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Abstract

Since the year 2000, Greenland ice sheet mass loss has been dominated by a decrease in surface
mass balance rather than an increase in solid ice discharge. Southeast Greenland is an important
region to understand how high accumulation rates can offset increasing Greenland ice sheet melt-
water runoff. To that end, we derive a new 9-year long dataset (2009–17) of accumulation rates in
Southeast Greenland using NASA Operation IceBridge snow radar. Our accumulation dataset
derived from internal layers focuses on high elevations (1500–3000 m) because at lower elevations
meltwater percolation obscured internal layer structure. The uncertainty of the radar-derived
accumulation rates is 11% [using Firn Densification Model (FDM) density profiles] and the aver-
age accumulation rate ranges from 0.5 to 1.2 m w.e. With our observations spanning almost a
decade, we find large inter-annual variability, but no significant trend. Accumulation rates are
compared with output from two regional climate models (RCMs), MAR and RACMO2. This
comparison shows that the models are underestimating accumulation in Southeast Greenland
and the models misrepresent spatial heterogeneity due to an orographically forced bias in snow-
fall near the coast. Our dataset is useful to fill in temporal and spatial data gaps, and to evaluate
RCMs where few in situ measurements are available.

Introduction

Driven by rising atmospheric temperatures, the Greenland ice sheet (GrIS) is losing mass at an
accelerated rate (van den Broeke and others, 2009; Shepherd and others, 2012; Hanna and
others, 2013; van Angelen and others, 2014; Kjeldsen and others, 2015; Bevis and others,
2019). The total mass loss of the GrIS over the 2010–18 period is estimated to be 286 ±
20 Gt a−1, with 49 ± 3 Gt a−1, coming from Southeast Greenland (Mouginot and others,
2019). In the remainder of the 21st century, it is expected that increased meltwater runoff,
and the associated decrease in surface mass balance (SMB) will dominate solid ice discharge
as the GrIS’s largest contribution to sea level rise (e.g. Enderlin and others, 2014). SMB is
defined as snow accumulation and wind-driven snow redistribution (through erosion or
redeposition), minus runoff, where accumulation is the difference between snowfall and evap-
oration/sublimation (Lenaerts and others, 2019). In this study, we ignore redistribution, as it is
two orders of magnitude smaller than snowfall integrated across Southeast Greenland
(Lenaerts and others, 2012). Although it is not the focus of this study, redistribution likely
explains a large portion of the small scale (<1 km) variability in accumulation (Dattler and
others, 2019). Additionally, there is little-to-no-runoff expected in the period we observed
between the last peak melt and mid-spring. Therefore, we assume SMB to be equal to accu-
mulation in this study.

Southeast Greenland, which we define as the region between 45° W to 33° W and 60° N to
67° N (Fig. 1), encompasses the area with the highest accumulation rates on the GrIS (Berdahl
and others, 2018; Shepherd and others, 2019). Regional climate models (RCMs) suggest
that Southeast GrIS receives ∼30% of the total GrIS snowfall (Miège and others, 2013).
Therefore, interannual variations in this region strongly influence the total GrIS mass balance,
even determining the sign of the total mass balance during some years (Burgess and others,
2010). However, evaluating the rate and pattern of accumulation in climate models is challen-
ging, as there are very few in situ observations available on the Southeast GrIS (e.g. Ettema and
others, 2009; Hanna and others, 2011; Lucas-Picher and others, 2012; van den Broeke and
others, 2016; Fettweis and others, 2017; Montgomery and others, 2018).

Using airborne observations, we can address the lack of in situ accumulation observations
in Southeast Greenland. A first compilation of GrIS accumulation rates derived from NASA
Operation IceBridge (OIB) airborne snow radar was presented by Koenig and others (2016)
for the period of 2009–12. Here, we extend the time series of radar-derived accumulation
rates to 2017 focusing on Southeast Greenland, using observationally constrained, gridded
firn density products to convert radar-derived depth to accumulation. In addition, we compare
these radar-derived accumulations with two RCMs, the Modèle Atmosphérique Régional ver-
sion 3.9 (MAR) and the Regional Atmospheric Climate Model version 2.3p2 (RACMO2).

https://doi.org/10.1017/aog.2020.8 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2020.8
https://doi.org/10.1017/aog.2020.8
mailto:lynn.montgomery@colorado.edu
https://www.cambridge.org/aog
https://orcid.org/0000-0001-7286-2329
https://orcid.org/0000-0003-4309-4011
https://doi.org/10.1017/aog.2020.8


The goal of this work is to understand the magnitude, spatio-
temporal variability and uncertainty of radar-derived accumula-
tion in Southeast Greenland, and to provide an initial
assessment of RCM performance in simulating Southeast
Greenland SMB.

Observations, instruments and models

Operation IceBridge airborne snow radar data

From 2009 to 2019, the Center for Remote Sensing of Ice Sheets
(CReSIS) at the University of Kansas operated the snow radar
onboard the NASA P3-B and DC8 aircraft during OIB missions.
We use the radar data from 2009 to 2017 due to data and model
output availability at the time of the study. This radar maps
internal annual accumulation layers ranging from 10 cm to
>1 m (Panzer and others, 2013). These data, IceBridge snow
radar L1B Geolocated Radar Echo Strength Profiles, Version 2,
are available from the National Snow and Ice Data Center
(NSIDC; Paden and others, 2014). The snow radar detects iso-
chronal layers in the firn and are dated by assuming annual stra-
tigraphy and counting each layer down from the surface (Medley
and others, 2013; Koenig and others, 2016). Annual layering of
accumulation can be detected because radar reflection horizons
represent contrasts in the material’s dielectric permittivity, attrib-
uted to isochronous buried sequences, ice crusts and snow layers
(Medley and others, 2013). The radar uses a frequency-modulated
continuous wave architecture that operates in the 2–6.5 GHz fre-
quency range with a vertical resolution of ∼5 cm (Medley and
others, 2013; Panzer and others, 2013). We chose this radar
over the other radars aboard OIB because of its high vertical reso-
lution and shallower penetration depth that allow the radar to
measure recent accumulation rates (past ∼1 to 20 years).

In-situ density observations

The SUMup (SUrface Mass balance and snow depth on sea ice
working group) dataset provides snow and firn density profiles and
accumulation measurements across the entire GrIS (Montgomery
and others, 2018). Density profiles from 306 locations on the GrIS
are used to compare modeled with observed densities in the top

meter of firn (Figs 2a and b; Renaud, 1959; Ohmura, 1991,
1992; Alley, 1999; Bolzan and Strobel, 1999a, 1999b, 1999c,
1999d, 1999e, 1999f, 1999g, 2001a, 2001b; Miller and Schwager,
2000a, 2000b; Wilhelms, 2000a, 2000b, 2000c, 2000d; Bales and
others, 2001; Mosley-Thompson and others, 2001; Conway,
2003; Dibb and Fahnestock, 2004; Dibb and others, 2007;
Mayewski and Whitlow, 2009a, 2009b, 2009c, 2009d; Harper
and others, 2012; Benson, 2013, 2017; Miège and others, 2013;
Hawley and others, 2014; Koenig and others, 2014; Baker, 2016;
Chellman, 2016; Machguth and others, 2016; Schaller and others,
2016, 2017; Cooper and others, 2018; MacFerrin and others,
2018a, 2018b). We use 35 density profiles from Southeast
Greenland to compare with RCM density in the top 5 m. Most
density profiles were retrieved from firn cores (98%) with average
core depths >10 m while a small fractions were taken from snow
pits (2%) with depths <2 m.

MAR and RACMO2 simulated SMB

We use our radar-derived observations to evaluate the accumula-
tion simulated by two RCMs (MAR and RACMO2) over
Southeast Greenland. MAR and RACMO2 are forced at their lat-
eral boundaries by a reanalysis dataset (ERA-Interim 1979–2018)
(Noël and others, 2016; Fettweis and others, 2017; Delhasse and
others, 2018). Monthly gridded SMB from MAR (originally
15 km) and RACMO2 (originally 5.5 km) is downscaled to a
1-km spatial resolution, and provide the atmospheric input used
to derive density profiles (see ‘Crocus and FDM modeled density’
section). The RCM SMB products used here are downscaled based
on the local regression to elevation from higher resolution digital
elevation models (Noël and others, 2016; personal communica-
tion from Fettweis, 2019). These downscaled accumulation
model products are used to compare with our radar-derived accu-
mulation. Previous studies have shown that both MAR and
RACMO2 SMB products compare well with available in situ
observations on the GrIS (Fettweis and others, 2017; Noël and
others, 2018), although an evaluation of Southeast GrIS has so
far been hampered by the paucity of observations in that region.

Crocus and FDM modeled density

Spatially gridded density profiles are taken from two firn models,
Crocus and the Firn Densification Model of the Institute for
Marine and Atmospheric research Utrecht (IMAU-FDM
v2.3p2) (referred to hereafter as Crocus and FDM, respectively).
Crocus model output, available at a horizontal resolution of
15 km, is forced with atmospheric data and mass fluxes from
MAR (Fettweis and others, 2017). Crocus is a snow model that
simulates energy and mass evolution of a snow cover at a given
location and provides vertical density profiles (Brun and others,
1989, 1992). The FDM model output, available at a 5.5 km spatial
and 10-daily (instantaneous) temporal resolution, is a time-
dependent, 1-D model that keeps track of the density and tem-
perature in a vertical firn column, and is driven by atmospheric
input originating from another RCM, RACMO2 (Kuipers
Munneke and others, 2015; Ligtenberg and others, 2018).
Model output prior to our study period is used to understand
density differences across the GrIS since the majority of observa-
tions from SUMup are not from 2009 to 2017 (Fig. 2). Both densi-
fication models can simulate liquid water content, percolation,
layer saturation and refreezing in firn. The FDM can store liquid
water through capillary forces, which best simulates the processes
occurring in the percolation zone in Southeast Greenland
(Ligtenberg and others, 2011). The FDM densification rate in
Southeast Greenland is tuned to density observations from 22
dry firn cores (Kuipers Munneke and others, 2015).

Fig. 1. Overview of our bounded study region in Southeast Greenland (red) and flight-
line case study region (blue). Inlaid box is a map of Greenland with a box around the
zoomed area (dashed red).
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Methods

To derive accumulation rates (ḃ) from radar observed firn layers we
use a combination of two equations following standard methods
(Medley and others, 2013; Das and others, 2015; Koenig and others,
2016). Equation (1) shows the w.e. accumulation rate, ḃ, in m w.e.
a−1 at along-track location, x, using a snow density profile, ρ(x),
in kg m−3, with a as the age of the layer in years from the date of
radar data collection, and ρw as the density of water in kg m−3:

ḃ(x) = z(x)r(x)
a(x)rw

(1)

The two way travel time of the radar (TWTT) in seconds is
converted to depth, z, using a dielectric mixing model for ice–
air mixture from Looyenga (1965) in Eqn (2), where c is the
speed of light in m s−1, ρi is the ice density in kg m−3 and 1′i is
the dielectric permittivity of pure ice:

z = TWTT(x)r(x)c
2((r/ri)(1′1/3i − 1)+ 1)

3/2 (2)

Equations (1) and (2) are combined to Eqn 3:

ḃ(x) = TWTT(x)r(x)c
2a(x)rw((r/ri)(1′1/3i − 1)+ 1)

3/2 (3)

Selecting flight tracks

Any flight tracks that were included our study area, 45° W to 33° W
and 60° N to 67° N, were downloaded from NSIDC and run through
semiautomated layer picker software (detailed in Koenig and others,
2016). The flight track missions that were most often used included
‘Southeast Coastal’, ‘Southeast Glaciers’, ‘Helheim-Kangerdlugssuaq’,
but vary depending on the year. Often, accumulation rates could not
be derived because the layers were not clearly identifiable due to top-
ography, flight maneuvers or meltwater percolation disrupting firn
stratigraphy. There are no annual accumulation measurements avail-
able in SUMup coincident in space and time to compare with
our new OIB-derived accumulation. Instead, radar-derived accumu-
lation rates are directly compared with modeled accumulation,
because our observations reflect all of the individual components
of SMB throughout the winter season (when melt and runoff are
absent), i.e. snowfall and sublimation/evaporation.

Density profiles and associated uncertainties

In Southeast Greenland, only 35 observed density profiles, ρ(x),
are available from SUMup. Therefore, we seek to increase the

coverage of this region using the FDM and Crocus firn models
that have gridded density products available. A simple model,
such as a semiempirical firn densification model that assumes a
dry firn column, as described by Herron and Langway (1980),
cannot be used to approximate density profiles in Southeast
Greenland, because it is a region where liquid water is commonly
found in the firn. To assess how these models perform and which
to use for our study, we compare their output against observations
at corresponding times and locations. The FDM density profiles
were linearly interpolated in time to find daily values, since the
original data are only output every 10 days. There is no FDM
model output available beyond 2016, so an average the 2009–16
density profile was used to derive accumulation for 2017, which
provides a conservative estimate. If no day was associated with
the measurement in the SUMup dataset, we assigned the date
to be 1st May, as in Koenig and others (2016).

To determine which gridded density product to use to derive
accumulation and its associated uncertainty, we examine densities
from models compared with observations in the top meter and
5 m of snow across Greenland spatially. The comparison of
observed and modeled density in the top meter of snow shows
us how well surface processes are being represented. In the top
meter across all of Greenland for 306 unique locations from the
SUMup dataset (Fig. 2a), Crocus underestimates densities by
50 kg m−3, similar to the results of a 60 kg m−3 underestimation
from Alexander and others (2019). In Southeast Greenland specif-
ically, densities are being underestimated by an average of
80 kg m−3 in the top meter of firn, with an average observed
value of 362 ± 45 kg m−3 and an average Crocus output value
294 ± 29 kg m−3. The FDM shows only a slight overestimation
of densities within the top meter by 20 kg m−3 across all of
Greenland (Fig. 2b). In Southeast Greenland, the FDM agrees well
with observations, with densities overestimated by 30 kg m−3 and
an average density value of 343 ± 24 kg m−3. The FDM has less
variability than Crocus as well as a lower root mean squared
error (RMSE) (0.06 for FDM vs 0.11 for Crocus, Fig. 2c) showing
that it better represents densities in the top meter of the GrIS.
However, neither model is capturing small scale variation in
observed densities likely due to grid resolution (Fig. 2c). Our
uncertainty is defined as the absolute difference between the mod-
eled density and observed density in the top meter, which is
determined to be 19 and 5% for Crocus and FDM, respectively.
We use these errors as a measure for the final radar-derived accu-
mulation uncertainty, because this layer comprises most (if not
all) of the winter accumulation.

Further, we analyze the density profiles of both observations
and models to the depth of the highest radar-derived accumula-
tion rates we have observed, ∼5 m snow w.e. The average density
of the top 5 m of snow/firn from SUMup observations in

Fig. 2. Difference of average density (kg m−3) in the top meter between (a) Crocus or (b) FDM and SUMup observations across Greenland. (c) Scatterplot of Crocus
and FDM densities vs observations.
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Southeast Greenland (representing 35 unique cores) is 437 ±
59 kg m−3 (Fig. 3). Below the top meter in Crocus, the densifica-
tion rate slows because there is less pore space available to com-
pact and it is compensating for the excessive densification rate
above. This compensation of density values allows Crocus to
have a low bias for the top 5 m with an average value of 432 ±
90 kg m−3. The FDM density profile agrees better with the obser-
vations overall, showing a similar densification rate, although it
still slightly underestimates the average density values (404 ±
50 kg m−3). We use the FDM density profiles to derive accumula-
tions and in our analysis because they are within the uncertainty
range of the observations, i.e. ±1 std dev., though we also derive
accumulations using the Crocus profiles only to quantify the
total uncertainty.

Determining layer age and total accumulation uncertainty

Depth or layer ages, a, are determined by assuming that spatially
continuous isochronal layers are annually resolved. An automated
layer picker (Koenig and others, 2016) was used to find the peak
density gradients to determine layer ages that were verified and
adjusted manually as necessary using a graphical user interface.
The first layer would represent 10 months instead of the full
year in our study. This is because it encompasses the springtime
measurement from the snow radar aboard OIB (often taken in
April/May) back to the previous year’s melt, causing a peak in
the density gradient in July ± 1 month (Koenig and others,
2016). The second source of error occurs during manual adjust-
ment of the picked layers and is estimated to be a maximum of
±3 range bins, or ∼8 cm (Koenig and others, 2016). In our
study, this accounts for a range of 7–13% errors (10% on average)
depending on accumulation rates, which is similar to the mean
error of 7% found in Koenig and others (2016). Combining this
with the errors from the density models we get a total error
range on the radar-derived accumulation of 11% (FDM) to 21%
(Crocus) depending on the firn model used. The results we
show are only representative of the radar-derived accumulations
using the FDM density profiles.

Results

Radar-derived accumulation rates

A time series of accumulation rates and their uncertainties were
derived from OIB snow radar from 2009 to 2017 (Fig. 4).
Average radar-derived accumulation across all of Southeast
Greenland for each year ranges from 0.5 to 1.2 m w.e. with higher
values near the coast and decreasing values as you move inland.
The year-to-year variable acquisition of observations is due to
the variations in flight lines and data quality. An increase in spa-
tial coverage from 2009 to 2011 can be explained by a greater
number of flights and adjustments to the radar antenna leading
to better data quality (Koenig and others, 2016). Resulting from
the improved data quality, the percentage of measurements that
were able to be derived from all flight lines increased from ∼40
to 70% in those years. From 2012 to 2014, there was less coverage,
with only one flight line obtained in 2013 and three in 2014, likely
due to unfavorable flying conditions in those seasons, along with
only ∼22–46% of the data of sufficient quality. Years 2015 and
2017 provide more complete spatial coverage, with more consist-
ent flight paths as well as ∼58–65% of the radar data containing
discernible layers. In 2016, there was reduced radar performance
on many flights leading to a lack of quality data (36%). The num-
ber of flights and area covered varies by year (Supplementary
Table 1, Fig. 4), with peak coverage in 2011 (70%) and 2015
(65%).

Comparison with RCMs: interannual variability

With a dataset of radar-derived accumulation rates spanning
almost 10 years, we can analyze the interannual variability and
compare that with RCMs (Fig. 5). Since there is no single OIB
flight line that is consistently flown every year from 2009 to
2017, we focus our analysis on an area (45° W to 41° W and
66.3° N to 66.55° N, Fig. 1) that contains a partial set of flight
lines each year (except for 2009), and match these observations
in space and time with the closest MAR and RACMO2 grid
points. Accumulation from RACMO2 follows a similar pattern
of interannual variations, although it had a relatively large bias of
−0.18 m w.e (44%). In contrast, MAR shows a more constant
accumulation rate from 2010 to 2017. However, its multi-annual
mean is closer to the observations, with an average bias of
−0.13 m w.e. (29%). Over this time period, RACMO2 captures
the interannual trends (r2 = 0.86) while MAR does not (r2 = 0.08),
showing very little interannual variability. To assess how representa-
tive the 2010–17 period is for the longer-term accumulation
record (1979–2017), and considering the above model biases, we
analyze the 30-year mean and variability in accumulation across
the same area from RCMs (Fig. 5b). For both RACMO2 and
MAR, the std dev. of the 2010–17 accumulation (RACMO2:
0.408 ± 0.039; MAR: 0.45 ± 0.024) fall within the 1979–2017 vari-
ability (RACMO2: 0.43 ± 0.063; MAR: 0.47 ± 0.068). This implies
that the RCM analysis in this study area is consistent with interann-
ual patterns spanning multiple decades.

Comparison with RCMs: spatial variability

Radar-derived accumulation rates from each 10-month period
were compared with downscaled 1 km MAR and RACMO2 accu-
mulation covering the same period. The years of 2011 and 2015
had the best spatial coverage and are shown in Figure 6i.
RACMO2 underestimates accumulation rates in Southeast
Greenland with a mean bias of −0.51 m w.e. across the entire
region in 2011 and −0.41 m w.e. in 2015. In 2011, accumulation
is overestimated toward the lower elevations (<1500 m) but this is
dominated by accumulation underestimation everywhere else.
MAR closely matches accumulation rates in 2011 with a mean
bias of −0.09 m w.e. and in 2015 the mean bias is −0.22 m w.e.
averaged across Southeast Greenland. This good agreement in
2011 reflects the low spatial heterogeneity compared with obser-
vations. Scatterplots show a similar pattern to the difference
plots, showing that both MAR and RACMO2 underestimate

Fig. 3. Average density profile of the top 5 m of all observed SUMup (N = 35) cores
(black) in Southeast Greenland and co-located FDM (blue), and Crocus (red) in
space and time. The std dev. is shown in the dashed line of the same color.
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accumulation in Southeast Greenland (Fig. 6ii). The RMSE for
RACMO2 during 2011 (0.26) and 2015 (0.29) are greater than
those from MAR for the same years (0.17 and 0.23). When con-
sidering the 11% uncertainty of the radar-derived accumulation,
the RMSE of each year decreases, except for MAR in 2011
where the RMSE is the same (RACMO2 2011: 0.18, RACMO2
2015: 0.12; MAR 2011: 0.17, MAR 2015: 0.08). However, the
uncertainty does not fully account for the difference in radar-

derived vs modeled accumulation and therefore it must be attrib-
uted to a physical process in the models.

Discussion

Annual accumulation can be derived from OIB-airborne radar in
Southeast Greenland. However, in general, only the most recent
layer or ∼10 months can be detected in the percolation zone

Fig. 4. Annual accumulation (m w.e.) derived from OIB snow radar, from 2009 to 2017. Flight tracks that were not discernible for accumulation layers are shown in
gray.

Fig. 5. (a) Inter-annual variability of radar-derived accumulation rates (black) from 2010 to 2017 of area overflown each year compared with MAR (red) and RACMO2
(blue). Uncertainty of observations (11%) shown in dashed lines of the same color. (b) Box plot of RACMO2 and MAR accumulations from 1979 to 2017 showing the
middle 50% of data (second and third quartiles), the line inside the box represents the median values, and the whiskers show the greatest/least values within 1.5
times the interquartile range of the upper and lower quartiles.
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where melt and refreezing obscures the stratigraphy below the last
year’s snowfall. A future increase and inland progression of sur-
face melt on the GrIS implies that this technique’s potential to
yield reliable long-term accumulation records will be progressively
more challenging in the future. We can reduce the spatial uncer-
tainty of these derived measurements by attaining more in situ
observations along OIB flight-line tracks.

This study provides a record of OIB radar-derived accumulation
in Southeast Greenland that has been extended from Koenig and
others (2016) to include 2009 to 2017. Compared with that earlier
study, we have also updated some of the methods and datasets.
First, we use an updated version of MAR (v3.9.2) as well as
RACMO2 to compare RCM accumulation with OIB radar-derived
accumulation. Second, we use FDM density profiles to derive accu-
mulation, which best represent Southeast Greenland. The resulting
differences between our results and Koenig and others (2016)
illustrate that realistic density profiles are essential to convert radar-
derived depth to accumulation. This is highlighted by our compari-
son of Crocus and FDM with observations, yielding a total

uncertainty associated only with a density choice of 5% (FDM) to
19% (Crocus). The FDM density profiles show better agreement
with observations, likely because the FDM physics are designed
for use over ice sheets, while the Crocus model is developed for
Alpine snow conditions. FDM profiles are also tuned to measure-
ments from the GrIS (Kuipers Munneke and others, 2015). Along
with the density estimate, layer picking software is a source of uncer-
tainty in deriving accumulation rates and has been quantified by
Koenig and others (2016) to be ∼8 cm from manual adjustment
of layers or an average of 10% uncertainty in our study. Our overall
uncertainty of 11% on radar-derived accumulation is reasonable
compared with other studies, which yield uncertainties of 14–15%
(Medley and others, 2013; Koenig and others, 2016). The biases
between models and observations as well as the uncertainties can
be constrained by collecting additional coincident observations of
accumulation and density in Southeast Greenland. These observa-
tions are also necessary to provide an independent estimate of
Southeast Greenland accumulation, as RCMs are currently the
only tool available to provide GrIS SMB at this spatial resolution.

Fig. 6. (a) (i) Relative difference between OIB derived accumulation and RACMO2 for 2011 and 2015, and (ii) scatterplots showing radar-derived accumulation vs
RACMO2. (b) The same analysis except with MAR.
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To assess future changes in accumulation and SMB, we must
be able to differentiate between interannual variability and longer-
term trends in RCMs. Interannual variability of accumulation in
Southeast Greenland is driven by synoptic patterns associated
with the strength and location of the Icelandic Low situated to
the east of Greenland (Berdahl and others, 2018). On average,
the large-scale southwesterly atmospheric circulation brings mois-
ture to the southern coast of Greenland, where the steep slopes of
the ice sheet act as efficient barriers to the flow, and orographic
precipitation is abundant. Over the 2010–17 time period (2009
is excluded because no flight lines overlap our case study region
in that year), our case study shows that RACMO2 captures the
interannual trends better than MAR, while MAR better represents
the absolute magnitude of radar-derived accumulation. Over a 30
year period from 1979 to 2017, accumulation is examined from
MAR and RACMO2 to show that variability of the study period
(2010–17) is within that of the longer-term from both RCMs
(Fig. 5b). On the other hand, the 8-year time period we observe
is too short to discern a significant long-term trend. We would
need OIB data from a longer time period, similar to that of the
RCMs (>30 years), to attempt to isolate long-term trends from
interannual variability.

In order to quantify how much accumulation Southeast
Greenland contributes to the GrIS’s total SMB, and how it may
impact changes in SMB in the future, spatial variability of accu-
mulation in RCM’s is vital to understand. When comparing mod-
eled mean bias with observations in our flight-line case study
(Fig. 5a), accumulation is underestimated by both MAR and
RACMO2. This result could be due to the specific to this study
area chosen, and unfortunately we are unable to expand this
assessment to other regions, since this is the only region that
has coverage in most years. However, our comparison of the spa-
tial variability in models and observations (Fig. 6i) suggests that
this result is valid for the larger Southeast Greenland region. As
other SMB components (including melt, sublimation and blowing
snow redistribution) are at least two orders of magnitudes smaller
than snowfall (mm vs m) in Southeast Greenland (Box and
Steffen, 2001; Lenaerts and others, 2012), the biases in the
RCMs must be attributed to biases in snowfall.

RACMO2 has a high snowfall bias near the coast, while MAR
has a larger bias in the interior (Fig. 7). These patterns are con-
sistent with the relative differences shown in Figure 6, where
RACMO2 shows underestimation inland and MAR shows an
overestimation. Our MAR results contrast with those of Koenig
and others (2016), who found that an earlier version of MAR
(MAR3.5.2) overestimated accumulation in all of Southeast
Greenland. With updated physics (increase in the cloud life
time (Fettweis and others, 2017; Delhasse and others, 2018) and
employed at higher resolution (15 vs 25 km)), MARv3.9 shows
good agreement across most of the region, though still slightly

underestimates accumulation. The majority of the radar-derived
accumulations are taken closer inland than where RACMO2 has
dominant snowfall events, closer to the coast (Fig. 7). These biases
are due to the fact that we are working with model accumulation
downscaled to 1 km, which better resolves accumulation than the
original grids, but still cannot take into account the mountainous
topography in Southeast Greenland. The bias toward higher
snowfall on the coast in RACMO2 is likely due to the representa-
tion of orographic precipitation in the model, i.e. when moist
easterly air masses collides with coastal mountains and precipitate
as they are lifted, resulting in high coastal precipitation and drier
conditions further inland. RACMO2 resolves topographical fea-
tures that have to do with orographic precipitation, while MAR
cannot, because downscaled 1 km RACMO2 has a higher original
horizontal resolution (5.5 km) than downscaled 1 km MAR
(15 km).

Our results corroborate previous work, which has shown that
RACMO2 overestimates accumulation at lower elevations and
MAR overestimates accumulation at higher elevations. On the
Q-transect on the Qagssimiut ice lobe in South Greenland,
RACMO2 shows a wet bias toward the coast that is likely the dom-
inant source of error (Hermann and others, 2018). Similarly, in
RACMO2, Antarctica has a bias of orographic precipitation in
coastal areas, likely because it does not compute precipitation
prognostically (i.e. snow falls in the same gridcell that it is created)
(Lenaerts and others, 2018). Schmidt and others (2018) empha-
sized the same concern about overestimation of accumulation
due to high orographic forcing in RCMs and attributes some of
the error to the precipitation scheme in hydrostatic models, recom-
mending the use of WRF or HARMONIE as a non-hydrostatic
alternative. Our results further verify these model biases, leading
to the conclusion that RCMs must be improved to be better repre-
sentative of the current climatological conditions since observa-
tions will continue to be sparse across the majority of the ice
sheet. We propose future work of comparing radar-derived accu-
mulations using a diagnostic, non-hydrostatic, high resolution
model to diagnose the different precipitation schemes and see if
we can reduce the error in accumulation. Additionally, we recom-
mend that model development target orographically forced pre-
cipitation at the coast, as it is a large source of error in SMB
calculations that could influence total SMB of the GrIS.

Conclusions

A dataset of annual accumulation was derived from OIB snow
radar for 2009–17 in Southeast Greenland where there were
very few in situ measurements available. Our estimated uncer-
tainty of this new dataset is 11%, which results from the uncer-
tainty associated with semiautomated layer picking software,
and uncertainty in the FDM density profiles used to derive the

Fig. 7. Average annual snowfall (m w.e.) from 2009 to 2017 in (a) RACMO2, (b) MAR and (c) RACMO2–MAR.
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accumulation. We find that density profiles vary widely in the top
meter of firn and can widely affect accumulation rates, especially
in the high-accumulation area of Southeast Greenland. This data-
set can be used to validate RCMs in Southeast Greenland, an area
of high variability and uncertainty. RACMO2 consistently under-
estimates accumulation rates across the entire region in 2011 and
2015 (the years with the best spatial coverage), but was able to
capture interannual variability in a case study region. MAR
shows better agreement with accumulation rates in 2011 and
2015 across Southeast Greenland, though shows little interannual
variability. The pattern observed in the relative differences can be
explained by the snowfall component of each model which is
biased higher toward the coast in RACMO2 and inland in
MAR. In situ observations in this region will always be sparse,
so we must rely on RCMs in the future to assess changing
SMB. This study points to the need of focused model develop-
ment of precipitation schemes to more accurately portray high
accumulation regions on the GrIS.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/aog.2020.8

Data. This new accumulation dataset is available at the Arctic Data Center
(doi: https://doi.org/10.18739/A2J96095Z).
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