Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T21:42:46.815Z Has data issue: false hasContentIssue false

Design and simulation of a PK testbed for head impact evaluation

Published online by Cambridge University Press:  03 September 2021

José Luis Rueda Arreguín
Affiliation:
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Unidad Zacatenco, 07738 Mexico City, Mexico Department of Industrial Engineering, Laboratory of Robot Mechatronics LARM2, University of Rome Tor Vergata, 00133 Rome, Italy
Marco Ceccarelli
Affiliation:
Department of Industrial Engineering, Laboratory of Robot Mechatronics LARM2, University of Rome Tor Vergata, 00133 Rome, Italy
Christopher René Torres-SanMiguel*
Affiliation:
Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Unidad Zacatenco, 07738 Mexico City, Mexico
*
*Corresponding author. E-mail: ctorress@ipn.mx

Abstract

This paper presents the design and simulation of a Parallel Kinematic (PK) testbed for head impacts. The proposed design is presented as a novel head impact testbed using a parallel platform as main motion simulation mechanism. The testbed is used to give a motion to a head mannequin to impact against a steel plate. In addition, the platform in the testbed allows to modify the orientation of the head mannequin model to evaluate different types of impacts. The testbed has been modeled with software MS ADAMS® to evaluate its performance with a dynamic simulation and to characterize the testbed design during top and lateral impact events. Results show that PK testbed gives a significant force and acceleration to the head mannequin at the moment of the impact.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Salinas, N. L., Resident Manual of Trauma to the Face, Head and Neck, 1st edn. (American Academy of Otolaryngology-Head and Neck Surgery Foundation, 2012) pp. 3435. ISBN: 978-0-615-64912-2.Google Scholar
Madhukar, A. and Ostoja-Starzewski, M., “Finite element methods in human head impact simulations: A review,” Ann. Biomed. Eng. 47(9), 1832–1854 (2019).Google Scholar
Östh, J., Mendoza-Vazquez, M., Sato, F., Svensson, M. Y., Linder, A. and Brolin, K., “A female head-neck model for rear impact simulations,” J. Biomech. 51, 4956 (2017)CrossRefGoogle ScholarPubMed
Baeck, K., Goffin, J. and Sloten, J. V., “The Use of Different CSF Representations in a Numerical Head Model and Their Effect on the Results of FE Head Impact Analyses,” European LS-DYNA Users Conference 2011. Proceedings 8th European LS-DYNA Users Conference, Strasbourg, France (2011).Google Scholar
Miller, L. E., Urban, J. E., Kelley, M. E., Powers, A. K., Whitlow, C. T., Maldjian, J. A., Rowson, S. and Stitzel, J. D., “Evaluation of brain response during head impact in youth athletes using an anatomically accurate finite element model,” J. Neurotrauma 36(10), 15611570 (2019).CrossRefGoogle ScholarPubMed
EURO NCAP, The Dynamic Assessment of Car Seats for Neck Injury Protection Testing Protocol, European New Car Assessment Programme, Version 4.1 (2019).Google Scholar
Hernandez, F., Shull, P. B. and Camarillo, D. B., “Evaluation of a laboratory model of human head impact biomechanics,” J. Biomech. 48(12), 34693477 (2015).CrossRefGoogle ScholarPubMed
Dressler, D. M., Dennison, C. R., Whyte, T. and Cripton, P. A., “A novel helmet-mounted device for reducing the potential of catastrophic cervical spine fractures and spinal cord injuries in head-first impacts,” Clin. Biomech. 64, 2227 (2019).CrossRefGoogle ScholarPubMed
Echávarri, J., Ceccarelli, M., Carbone, G., Alén, C., Muñoz, J. L., Díaz, A. and Munoz-Guijosa, J. M., “Towards a safety index for assessing head injury potential in service robotics,” Adv. Robot. (2013) doi: 10.1080/01691864.2013.791655.CrossRefGoogle Scholar
Cordero, C. A., Carbone, G., Ceccarelli, M., Echávarri, J. and Muñoz, J. L., “Experimental Tests in Human-Robot Collision Evaluation and Characterisation of a New Safety Index for Robot Operation,” In: MMT Mechanism and Machine Theory, vol. 80 (2014) pp. 184199.CrossRefGoogle Scholar
Ceccarelli, M., Fundamentals of Mechanics of Robotics Manipulation (Springer Science + Business Media, Dordrecht, 2004).CrossRefGoogle Scholar
Wang, X., Zhu, Q., Lv, S., Hao, R. and Huang, J., “Kinematics and Workspace Analysis of Tricept Robot,” 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (2020) pp. 301305. doi: 10.1109/ITAIC49862.2020.9338990.CrossRefGoogle Scholar
Bi, Z. M. and Jin, Y., “Kinematic modeling of Exechon parallel kinematic machine,” Robot. Comput. Integr. Manuf. 27(1), 186193 (2011).CrossRefGoogle Scholar
Hennes, N. and Staimer, D., “Application of PKM in Aerospace Manufacturing-High Performance Machining Centers ECOSPEED, ECOSPEED-F and ECOLINER”, Proceedings of 4th Chemnitz Parallel Kinematics Seminar, Chemnitz, Germany (2004) pp. 557577.Google Scholar
Hernández-Gómez, J. J., Medina, I., Torres-San Miguel, C. R., Solís-Santomé, A., Couder-Castañeda, C., Ortiz-Alemán, J. C. and Grageda-Arellano, J. I., “Error assessment model for the inverse kinematics problem for stewart parallel mechanisms for accurate aerospace optical linkage”, Math. Problems Eng. 2018, Article ID 9592623, 10 p (2018).CrossRefGoogle Scholar
Mendoza, E. and Whitney, J. P., “A testbed for haptic and magnetic resonance imaging-guided percutaneous needle biopsy,” IEEE Robot. Autom. Lett. 4(4), 31773183 (2019)CrossRefGoogle Scholar
Arshad, M. A., Gulzar, M. M., Qureshi, J. K., Hayat, A., Shamir, M., Ahmed, F. and Rasheed, S., “Six Degrees of Freedom Robotic Testbed for Control Systems Laboratory,2017 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad (2017) pp. 16.Google Scholar
Krishnamoorthy, S., “Advancement of a Robotic Testbed for Floating-Dynamics, Simulation,15th Symposium on Advanced Space Technologies in Robotics and Automation - ASTRAAt: ESA-ESTEC, Noordwijk, the Netherlands (2019)Google Scholar
Selvi, Ö. and Ceccarelli, M., “An Experimental Evaluation of Earthquake Effects on Mechanism Operation,” Proceedings of the International Symposium of Mechanism and Machine Science AzCIFToMM, 5–8 October, Izmir,Turkey (2010) pp. 408416.Google Scholar
Dhatt, S. S., Siva Swaminathan, S. and Karthick, S. R., “The Cervical Spine,” In: Handbook of Clinical Examination in Orthopedics (2018) pp. 2752.Google Scholar
Schmitt, K. U., Niederer, P. F., Cronin, D. S., Morrison, B. III, Muser, M. H. and Walz, F., “Spinal Injuries,” In: Trauma Biomechanics (Springer, Cham, 2019).CrossRefGoogle Scholar
Mexican Red Cross, Spinal Injuries Handbook (Mexican Red Cross, 2008).Google Scholar
Schwanitz, S., Costabile, G., Amodeo, G., Odenwald, S. and Lanzotti, A., “Modelling Head Impact Safety Performance of Polymer-based Foam Protective Devices,” Procedia Eng. 72, 581586 (2014).CrossRefGoogle Scholar
Oeur, R. A., Gilchrist, M. D. and Hoshizaki, T. B., “Parametric study of impact parameters on peak head acceleration and strain for collision impacts in sport,” Int. J. Crashworthiness 26(1), 110 (2019).Google Scholar
NOCSAE 081-18am19a, Standard Pneumatic Ram Test Method and Equipment Used in Evaluating the Performance Characteristics of Protective Headgear and Face Guards, National Operating Committee on Standards for Athletic Equipment (2019).Google Scholar
Campolettano, E. T., Gellner, R. A., Sproule, D. W., Begonia, M. T. and Rowson, S., “Quantifying youth football helmet performance: Assessing linear and rotational head acceleration,” Ann. Biomed. Eng. 48(6), 1–11 (2020).Google Scholar
Bliven, E., Rouhier, A., Tsai, S., Willinger, R., Bourdet, N., Deck, C. and Bottlang, M., “Evaluation of a novel bicycle helmet concept in oblique impact testing,” Accid. Anal. Prev. 124, 5865 (2019).CrossRefGoogle ScholarPubMed
Park, J., Song, J. and Haddadin, S., “Collision analysis and safety evaluation using a collision model for the frontal robot–human impact,” Robotica 33(7), 15361550 (2015).CrossRefGoogle Scholar
Tiernan, S. and O’Sullivan, D. M., “Evaluation of skin-mounted sensor for head impact measurement,” Proc. Inst. Mech. Eng. Part H J. Eng. Med. 233(7), 110 (2019).CrossRefGoogle Scholar
Perrusquia, A., Flores-Campos, J. A. and Torres-San-Miguel, C. R., “A novel tuning method of PD with gravity compensation controller for robot manipulators,” IEEE Access 8, 114773114783 (2020). doi: 10.1109/ACCESS.2020.3003842.CrossRefGoogle Scholar
Perrusquia, A., Flores-Campos, J. A., Torres-Sanmiguel, C. R. and Gonzalez, N., “Task space position control of slider-crank mechanisms using simple tuning techniques without linearization methods,” IEEE Access 8, 5843558442 (2020). doi: 10.1109/ACCESS.2020.2981187.CrossRefGoogle Scholar
Klima, J., Kang, J., Meldrum, A. and Pankiewicz, S., “Neck injury response in high vertical accelerations and its algorithmical formalisation to mitigate neck injuries”, Stapp Car Carsh J. 61, 211225 (2017).Google Scholar
Yoganandan, N., Pintar, F. A. and Banerjee, A., “Load-based lower neck injury criteria for females from rear impact from cadaver experiments,” Ann. Biomed. Eng. 45(5), 1194–1203 (2017).CrossRefGoogle Scholar
Rueda Arreguin, J. L., Torres San Miguel, C. R., Ceccarelli, M., Ramirez Vela, V. and Urriolagoitia Calderon, G. M., “Design of a Tetst Bench to Simulate Cranial Sudden Impact”, In: New Trends in Medical and Service Robotics (Carbone, G., M. Ceccarelli,, D. Pisla, eds.), vol. 65 (Springer, 2019) pp. 225–234.CrossRefGoogle Scholar
Rueda Arreguín, J. L., Ceccarelli, M. and Torres San Miguél, C. R., “Design and Simulation of a Parallel-Mechanism Testbed for Head Impact,” In: Advances in Service and Industrial Robotics, RAAD 2020 . Mechanisms and Machine Science (Zeghloul, S., Laribi, M. and Sandoval Arevalo, J., eds.), vol. 84 (2020) pp. 400–407.Google Scholar
Hibbeler, R. C., Mecánica de Materiales, 9th edn. (Pearsons Education, Mexico City, México, 2017) pp. 3–4.Google Scholar
Holm, S., “Declaration of Helsinki,” In: International Encyclopedia of Ethics (2013).CrossRefGoogle Scholar
Sahoo, D., Deck, C., Yoganandan, N. and Willinger, R., “Development of skull fracture criterion based on real-world head trauma simulations using finite element head model,” J. Mech. Behav. Biomed. Mater. 57, 2441 (2016)CrossRefGoogle ScholarPubMed
Rueda Arreguín, J. L., Ceccarelli, M., Torres San Miguel, C. R. and Morales-Cruz, C., “Lab Experiences on Impact Biomechanics of Human Head,” Seventh edition of the International Workshop on New Trends in Medical and Service Robots, MESROB 2020, Basel (2020).CrossRefGoogle Scholar
Rueda Arreguin, J. L., Ceccarelli, M. and Torres San Miguel, C. R., “Design of an Articulated Neck for Testbed Mannequin,” In: Advances in Italian Mechanism Science. IFToMM ITALY 2020. Mechanisms and Machine Science (Niola, V. and Gasparetto, A., eds.), vol. 91 (Springer, Cham, 2020) pp. 94101.Google Scholar
Ceccarelli, M., Torres San Miguel, C. R. and Rueda Arreguín, J. L., Artificial articulated neck for mannequin head, patent pending n. 102020000005596, 16 /3/2020, Italy.Google Scholar