Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-29T19:46:15.315Z Has data issue: false hasContentIssue false

Fog interception in montane forests across the Central Cordillera of Panamá

Published online by Cambridge University Press:  10 July 2009

Jaime Cavelier
Affiliation:
Departamento de Ciencias Biológicas, Universidad de los Andes, AA 4976, Bogotá, Colombia
Daniel Solis
Affiliation:
Institute de Recursos Hidráulicos y Energéticos, IRHE David, Provincia de Chiriquí, Panamá
Maria A. Jaramillo
Affiliation:
Departamento de Ciencias Biológicas, Universidad de los Andes, AA 4976, Bogotá, Colombia

Abstract

Fog interception and rainfall were measured at 14 stations across the Central Cordillera in western Panamá. Fog interception and rainfall were measured monthly during 1988–1989 with artificial fog catchers and rain gauges, respectively. Fog interception was highest on ridges and increased with increasing altitude. Fog interception contributed between 2.4 and 60.6% of the total water input, depending on altitude and exposure to the prevailing winds. Absolute amounts of annual fog interception ranged from 142 to 2295 mm. Although low clouds were more frequent in montane forests, clouds close to the ground also occurred in the lowlands. During the study period, there was a gradient of increasing total rainfall from the Caribbean (3355 mm) to the Pacific side (5759 mm) of the Central Cordillera. Nevertheless, rainfall was more seasonal on the leeward side of the mountain range. Seasonal variation in fog intereption was different from rainfall patterns and no correlation was found between monthly (or annual) rainfall and fog interception. The results of this study showed the importance of montane forests for the preservation of water sources, particularly along ridges of the Fortuna drainage basin that provides more than 50% of the electricity of the Republic of Panamá.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Baynton, H. W. 1989. The ecology of an elfin forest in Puerto Rico, 3. Hilltop and forest influences on the microclimate of Pico del Oeste. Journal of the Arnold Arboretum 50:8092.CrossRefGoogle Scholar
Bruijnzeel, L. A. 1990. Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. UNESCO, International Hydrological Programme, Paris and Free University, Amsterdam.Google Scholar
Bruiznzeel, L. A. & Proctor, J. 1993. Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? Pp. 2546 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds). Tropical montane cloud forests. Proceedings of an international symposium at San Juan, Puerto Rico, 31 May–5 June 1993. East-West Center Program on Environment, UNESCO International Hydrological Programme and International Institute of Tropical Forestry. 264 pp.Google Scholar
Bruijnzeel, L. A., Waterloo, M. J., Proctor, J., Kuiters, A. T. & Kotterink, B. 1993. Hydrological observations in montane rain forests on Gunung Silam, Sabah, Malaysia, with special reference to the ‘Massenerhebung’ effect. Journal of Ecology 81:145167.CrossRefGoogle Scholar
Cavelier, J. 1989. Root biomass, production and the effect of fertilization in two tropical rain forests. PhD Dissertation, University of Cambridge, UK. 116 pp.Google Scholar
Cavelier, J. & Goldstein, G. 1989. Mist and fog interception in elfin cloud forest in Colombia and Venezuela. Journal of Tropical Ecology 5:309322.CrossRefGoogle Scholar
Cavelier, J., Machado, J. L., Valencia, D., Montoya, J., Laignelet, A., Hurtado, A., Varela, A. & Mejia, C. 1992. Leaf demography and growth rates of Espeletia barclayana Cuatrec. (Compositae), a caulescent rosette in a Colombian Páramo. Biotropica 24:5263.CrossRefGoogle Scholar
Chaney, W. R. 1981. Sources of water. Pp. 147 in Koslowski, T. T. (ed.). Water deficits and plant growth, vol. VI, Woody plant communities. Academic Press.Google Scholar
Coley, P. D., Kursa, T. A. & Machado, J. L. 1993. Colonization of tropical rain forest leaves by epiphylls: effects of site and host plant leaf lifetime. Ecology 74:619623.CrossRefGoogle Scholar
Cuatrecasas, J. 1934. Observaciones geobotánicas en Colombia. Trabajos del Museo Nacional de Ciencias Naturales, Serie Botánica 27:1144.Google Scholar
Cuatrecasas, J. 1958. Aspectos de la vegetación natural de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 10:221264.Google Scholar
Estadistica Panamena. 1986. Situatión Física, Meteorológica 1986. República de Panamá, Contraloría General de la República, Dirección de Estadística y Censo.Google Scholar
Fleming, T. H. 1986. Secular changes in Costa Rican rainfall: correlation with elevation. Journal of Tropical Ecology 2:8791.CrossRefGoogle Scholar
Flenley, J. R. 1979. The equatorial rain forest: a geological history. Butterworths, London. 162 pp.Google Scholar
Gilmartin, A. J. 1973. Transandean distribution of Bromeliaceae in Ecuador. Ecology 54:13891393.CrossRefGoogle Scholar
Gioda, A., Espejo, R. & Acosta-Baladon, A. 1993. Fog collectors in tropical areas. Pp. 273278 in Becker, A., Sevruk, B. & Lapin, M. (eds). Evaporation, water balance and deposition. Proceedings of Symposium on Precipitation and Evaporation, vol. 3. Bratislava, Slovakia, 20–24 09 1993.Google Scholar
Grubb, P. J. 1971. Interpretation of the ‘Massenerherbung’ effect on tropical mountains. Nature 229:4445.CrossRefGoogle ScholarPubMed
Grubb, P. J. 1977. Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annual Review of Ecology and Systematics 8:83107.CrossRefGoogle Scholar
Grubb, P. J., Lloyd, J. R., Pennington, T. D. & Whitmore, T. C. 1963. A comparison of montane and lowland rain forest in Ecuador, I. The forest structure, physiognomy, and floristics. Journal of Ecology 51:567601.CrossRefGoogle Scholar
Grubb, P. J. & Whitmore, T. C. 1966. A comparison of montane and lowland rain forest in Ecuador. II. The climate and its effects on the distribution and physiognomy of forests. Journal of Ecology 54:303333.CrossRefGoogle Scholar
Hamilton, L. S., Juvik, J. O. & Scatena, F. N. 1993. The Puerto Rico tropical cloud forest symposium: introduction and workshop synthesis. Pp. 116 in Hamilton, L. S., Juvik, J. O. & Scatena, F. N. (eds). Tropical montane cloud forests. Proceedings of an international symposium at San Juan, Puerto Rico, 31 May–5 June 1993. East-West Center Program on Environment, UNESCO International Hydrological Programme and International Institute of Tropical Forestry. 264 pp.Google Scholar
Kerfoot, O. 1968. Mist precipitation on vegetation. Forestry Abstracts 29:820.Google Scholar
LaBastille, A. & Pool, D. J. 1978. On the need for a system of cloud forests parks in Middle-America and the Caribbean. Environmental Conservation 5:183190.CrossRefGoogle Scholar
Lozano, G. 1984. Comunidades Vegetales del Banco norte del Cerro ‘El Cielo’, y la flora vascular del Parque Nacional Natural Tayrona (Magdalena, Colombia). Pp. 407422 in van der Hammen, T. & Ruiz, P. M. (eds). Studies on tropical Andean ecosystems, volume 2, La Sierra Nevada de Santa Marta (Colombia), Transecto Buritaca-La Cumbre. J. Cramer, Berlin. 603 pp.Google Scholar
Meijer, W. 1974. Field Guide to Trees of West Malesia. University of Kentucky, Lexington.Google Scholar
Nagel, J. F. 1956. Fog precipitation on Table Mountain. Quarterly Journal of the Royal Meteorological Society 82:452460.CrossRefGoogle Scholar
Riehl, H. 1979. Climate and weather in the tropics. Academic Press, New York. 611 pp.Google Scholar
Stadtmüller, T. 1987. Los Basques Nublados en el Trópica Húmedo. Una revisión bibliográfica. Universidad de la Naciones Unidas, Tokio, y Centra Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica. 85 pp.Google Scholar
Strahler, A. N. 1979. Geografia Física (Cuarta Edición). Ediciones Omega, S. A., Barcelona. 767 pp.Google Scholar
Sugden, A. M. 1982. The vegetation of the Serranía de Macuira, Guajira, Colombia: a contrast of arid lowlands and an isolated cloud forest. Journal of the Arnold Arboretum 63:130.CrossRefGoogle Scholar
Sugden, A. M. 1986. The montane vegetation and flora of Margarita Island, Venezuela. Journal of the Arnold Arboretum 67:187232.CrossRefGoogle Scholar
Sugden, A. M. & Robins, R. L. 1979. Aspects of the ecology of vascular epiphytes in two Colombian cloud forests, I. The distribution of epiphytic flora. Biotropica 11:173188.CrossRefGoogle Scholar
Van Steenis, C. G. G. J. 1972. The effect of montane mass elevation. Pp. 1920 in van Steenis, C. G. G. J. (ed.). The mountains of Java. E. J. Brill, Leiden.Google Scholar
Veneklaas, E. 1990. Rainfall interception and aboveground nutrient fluxes in Colombian montane tropical rain forests. PhD Dissertation, University of Utrecht, The Netherlands.Google Scholar
Vogelmann, H. W. 1973. Fog interception in the cloud forest of eastern Mexico. Bioscience 23:96100.CrossRefGoogle Scholar
Weaver, P. L. 1972. Cloud moisture interception in the Luquillo Mountains of Puerto Rico. Caribbean Journal of Science 12:129144.Google Scholar
Weaver, P. L. 1991. Environmental gradients affect forest composition in the Luquillo Mountains of Puerto Rico. Interciencia 16:142151.Google Scholar
Weaver, P. L. & Murphy, P. G. 1990. Forest structure and productivity in Puerto Rico's Luquillo Mountains. Biotropica 22:6982.CrossRefGoogle Scholar
Werff, H. H. van der. 1978. The vegetation of the Galápagos Islands. PhD Dissertation, University of Utrecht, The Netherlands.Google Scholar
Wolf, J. H. D. 1993. Ecology of epiphytes and epiphyte communities in montane rain forests, Colombia. PhD Thesis, University of Amsterdam. 238 pp.Google Scholar
Zadroga, F. 1981. The hydrological importance of a montane cloud forest area of Costa Rica. Pp. 5973 in Lal, R. & Russell, E. W. (eds). Tropical agricultural hydrology. John Wiley & Sons, Ltd. 611 pp.Google Scholar