Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T05:31:00.395Z Has data issue: false hasContentIssue false

Climate-related dietary diversity of the ungulate faunas from the middle Pleistocene succession (OIS 14-12) at the Caune de l'Arago (France)

Published online by Cambridge University Press:  08 April 2016

Florent Rivals
Affiliation:
ICREA – IPHES (Institut Català de Paleoecologia Humana i Evolució Social), Àrea de Prehistòria – Universitat Rovira i Virgili, Plaça Imperial Tarraco 1, 43005 Tarragona, Spain. E-mail: florent.rivals@icrea.es
Ellen Schulz
Affiliation:
Biozentrum Grindel and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
Thomas M. Kaiser
Affiliation:
Biozentrum Grindel and Zoological Museum, University of Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany

Abstract

The Caune de l'Arago Cave (southern France) has yielded one of the best preserved and best documented sedimentary successions of the European Middle Pleistocene (Oxygen Isotopic Stages 14 to 12). Herbivorous ungulates (horse, reindeer, red deer, fallow deer, bison, musk ox, argali, and tahr) are well represented in the three major stratigraphic units CM1, CM2, and CM3. CM1 and CM3 correspond to cold and dry climate and CM2 represents temperate and humid environmental conditions. Dental microwear and mesowear analyses were performed for the ungulates from CM1–3 to test whether these methods of dental wear evaluation were suitable for detecting climate-driven changes in the dietary resources of the Arago ungulate community. We found that both dental mesowear and microwear indicate dietary traits and their relationship to climatic conditions as reflected by vegetation cover and community structure. In all units, even if some species seem to share habitats or resources, it appears that the overlap in their feeding ecology is very low. The CM1 and CM3 units, where pollen analysis indicates that the climate was cold and dry, show the lowest diversity in dietary traits. The CM2, where climate is known to be more temperate and humid, the spectrum of dietary traits is large—grazers, browsers, and mixed feeders are present.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Caughley, G. 1969. Habitat of the Himalayan tahr Hemitragus jemlahicus (H. Smith). Journal of the Bombay Natural History Society 67:103105.Google Scholar
de Lumley, H., Fournier, A., Park, Y. C., Yokoyama, Y., and Demouy, A. 1984. Stratigraphie du remplissage Pléistocène moyen de la Caune de l'Arago à Tautavel. Etude de huit carottages effectués de 1981 à 1983. L'Anthropologie 88:518.Google Scholar
Fedosenko, A. K., and Blank, D. A. 2005. Ovis ammon. Mammalian Species 773:115.Google Scholar
Feldhammer, G. A., Farris-Renner, K. C., and Barker, C. M. 1988. Dama dama. Mammalian Species 317:18.Google Scholar
Fortelius, M., and Solounias, N. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.Google Scholar
Fortelius, M., Eronen, J., Jernvall, J., Liu, L., Pushkina, D., Rinne, J., Tesakov, A., Vislobokova, I., Zhang, Z., and Zhou, L. 2002. Fossil mammals resolve regional patterns of Eurasian climate change over 20 million years. Evolutionary Ecology Research 4:10051016.Google Scholar
Franz-Odendaal, T. A., and Kaiser, T. M. 2003. Differential mesowear in the maxillary and mandibular cheek dentition of some ruminants (Artiodactyla). Annales Zoologici Fennici 40:395410.Google Scholar
Gebert, C., and Verheyden-Tixier, H. 2001. Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal Review 31:189201.CrossRefGoogle Scholar
Hofmann, R. R., and Stewart, D. R. M. 1972. Grazer or browser: a classification based on stomach-structure and feeding habits of East African ruminants. Mammalia 36:226240.Google Scholar
Janis, C. M., Damuth, J., and Theodor, J. M. 2002. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeography, Palaeoclimatology, Palaeoecology 207:371398.CrossRefGoogle Scholar
Kaiser, T. M. 2003. The dietary regimes of two contemporaneous populations of Hippotherium primigenium (Perissodactyla, Equidae) from the Vallesian (upper Miocene) of Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 198:381402.Google Scholar
Kaiser, T. M., and Fortelius, M. 2003. Differential mesowear in occluding upper and lower molars: Opening mesowear analysis for lower molars and premolars in hypsodont horses. Journal of Morphology 258:6383.Google Scholar
Kaiser, T. M., and Rössner, G. E. 2007. Dietary resource partitioning in ruminant communities of Miocene wetland and karst palaeoenvironments in Southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 252:424439.Google Scholar
Kaiser, T. M., and Schulz, E. 2006. Tooth wear gradients in zebras as an environmental proxy: a pilot study. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 103:187210.Google Scholar
Kaiser, T. M., and Solounias, N. 2003. Extending the tooth mesowear method to extinct and extant equids. Geodiversitas 25:321345.Google Scholar
Kaiser, T. M., Solounias, N., Fortelius, M., Bernor, R. L., and Schrenk, F. 2000. Tooth mesowear analysis on Hippotherium primigenium from the Vallesian Dinotheriensande (Germany): a blind test study. Carolinea 58:103114.Google Scholar
Kay, R. F., and Covert, H. H. 1983. True grit: a microwear experiment. American Journal of Physical Anthropology 61:3338.Google Scholar
Klein, D. R. 1992. Comparative ecological and behavioral adaptations of Ovibos moschatus and Rangifer tarandus. Rangifer 12:4755.Google Scholar
MacNaughton, S. J., Tarrants, J. L., MacNaughton, M. M., and Davis, R. H. 1985. Silica as a defense against herbivory and a growth promotor in African grasses. Ecology 66:528535.CrossRefGoogle Scholar
Merceron, G., and Ungar, P. 2005. Dental microwear and palaeoecology of bovids from the Early Pliocene of Langebaanweg, Western Cape province, South Africa. South African Journal of Science 101:365370.Google Scholar
Merceron, G., Zazzo, A., Spassov, N., Geraads, D., and Kovachev, D. 2006. Bovid paleoecology and paleoenvironments from the Late Miocene of Bulgaria: evidence from dental microwear and stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 241:637654.CrossRefGoogle Scholar
Moigne, A.-M., Palombo, M. R., Belda, V., Heriech-Briki, D., Kacimi, S., Lacombat, F., de Lumley, M.-A., Moutoussamy, J., Rivals, F., Quiles, J., and Testu, A. 2006. Les faunes de grands mammifères de la Caune de l'Arago (Tautavel) dans le cadre biochronologique des faunes du Pléistocène moyen italien. L'Anthropologie 110:788831.Google Scholar
Piperno, D. R., Holst, I., Wessel-Beaver, L., and Andres, T. C. 2002. Evidence for the control of phytolith formation in Cucurbita fruits by the hard rind (Hr) genetic locus: archaeological and ecological implications. Proceedings of the National Academy of Sciences USA 99:1092310928.Google Scholar
Renault-Miskovsky, J. 1995. Middle Pleistocene vegetation and paleoclimatology in the French Mediterranean Basin. Pp. 7598in Carbonell i Roura, E., Arsuaga, J. L., and Bermúdez, J. M., eds. Human evolution in Europe and the Atapuerca evidence. Junta de Castilla y León, Consejería de Cultura y Turismo, Valladolid.Google Scholar
Rivals, F. 2004. Les petits bovidés (Caprini et Rupicaprini) pléistocènes dans le bassin méditerranéen et le Caucase: étude paléontologique, biostratigraphique, archéozoologique et paléoécologique. Archaeopress, Oxford.Google Scholar
Rivals, F., and Semprebon, G. M. 2006. A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana. Journal of Vertebrate Paleontology 26:495500.Google Scholar
Rivals, F., and Solounias, N. 2007. Differences in tooth microwear of populations of caribou (Rangifer tarandus, Ruminantia, Mammalia) and implications to ecology, migration, glaciations and dental evolution. Journal of Mammalian Evolution 14:182192.Google Scholar
Rivals, F., Kacimi, S., and Moutoussamy, J. 2004. Artiodactyls, favourite game of prehistoric hunters at the Caune de l'Arago Cave (Tautavel, France). Opportunist or selective hunting strategies? European Journal of Wildlife Research 50:2532.Google Scholar
Rivals, F., Solounias, N., and Mihlbachler, M. C. 2007a. Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quaternary Research 68:338346.Google Scholar
Rivals, F., Mihlbachler, M. C., and Solounias, N. 2007b. Effect of ontogenetic-age distribution in fossil and modern samples on the interpretation of ungulate paleo-diets using the mesowear method. Journal of Vertebrate Paleontology 27:763767.Google Scholar
Semprebon, G. M., and Rivals, F. 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to Recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253:332347.Google Scholar
Semprebon, G. M., Godfrey, L. R., Solounias, N., Sutherland, M. R., and Jungers, W. L. 2004. Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47:115144.Google Scholar
Solounias, N., and Semprebon, G. 2002. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates 3366:149.Google Scholar
Straus, L. G. 1981. On the habitat and diet of Cervus elaphus. Munibe 33:175182.Google Scholar
Walker, A., Hoek, H. N., and Perez, L. 1978. Microwear of mammalian teeth as an indicator of diet. Science 201:908910.Google Scholar