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Abstract

Automated classification of sea-ice types in Synthetic Aperture Radar (SAR) imagery is compli-
cated by the class-dependent decrease of backscatter intensity with Incidence Angle (IA). In the
log-domain, this decrease is approximately linear over the typical range of space-borne SAR
instruments. A global correction does not consider that different surface types show different
rates of decrease in backscatter intensity. Here, we introduce a supervised classification algorithm
that directly incorporates the surface-type dependent effect of IA. We replace the constant mean
vector of a Gaussian probability density function in a Bayesian classifier with a linearly variable
mean. During training, the classifier first retrieves the slope and intercept of the linear function
describing the mean value and then calculates the covariance matrix as the mean squared devi-
ation relative to this function. The IA dependence is no longer treated as an image property but as
a class property. Based on training and validation data selected from overlapping SAR and optical
images, we evaluate the proposed method in several case studies and compare to other classifi-
cation algorithms for which a global IA correction is applied during pre-processing. Our results
show that the inclusion of the per-class IA sensitivity can significantly improve the performance
of the classifier.

Introduction

Continuous monitoring and mapping of sea ice are important for a variety of reasons.
Besides usage in environmental and climatological studies, timely and accurate high-
resolution ice charts are needed to (a) support offshore operations as well as marine traffic
and navigation, (b) generate long-term statistics of sea-ice conditions in particular regions of
interest and (c) assimilate high-resolution sea-ice information into numerical models.
Currently, the main and often only source on sea-ice conditions is remote-sensing data
(Zakhvatkina and others, 2019). National ice services worldwide rely, in particular, on
Synthetic Aperture Radar (SAR) observations, because of the radar’s continuous imaging
capability during darkness and its independence of cloud conditions (Scheuchl and others,
2004; Dierking, 2010, 2013). At present, analysis of the images and production of ice charts
is performed manually by ice analysts (Zakhvatkina and others, 2019). Ice chart production
thus involves subjective decisions and is a time-consuming process. Yet many of the appli-
cations mentioned above require the processing of large numbers of images in
near-real-time. Hence, robust and reliable automation of sea-ice type mapping is required
to assist in operational ice charting.

A lot of effort has been put into research on the automated or semi-automated classifica-
tion of sea ice in SAR images during the last decades. Different classification methods have
been tested, including Bayesian classifiers (Scheuchl and others, 2001; Moen and others,
2013), Support Vector Machines (SVM) (Leigh and others, 2014; Liu and others, 2015),
Decision Trees (DT) (Geldsetzer and Yackel, 2009; Lohse and others, 2019), Neural
Networks and Convolutional Neural Networks (NN and CNN) (Kwok and others, 1991;
Hara and others, 1995; Karvonen, 2004; Zakhvatkina and others, 2013; Ressel and others,
2015) or Random Forests (RF) (Han and others, 2016). Advantages and disadvantages of dif-
ferent radar frequencies (Dierking, 2010; Eriksson and others, 2010) have been investigated as
well as combinations of sensors (Hollands and Dierking, 2016) and the use of textural infor-
mation (Barber and LeDrew, 1991; Clausi, 2001), different polarizations and polarimetric fea-
tures (Moen and others, 2015). Generic, automated analysis of ice types in SAR images,
however, remains difficult. The main challenges include the general ambiguity of radar back-
scatter from different sea-ice types, varying wind states and thus changing surface roughness of
open water, sensor-dependent noise in the data and, in particular, the Incidence Angle (IA)
dependency of the backscattered signal. While we consider and discuss all of these factors
within this study, our major focus will be the issue of IA dependency.

It is known that the IA of a radar signal onto a surface influences the intensity of the signal
backscattered from that surface (Onstott and Carsey, 1992). In a typical SAR image, this effect
is visible as a global trend of image brightness in range direction, with generally higher back-
scatter values in near-range (low IA) and lower backscatter values in far-range (high IA). The
IA effect is usually treated as a single image property and accounted for globally during
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pre-processing of the data before automatic classification. A
range-dependent correction can be applied to normalize the back-
scatter across the image to a reference IA (Zakhvatkina and
others, 2013, 2017; Karvonen, 2014, 2017; Liu and others, 2015)
or to convert the normalized radar cross section from σ0 values
to γ0 values, with γ0 (σ0/cospθq).

Although such a pre-processing correction improves the result
of automatic classification, a global correction of the entire image
neglects the fact that different surface types show varying rates of
decrease in backscatter with IA. The more the rates differ for dis-
tinct classes, the more the classification is affected. The surface-
type dependent rates for various sea-ice types and different
radar frequencies have been investigated in several studies, such
as Mäkynen and others (2002), Mäkynen and Karvonen (2017)
or Mahmud and others (2018). Over the typical range of most
spaceborne SAR sensors, i.e. roughly between 20° and 45°, back-
scatter intensity in decibel (dB) decreases approximately linear
with IA (Fig. 1).

The slopes of the linear functions, however, show large varia-
tions (Mäkynen and Karvonen, 2017). Reasons for this are differ-
ent definitions of ice classes (that usually comprise different ‘pure’
ice types), regional differences of ice and snow conditions (Gill
and others, 2015), seasonal variations of meteorological condi-
tions (in particular effects of melt-freeze cycles) and also differ-
ences in methodological approaches.

A straightforward surface-type dependent IA correction dur-
ing pre-processing is not possible. As the surface type at a given
position in the image is not known before classification, it is
not possible to decide a priori which rate of decrease to apply.
In this study, we demonstrate how to incorporate surface-type
dependent IA effect into a supervised, probabilistic classification
algorithm. We use overlapping SAR and optical images acquired
under freezing conditions over several years to identify different
ice types and select training and validation sets with the help of
expert sea-ice analysts from the Norwegian Ice Service. We then
assess the benefits and drawbacks of our developed method in
comparison with other classification algorithms applied to the
same dataset.

The remainder of this paper is structured as follows: in the
following section we describe the dataset and the applied pre-
processing steps. We provide definitions of the different ice
classes and explain how we selected suitable training and val-
idation sets for the algorithm, based on overlapping optical
and SAR images from different locations distributed all over
the Arctic. Next, we give a detailed explanation of the algo-
rithm framework, followed by an outline of the study design.
After presenting the results, we evaluate and discuss our find-
ings and then summarize our main conclusions in the final
section.

Data

Sentinel-1 SAR data

For the SAR imagery, we use Sentinel-1 (S1) Extra Wide swath
(EW) data. S1 operates at C-band (5.4 GHz) in either single or
dual-polarization mode. All S1 imagery is freely available and
can be obtained for example from the Copernicus Open Access
Hub. The EW data are typically provided in Single-Look
Complex (SLC) or Ground Range Detected (GRD) format. The
Level-1 GRD product is multi-looked and projected to ground
range using an Earth ellipsoid model (Aulard-Macler, 2011). Its
resulting spatial resolution depends on the number of looks.
The Medium resolution product (GRDM) is provided at a pixel
spacing of 40 m × 40 m with an actual resolution of ∼93 m ×
87 m and an estimated number of looks of 10.7.

In this study, we use only GRDM data at dual-polarization
(HH and HV). To obtain a broad, Arctic-wide definition of
sea-ice classes, we use data from different years (2015–19) and
from many different locations all over the Arctic (Fig. 2).
However, as surface melt affects the radar backscatter signature
of sea ice, we restrict our current demonstration study of the algo-
rithm principle to data acquired under freezing conditions in win-
ter and early spring months.

SAR data processing
During processing, we apply ESA’s thermal noise correction
implemented in the Sentinel Application Platform (SNAP) and
calibrate the data to obtain the normalized radar cross section
σ0. To further reduce speckle, we perform additional multi-
looking with a sliding window. After testing different window
sizes of 3 × 3, 5 × 5, 7 × 7 and 9 × 9 pixels, we chose 3 × 3 as the
default window size for our processing. This proved to reduce
speckle sufficiently, while at the same time keeping the spatial
resolution at better than 200 m in each direction. Finally, we con-
vert the backscatter intensities into dB. All S1 data presented in
this study has been processed accordingly.

Overlapping SAR and optical data

For identification of different sea-ice types as well as the initial
selection of training and validation regions we use overlapping
SAR and optical data. We utilize the ‘sentinelAPI’ from the
Python ‘sentinelsat’ module to search for spatially overlapping
S1 and optical data (Sentinel-2 (S2) and LandSat-8 (L8)) across
the entire Arctic, with a difference in an acquisition time of <3
h and a cloud cover of <30%. Different examples of overlapping
SAR and optical scenes are shown in Figure 3.

With the assistance of expert sea-ice analysts from the
Norwegian Ice Service we have manually analyzed 80 such pairs

Fig. 1. Right panel: Linear dependency of HH backscat-
ter intensity in dB with IA for two different surface types:
OW and MYI. The two classes show considerable differ-
ences in the decrease of the backscatter intensity at
HH-polarization as a function of IA. Left panel: distribu-
tion of backscatter intensity for both classes over the
full IA range. Both distributions are highly affected and
broadened by the IA effect.
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of overlapping optical and SAR images to identify different sea-ice
types and select Regions Of Interest (ROIs) with training and val-
idation data in the S1 data. All identified ice types are listed in
Table 1. The identification of many of these ice types is only pos-
sible from the combination of SAR and optical imagery, with the
addition of expert experience. In particular, Level First-Year Ice
(LFYI), Deformed First-Year Ice (DFYI) and Multi-Year Ice
(MYI) are difficult to distinguish in optical images, depending
on spatial resolution, light conditions, snow coverage and ice
concentration.

However, based on differences in radar backscatter in combin-
ation with information on the location and the ice history (which
the ice analysts usually take into account), reliable ROIs can be
defined. Areas with example ROIs are indicated in Figure 3.

As we explain in detail in the next section, our developed algo-
rithm relies on an accurate estimation of the linear rate in back-
scatter intensity given in logarithmic scale with IA for each
class. This estimation requires training data over a wide enough
IA range, preferably over the entire swath width. Since the over-
lapping data with cloud-free conditions in the optical image
often only cover a small range of the SAR image, we have inves-
tigated additional S1 images searching for homogeneous areas
with a particular ice type covering a wide distance in range.
The second column in Table 1 indicates for which ice types we
could identify such homogeneous areas over a wider distance in
range. In total, we used more than 100 S1 images for our defin-
ition of sea-ice types and the selection of training and validation
regions. The spatial distribution of all these images is shown in
Figure 2.

For the work presented in this study, we focus only on homo-
geneous ice classes. Pixels covering a mixture of different ice types
or ice and water are not included in analyzing the IA sensitivity of
different ice types. During classification, such mixed pixels will be
assigned to the ice type that is dominant in the pixel or to another
ice type with similar backscatter at the given IA. This, however, is
not specific to our method but a general problem for all classifi-
cation algorithms.

One particularly challenging class is Open Water (OW). Its
overall backscatter values, as well as the slopes of backscatter
intensity with IA, depend on radar parameters (frequency, polar-
ization and look-direction) and environmental factors (wind

speed and direction). In a first attempt, we have tried to train sev-
eral OW classes for different wind conditions. However, in the
presented case studies, we restrict ourselves to data acquired
under similar wind conditions, which reveal a constant and
steep slope.

Method

The major novelty of the presented work is the development of an
algorithm framework that can directly incorporate per-class vari-
ation of backscatter intensity with IA into supervised classifica-
tion. This method section, therefore, starts with the detailed
explanation of the design of the algorithm, followed by a descrip-
tion of the study design to test and validate the method and
compare it to approaches used in the past.

Algorithm design

The per-class incorporation of the IA effect into supervised clas-
sification can be implemented most straightforwardly in a
Bayesian classifier. We thus give a short review of Bayesian clas-
sification before explaining our modifications to the traditional
algorithm.

Bayesian classification
A Bayesian classifier is a well-known probabilistic classification
method. Every sample x, i.e. image pixel in our case, is assigned
to the most probable class ωi (Theodoridis and Koutroumbas,
2008). For Maximum Likelihood, the decision rule of a
Bayesian classifier can be expressed as:

x � vi if p(x|vi) . p(x|vk) ∀k = i. (1)

Here, p(x|ωi) is the multi-variate class-conditional Probability
Density Function (PDF) of class ωi. The PDFs must be known
in order to assign an individual sample to a particular class and
are usually estimated from training data with known class labels.
For an unknown shape, the PDF can be approximated by kernel
density estimation (Parzen, 1962). If we know the general shape of
the PDF, we can directly estimate the shape parameters from
the training data. Since we work with backscatter intensities in
the log-domain (i.e. in dB) we can use the common assumption
of a multi-variate Gaussian distribution. The PDF for class ωi is
then fully described by its mean vector μi and covariance matrix
Σi:

pi(x|vi) = 1

(2p)
d
2|Si|12

e−
1
2(x−m

i
)TS−1

i (x−m
i
) (2)

Once the mean vector and covariance matrix have been deter-
mined for each class, Eqns (1) and (2) can be combined to classify
any given test sample x. We later use this traditional Bayesian
classifier with a Gaussian PDF with constant mean value and
an image-wide correction of IA as one comparison method to
our proposed algorithm.

The Gaussian IA classifier
In the case of SAR data, both the mean vector and the covariance
matrix of an individual class can be affected by the distribution
of the available training data over IA for that particular class.
The spatial abundance distribution of training in the range dir-
ection is being translated through the IA relation (Fig. 1) into
the spreading of the distributions in intensity. If most training
data are available at near-range, the mean backscatter values
will be higher compared to a case where most training data

Fig. 2. Locations of all S1 images used for manual identification of ice types and
selection and verification of training and validation data. All images are acquired
in winter or early springtime between 2015 and 2019.
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are available at far-range. If training data are available over a
large range of IAs, the mean value will be somewhere in between,
but the variance will be high due to the spread over the IA range.
Although a global IA correction during pre-processing reduces
these effects, incorrect slopes will still result in increased var-
iances and insufficiently corrected means. Figure 4 shows an
example of training data for two classes with clearly distinct
IA dependency and the resulting histograms for global correc-
tions along different slopes. Note that the distribution of an

individual class becomes almost Gaussian when the class is cor-
rected along the right slope.

Instead of using a pre-processing correction, we suggest treat-
ing the IA sensitivity as an ice-class property. For the Bayesian
approach, this means to make use of the approximately linear
relationship between mean vector and IA and replace the constant
mean vector μi with a linearly variable mean vector μi(Θ):

m
i
(Q) = ai + bi ·Q (3)

The class-conditional PDF can then be written as a PDF with lin-
early variable mean:

pi(x|vi) = 1

(2p)
d
2|Si|12

e−
1
2(x−(ai+biQ))TS−1

i (x−(ai+biQ)) (4)

Instead of the mean vector μi the algorithm retrieves the intercept
ai and slope bi (Eqn 3) for each class during the learning phase.
The covariance is now calculated as the mean squared deviation
relative to a mean value that depends on the IA. Its magnitude
is lower since the spread due to the IA sensitivity that occurs

Fig. 3. Examples of overlapping SAR (right, R = HV, G =
HH and B = HH) and optical (left, RGB channels) data
for the selection of training data. Example ROIs for dif-
ferent surface types, selected with the assistance of
experienced ice analysts from the Norwegian Ice
Service, are indicated with different colours (OW
(blue), Brash/Pancake Ice (gray-blue), YI (purple), LFYI
(yellow), DFYI (green), MYI (red)).

Table 1. List of ice types identified from overlapping SAR and optical images

Ice-type Found in homogeneous area over wide range

Open water (OW), calm No
Open water (OW), windy Yes
Leads No
Brash/Pancake Ice No
Young ice (YI) No
Level first-year ice (LFYI) Yes
Deformed first-year ice (DFYI) No
Multi-year ice (MYI) Yes
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when assuming a constant mean is reduced. Note that a remnant
in sensitivity to IA may remain if nonlinear terms in the variation
of the mean cannot be neglected. Finally, Eqns (1) and (4) can
again be combined to classify any given test sample x. In the fol-
lowing, we refer to this classification method as the Gaussian IA
(GIA) classifier.

Study design

We have implemented the GIA classifier according to the equa-
tions given above and investigate its performance on a variety
of case studies for sea-ice type classification. For comparison,
we apply other well-established classification methods that use a
traditional, global IA correction with a constant slope for all
classes. In the following section, we summarize the implementa-
tion details of the GIA classifier and give an overview of the vari-
ous case studies, validation procedure and the selected
comparison methods.

Implementation
We have coded the implementation of the GIA classifier in
python in the same style as other supervised classifiers in the
scikit-learn module (Pedregosa and others, 2011). During train-
ing, a classifier object clf is created, then the classification para-
meters (for the GIA classifier i.e. class-dependent slope,
intercept and covariance matrix) are estimated by calling the
object method clf.fit(). Afterwards, new samples can be classified
by calling the object method clf.predict(). This implementation
makes it very easy to switch between different classification meth-
ods and compare the GIA classifier to other approaches by simply
changing how the classifier object is created.

During training in default mode, the GIA classifier retrieves
the class-dependent slopes for each dimension from the available
training data. However, we have added the possibility to manually
prescribe slopes when initializing the classifier. This allows the
user to set reasonable slopes if the training data for an individual
class is not sufficient for accurate slope estimation, or to test
slopes for certain ice types that have been reported in previous
studies.

Case studies
To test and demonstrate the principle functionality of the GIA
classifier, we start our analysis by investigating various two-class
case studies. For this purpose, we select two classes out of the
entire multi-class training and validation set. These simple two-
class tests are most suitable to demonstrate and visualize the
underlying concept of our developed method and to point out
particular benefits and drawbacks of the method under well-
defined conditions.

Since the HH polarization reveals a stronger IA sensitivity than
the HV polarization, we first focus on testing our method using
the HH channel only, which we denote ‘1D case’. HV polarization
is less sensitive to IA but provides complementary information to
improve Classification Accuracy (CA). In the next step, we there-
fore extend the classifier to include the HV channel as well. The
resulting classifier uses both HH and HV intensity and we refer to
it as a ‘2D case’.

Different 2-class case studies with both 1-D and 2-D instances
of the GIA classifier offer the easiest way to gain insights into the
newly introduced method for class-dependent IA correction dur-
ing classification and we, therefore, regard them as instructive for
the demonstration of the novel concept. However, ice type classi-
fication is typically a multi-class problem. Following the 2-class
case studies, we thus extend the classifier to multiple classes
and finally demonstrate its potential for automated ice chart
production.

Validation
We calculate CA from a broad and independent validation set,
which we obtain by randomly splitting the data points from all
selected ROIs into training and validation sets. This means in
practice that the validation is not carried out for individual
images, but for various ice conditions found in the collection of
different images with our ROIs. While the training sets are used
for fitting the coefficients of the classifiers to the data, the valid-
ation sets are used to independently evaluate the classifiers’ per-
formance based on CA. Varying the randomized train-test split
of the ROIs allows us to estimate standard deviations for CA
based on the selected dataset.

Fig. 4. HH intensity in dB of training data for OW and
MYI, with per-class and average linear slopes indicated
by dashed lines (top panel). Per-class histograms of
HH intensity are shown after global correction to 35°
along each of the three individual slopes (bottom
panel).
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Comparison classifiers
In order to assess improvements in CA, we compare the GIA clas-
sifier to other commonly used classification methods. In particu-
lar, we test a RF classifier, a SVM and a traditional Bayesian
Classifier with Gaussian PDF (denoted as BCG). All of these com-
parison algorithms have previously been shown to be useful for
classification of sea-ice types. For all the comparison methods,
we apply a global IA correction with a constant slope during pre-
processing. For the global correction, we always choose the aver-
age slope of the involved classes. Furthermore, we optimize the
comparison classifiers in terms of CA by performing a grid-search
over the number of trees and the maximum depth of the RF and
by testing different kernels for the SVM.

Results

Two-class case studies

We present the results of the algorithm performance on three dif-
ferent case studies with simplified two-class problems. The indi-
vidual classes in these case studies are the classes with training
data from large homogeneous areas (Table 1). Note that training
and validation data are collected from numerous images and not
from a single individual scene. The individual two-class problems
presented here are:

(1) OW vs LFYI
(2) OW vs MYI
(3) LFYI vs MYI

The results for a 1-D GIA classifier applied to the case study
(2) using only HH intensity are illustrated in Figure 5. The classes
OW and MYI have clearly distinct slopes of −0.72 dB/1° and
−0.23 dB/1°, respectively. The GIA classifier can successfully han-
dle the case for most IA ranges. Some misclassification occurs in
the IA range where the backscatter coefficients of MYI and OW
overlap (−7 dB to −13 dB). The slices of the histograms and class-

conditional PDFs at different IAs (Fig. 5, bottom panel) illus-
trate the locally narrow Gaussian distributions and can further-
more indicate whether or not the data are well separable for a
particular IA range. Figure 6 shows the improved results when
extending the classifier to two dimensions, including HV inten-
sity. Note that the HV intensity also shows a considerable slope
for both classes with −0.33 dB/1° for OW and −0.23 dB/1° for
MYI, respectively.

The corresponding per-class CA and mean per-class CA is
given in Table 2. We compare 1-D (using only HH intensity)
and 2-D classifiers (using intensities at HH and HV) and give
results for all three case studies and all tested classifiers. CA stand-
ard deviation estimated by bootstrapping is in the range of 0.1 and
0.25% for all individual CA values. For the cases including the
OW class, the GIA classifier achieves the best CA, while the
results are very similar for the LFYI-vs-MYI case. Note that the
slopes for these two ice types are quite similar with −0.27 dB/1°
at HH and −0.26 dB/1° at HV for LFYI and −0.23 dB/1° at
both HH and HV for MYI, respectively. We observe a general
improvement in CA when adding the HV intensity for all classi-
fiers and all case. In the 1-D examples, the classifiers using a glo-
bal IA correction can favour one individual class in some cases.
For case study (2), this results in a high score for one particular
class (CAMYI) and a low score for another class (CAOW).
Overall, the GIA classifier clearly performs best with the highest
average per-class CA.

Average processing time for training and prediction is also pre-
sented in Table 2. Since absolute timing always depends on hard-
ware and software components as well as the implementation of
the algorithm itself, we present processing times relative to each
other. All times are given normalized to the processing time of
the GIA classifier. Training of the traditional BCG is more than
twice as fast as training of the GIA classifier, and prediction of
new sample labels is slightly faster. Both RF and SVM take one
to two orders of magnitude longer for both training and predic-
tion compared to the GIA classifier.

Fig. 5. 1D Example of the two-class case study (2), OW vs (MYI. The top panel shows HH intensity over IA, with true class labels (training) indicated on the left and
predicted class labels (validation) indicated on the right, respectively. The bottom panel shows histograms and slices through the class-conditional PDFs with vari-
able mean at three different IA locations. The IA locations are indicated with grey dashed lines in the training data.
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Three-class case studies

Based on the results for the two-class case studies presented so far,
we extend our analysis to a three-class problem. Following the
three different two-class case studies, the three-class example is
enumerated as a case study (4):

(1) OW vs. LFYI vs MYI

The results for all tested classifiers are presented in Table 3.
Again, the GIA classifier achieves the highest overall CA.
Individual classes can occasionally score higher in other classifiers
(e.g. CAMYI for the BCG, Table 3), but again this comes at the
expense of lower scores for the other classes. Compared to the differ-
ent two-class case studies, the average per-class CA of the 2D GIA
classifier for the three-class case is ∼3% lower than the CA of case
studies (2) and (3), and almost equal to the CA of the case study (1).

Ice charts

Results for mosaic ice type maps from two randomly selected
dates are presented in Figure 7. Both examples show the

underlying S1 data on the left side and the classification result
on the right side. The example in the top panel covers nearly
the entire Arctic and is based on 72 S1 images acquired on 3
and 4 March 2019. The example in the bottom panel covers a
smaller region north of Svalbard and is based on three overlap-
ping S1 images acquired on 5 April 2018. We regard the

Fig. 6. 2D Example of the two-class case study (2), OW vs MYI. HH intensity (top) and HV intensity (bottom) are shown over IA, with true class labels (training)
indicated on the left and predicted class labels (validation) indicated on the right, respectively.

Table 2. Classification Accuracy (CA) for different classifiers tested on three individual two-class problems

OW vs LFYI OW vs MYI LFYI vs MYI Normalized timing

Classifier CAOW CALFYI .. CAOW CAMYI CA CALFYI CAMYI CA Train Predict

BCG (1D) 88.72 95.07 91.90 56.86 86.70 71.78 96.66 98.41 97.53 0.37 0.95
GIA (1D) 94.84 93.33 94.08 85.93 75.92 80.93 96.78 98.35 97.56 1.00 1.00
RF (1D) 90.71 91.89 91.30 62.88 80.17 71.52 95.84 98.34 97.09 99.09 44.32
SVM (1D) 91.45 92.81 92.13 62.81 81.89 72.35 96.28 98.78 97.53 186.22 103.59

BCG (2D) 89.73 95.92 92.82 97.15 98.95 98.05 97.30 99.43 98.36 0.41 0.91
GIA (2D) 96.45 94.55 95.50 98.11 99.60 98.85 97.33 99.41 98.37 1.00 1.00
RF (2D) 91.77 93.94 92.85 96.96 99.18 98.07 97.56 99.27 98.41 83.31 22.72
SVM (2D) 91.45 94.68 93.06 96.95 99.34 98.14 97.56 99.35 98.45 108.27 68.71

All classifiers are tested in 1D (HH intensity only) and 2D (both HH and HV intensity). Global IA correction with a constant slope has been applied before BCG, RF and SVM classification to
compare with per-class IA correction within the GIA classifier. Standard deviation for all the above values given is between 0.1 and 0.25.

Table 3. Classification Accuracy (CA) for different classifiers tested on a
three-class problem OW-vs-LFYI-vs-MYI (case study (4))

Classifier CAOW CALFYI CAMYI CA

BCG (1D) 85.23 44.46 96.84 75.51
GIA (1D) 74.37 82.72 94.10 83.73
RF (1D) 79.88 53.42 93.83 75.71
SVM (1D) 80.39 53.35 94.72 76.16

BCG (2D) 89.47 96.69 95.51 93.89
GIA (2D) 96.22 96.74 94.27 95.74
RF (2D) 92.51 96.58 92.46 93.85
SVM (2D) 91.91 96.60 93.63 94.04

All classifiers are tested in 1D (HH intensity only) and 2D (both HH and HV intensity). Global
IA correction with a constant slope has been applied before BCG, RF and SVM classification
to compare with per-class IA correction within the GIA classifier. Standard deviation for all
the above values given is between 0.1 and 0.25 for individual values.
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presentation of a combination of three images as useful, as it
allows for inspection of classification results across image bound-
aries, which is potentially strongly influenced by IA effect.
Figure 7 shows that the classification results connect consistently
across image boundaries.

Discussion

Algorithm behaviour

Overall, the proposed inclusion of the per-class IA sensitivity dir-
ectly in the classification process performs very well for the test
cases and improves the CA significantly. The underlying concept
and the effect of the method is best visualized in a 1-D case for
two classes (Fig. 5). The classes in the shown example for the
case study (2), OW and MYI, have significantly different slopes
and the GIA classifier clearly improves the classification result.
Furthermore, histograms and slices of the PDF with variable
mean at different base values IA0 give an indication of how well
separable the data are in a particular IA range. In the presented
case, OW and MYI are well separable at HH-polarization in
near range. As we move towards far range, the overlap between
the PDFs increases, resulting in a decreased separability. At an
IA of ∼35°, the linear functions describing the variable mean
value for each class intersect. The local mean values of both
classes are thus identical at this range and the distributions

have maximum overlap; hence the two classes have worst separ-
ability (Fig. 5, bottom panel). Since the OW class has a smaller
covariance than the MYI class, the maximum probability from
the OW PDF is larger than the maximum probability from the
MYI PDF. Hence, when local mean values are identical, pixels
with a backscatter value close to this local mean will be classified
as OW, and pixels with a backscatter value far from the local
mean will be classified as MYI, resulting in a narrow band of pix-
els classified as OW overlying the broader band of pixels classified
as MYI (Fig. 5, top panel, right). This ambiguity can only be
solved by adding additional information (e.g. HV intensity or tex-
ture parameters) and thus extending the classifier to more dimen-
sions (see Table 2, 1-D and 2-D classifier results). The extension
of the GIA classifier to multiple dimensions is straightforward,
given that Eqn (4) describes a multi-variate Gaussian with vari-
able mean vector. For the two-class cases study (2), Figure 6 illus-
trates a clear improvement that is achieved by adding the HV
component to the GIA classifier.

Algorithm performance

The comparison of the GIA classifier to BCG, SVM and RF clas-
sifiers is summarized in Tables 2 and 3. Note again that the
selected classifiers for comparison are applied after a global IA
correction was carried out in the pre-processing. When the slopes

Fig. 7. Examples of mosaic classification results for the entire Arctic (top panel, based on 72 S1 images acquired on 3 and 4 March 2019) and a smaller region north
of Svalbard (bottom panel, based on 3 S1 images acquired on 5 April 2018). S1 data are shown on the left (R = HV, G = HH and B = HH) and classification results on
the right. The classified regions seamlessly overlap at image boundaries, indicating a successful per-class correction of IA effect.
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of the individual classes differ (2-class case studies (1) and (2)),
the GIA classifier achieves the highest CA. For classes with very
similar slopes (2-class case study (3)), the methods perform
almost equally well. This is expected since in such a case the per-
class IA correction inherent in the GIA classifier is almost iden-
tical to the global IA correction during pre-processing. When
we extend the case studies to three classes, however, we note
that the presence of one surface type with a significantly different
slope, i.e. OW, affects the overall classification result (Table 3).
Again, the GIA classifier performs better than the comparison
methods. The improvement is particularly strong in the 1D case
(∼8%) and still almost 2% in the 2-D case. This is due to the vari-
ation in slope values of the individual classes. The largest differ-
ence in slope occurs between OW and MYI, where it is 0.49 dB/
1° in the HH channel. In the HV channel, however, it is only
0.1 dB/1°. Hence, a global correction will achieve better results
for HV than for HH.

Furthermore, it is interesting to compare the GIA classifier’s
average per-class CA of the three-class case against the different
two-class cases. For the 1-D examples, the two-class case studies
(1) and (3) achieve the highest scores, with 94.08% and 97.56%,
respectively. Case study (2) scores considerably lower at 80.93%,
while the three-class example score is at 83.73% (Tables 2 and
3). Generally, a lower score for the three-class problem can be
expected, since the classification error of a Bayesian classifier cor-
responds to the overlap of the class-specific PDFs, and adding
more PDFs may lead to more overlap. Two-class case study (2)
however scores low in 1-D due to large overlap of the distribu-
tions, so that the average per-class score is increased when adding
another, better separable class.

Processing time

For the presented case studies and the given implementations of
the different classifiers, both Bayesian classifiers (BCG and
GIA) are clearly superior to RF and SVM in processing time
for both training and prediction. Considering a possible future
application in operational ice charting, the timing for prediction
of labels for new samples is particularly critical. Here, the BCG
classifier is slightly faster than the GIA classifier, as it does not
require the linear operation to estimate the local mean value
from the class-dependent slope. However, both BCG and GIA
classifiers are considerably faster than the RF or the SVM. As
the computation time for prediction of class labels increases
approximately linear with the number of trained classes for a
Bayesian classifier, we expect this advantage to slightly decrease
with the extension to more classes. Nevertheless, the GIA classi-
fier is certainly suitable for fast processing of images and
near-real-time classification, and in our investigated case studies
it is clearly superior to SVM and RF in terms of computation
time.

Current limitations and future work

We have so far shown how to incorporate the per-class correction
of IA effect into a classifier and demonstrated that this direct
incorporation can generally improve CA while operating at an
operationally acceptable speed. Besides the classification of wide-
swath images such as S1 EW, the GIA classification framework
could also be applied to transfer training data across images
acquired in quad-pol mode at different IA. In the following part
of this section, we discuss the current limitations of the method
and possible future development and improvement of the
algorithm.

One of these limitations is the present definition and selection
of the OW class. For the shown case studies, we have restricted

ourselves to OW conditions with a steep and constant slope.
However, in reality, OW is more challenging. For a given radar
frequency and polarization, the OW slope and brightness depends
on wind speed as well as the angle between radar look and wind
direction. While one simple OW class may be useful in particular
cases and for demonstrating the principle algorithm, it will not be
sufficient for operational ice charting. Possible ways to deal with
this issue may be the inclusion of texture features or the definition
of several OW classes for varying environmental and acquisition
conditions. However, both alternatives require thorough investi-
gation and are beyond the scope of the present demonstration
study.

Furthermore, in the presented case studies we have focused
only on the ice types that we could observe over large homoge-
neous areas covering a wide distance in range (Table 1). Hence,
the training and validation data are well defined for these cases,
offering optimal conditions for the demonstration of how to
incorporate the class-dependent IA effect directly into the classi-
fication process, and for the evaluation of the method in compari-
son to global IA correction during pre-processing. The slope
values that we obtain represent a generalized, Arctic-wide class
property for the particular classes as we have defined them
based on the available input data. Comparison to literature values
reveals slight differences between our values and the ones from
previous studies, which are most likely caused by intra-class vari-
ability or slightly different class definitions. While the slopes given
in this study are optimal for use over the entire Arctic (and may
only have to be slightly adjusted when the input dataset is
extended), a new estimation of slopes and thus re-training of
the classifier may be valuable for more locally constrained studies.

In future work, we will focus on the extension of the algorithm
to all identified classes and different seasons, as well as the
improvement and validation of automated production of ice
charts. Two examples of ice type maps and the underlying S1
data are shown in Figure 7. Rigorous validation of several such
examples in terms of absolute CA is currently carried out in col-
laboration with the Norwegian Ice Service. The detailed evalu-
ation of the results is, however, beyond the scope of the present
demonstration study. Visual inspection of the examples presented
in Figure 7, however, reveals additional capabilities and limita-
tions of the current algorithm: The overall pan-Arctic distribution
of ice types (Fig. 7, top panel) shows a reasonable pattern, with
MYI dominating in the Canadian Arctic and starting to circulate
in the Beaufort Gyre, and FYI (level and deformed) dominating in
the Russian Arctic. The closeup ice chart located north of
Svalbard (Fig. 7, bottom panel) shows the separation of MYI,
deformed and level FYI and refrozen leads with young ice. The
algorithm successfully finds distinct regions for each class. Note
that the classification result is consistent across image boundaries.
As the effect of IA angle is clearly visible across image boundaries
in the SAR imagery and no pre-processing IA correction is
applied, this indicates that the per-class correction of the IA effect
within the GIA classifier is successful. Classification results over-
lap seamlessly. However, on visual inspection, we also find some
misclassification in the ice charts, in particular in areas with low
signal, where the noise in the HV channel influences results.
Furthermore, we observe occasional confusion of young ice and
MYI due to ambiguities in backscatter intensity. These ambigu-
ities are not new issues, however, and have been described efor
example, in Zakhvatkina and others (2017). They are not inherent
to the algorithm framework presented in this study.

One common way to overcome such remaining ambiguities in
the mapping of sea-ice types is the use of textural information.
Texture features can for example be extracted from all channels
in the data via the Gray-Level Co-Occurrence Matrix (GLCM).
However, computation of the GLCM is time extensive and will
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significantly increase the processing time of any operational
workflow. Furthermore, texture features are calculated within a
window around the individual pixel, leading to an effectively
reduced resolution of the result. Nevertheless, including textural
information into the GIA classifier may be necessary for success-
ful separation of all identified ice types. Texture features are com-
monly assumed to be less sensitive to IA, although to our best
knowledge there is no systematic study yet that provides a detailed
investigation of the variation of texture features with IA. In any
case, the extension of the GIA classifier to other features is
straightforward, as long as their IA dependence can be described
by a simple function. Even if there is no IA dependence, the GIA
classifier can be applied as-is, simply estimating a slope of zero for
the individual features.

Conclusion

We have introduced a supervised classification algorithm for
sea-ice types that directly incorporates class-dependent variation
of backscatter intensity with IA. This is achieved by replacing
the constant mean vector in a multi-variate Gaussian PDF of a
Bayesian classifier with a linearly variable mean vector. The IA
effect is thus no longer treated as a global image property and cor-
rected during pre-processing, but as an ice type property. We have
shown in several case studies that our proposed GIA classifier
improves CA when the slopes for individual classes are signifi-
cantly different. The simplicity and fast processing time of the
GIA classifier allow for easy interpretation of results over the
entire swath and enables processing of images in near-real-time,
which is required for operational ice charting.

Although classification results are improved, some ambiguities
and misclassified regions remain. In future work, we will focus on
resolving these ambiguities by including further training and tex-
tural information into the GIA algorithm to further improve our
automated mapping of sea-ice types.
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