Kofinas, G. P., Martin, S. M., Murphy, S. M., Nebesky, W., Nicolson, C., Russell, D. E., Tetlichi, J., Tussing, A., Walker, M. D. and Young, O. R. (2004). Modeling sustainability of arctic communities: An interdisciplinary collaboration of researchers and local knowledge holders. Ecosystems 7, 815828.CrossRefGoogle Scholar
Kutz, S. J., Hoberg, E. P., Polley, L. and Jenkins, E. J. (2005). Global warming is changing the dynamics of Arctic host-parasite systems. Proceedings of the Royal Society of London, B 272, 25712576.Google ScholarPubMed
Laaksonen, S., Pusenius, J., Kumpula, J., Venalainen, A., Kortet, R., Oksanen, A. and Hoberg, E. (2010). Climate change promotes the emergence of serious disease outbreaks of filarioid nematodes. EcoHealth 7, 713. 10.1007/s10393-010-0308-z.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Allesina, S., Arim, M., Briggs, C. J., De Leo, G., Dobson, A. P., Dunne, J. A., Johnson, P. T. J., Kuris, A. M., Marcogliese, D. J., Martinez, N. D., Memmott, J., Marquet, P. A., McLaughlin, J. P., Mordecai, E. A., Pascual, M., Poulin, R. and Thieltges, D. W. (2008). Parasites in food webs: the ultimate missing links. Ecology Letters 11, 533546. 10.1111/j.1461-0248.2008.01174.x.CrossRefGoogle ScholarPubMed
Lafferty, K. D., Dobson, A. P. and Kuris, A. M. (2006). Parasites dominate food web links. Proceedings of the National Academy of Sciences, USA 103, 1121111216.CrossRefGoogle ScholarPubMed
Levine, N. D. and Ferron, L. A. (1973). Development and survival of Trichostrongylus colubriformis on pasture. The Journal of Parasitology 59, 147165.CrossRefGoogle ScholarPubMed
Marion, G. M., Henry, G. H. R., Freckman, D. W., Johnstone, J., Jones, G., Jones, M. H., Levesque, E., Molau, U., Molgaard, P., Parsons, A. N., J ■, S. and Virginia, R. A. (1997). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology 3, 2032. doi:10.1111/j.1365-2486.1997.gcb136.x.CrossRefGoogle Scholar
McNeil, P., Russell, D. E., Griffith, B., Gunn, A. and Kofinas, G. P. (2005). Where the wild things are: seasonal variation in caribou distribution in relation to climate change. Rangifer 16, 5163.CrossRefGoogle Scholar
O'Connor, L. J., Walkden-Brown, S. W. and Kahn, L. P. (2006). Ecology of the free-living stages of major trichostrongylid parasites of sheep. Veterinary Parasitology 142, 115.CrossRefGoogle ScholarPubMed
Obst, J. and Squires Taylor, C. (2004). Vegetation classification, land cover, tundra ecosystem units and habitats of the Daring Lake breeding bird study area (ed. Mair, N.). NWT Centre for Geomatics, Yellowknife, Northwest Territories, Canada.Google Scholar
Pandey, V. S., Chaer, A. and Dakkak, A. (1989). Effect of temperature on development of the free-living stages of Ostertagia circumcincta. Veterinary Parasitology 32, 193198.CrossRefGoogle ScholarPubMed
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. URL http://www.R-project.orgGoogle Scholar
Rinke, A. and Dethloff, K. (2008). Simulated circum-Arctic climate changes by the end of the 21st century. Global and Planetary Change 62, 173186.CrossRefGoogle Scholar
Rossanigo, C. E. and Gruner, L. (1995). Moisture and temperature requirements in faeces for the development of free-living stages of gastrointestinal nematodes of sheep, cattle and deer. Journal of Helminthology 69, 357362.CrossRefGoogle ScholarPubMed
Stien, A., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R. and Albon, S. D. (2002). The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. Journal of Animal Ecology 71, 937945.CrossRefGoogle Scholar
Stromberg, B. E. (1997). Environmental factors influencing transmission. Veterinary Parasitology 72, 247264.CrossRefGoogle ScholarPubMed
Van Der Wal, R., Irvine, J., Stien, A., Shepherd, N. and Albon, S. D. (2000). Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer. Oecologia (Berlin) 124, 1925.CrossRefGoogle Scholar
Van Dijk, J. and Morgan, E. R. (2008). The influence of temperature on the development, hatching and survival of Nematodirus battus larvae. Parasitology 135, 269283.CrossRefGoogle ScholarPubMed
Waller, P. J., Rudby-Martin, L., Ljungstrom, B. L. and Rydzik, A. (2004). The epidemiology of abomasal nematodes of sheep in Sweden, with particular reference to over-winter survival strategies. Veterinary Parasitology 122, 207220.CrossRefGoogle ScholarPubMed