Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T14:28:30.757Z Has data issue: false hasContentIssue false

Femtosecond laser nanofabrication of hydrogel biomaterial

Published online by Cambridge University Press:  14 December 2011

Wande Zhang
Affiliation:
University of California, San Diego; wazhang@ucsd.edu
Shaochen Chen
Affiliation:
University of California, San Diego; shc064@ucsd.edu
Get access

Abstract

In recent years, biomaterial investigators have increasingly focused their research on hydrogels and their capability to be fabricated into tissue engineering scaffolds. Although several fabrication methods have been used to produce hydrogel scaffolds, those methods are unable to routinely produce three-dimensional submicron and nanoscale scaffolds with precise control of the geometry, a crucial factor necessitated by the recent developments in the field of tissue engineering. Femtosecond laser-induced two-photon polymerization is a promising technique that fulfills these requirements. In our work, we used a femtosecond laser to fabricate three-dimensional submicron-scale scaffolds with poly(ethylene glycol) (PEG). The modulus, dimensions, and shape of the scaffold can be readily adjusted by changing both the laser parameters and the molecular weight of the PEG prepolymer. With the femtosecond laser, we also fabricated two-dimensional topographical patterns, which have important applications in basic biological research. To improve the throughput of femtosecond laser fabrication, we integrated the femtosecond direct-write process with a nano-imprint process by which the femtosecond laser is used to produce nano-patterned molds. We then carried out nanoimprinting to transfer the nanofeatures in the mold to the hydrogel in a massively parallel fashion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Peppas, N.A., Hilt, J.Z., Khademhosseini, A., Langer, R., Adv. Mater. 18, 1345 (2006).CrossRefGoogle Scholar
2.Drury, J.L., Mooney, D.J., Biomaterials 24, 4337 (2003).CrossRefGoogle Scholar
3.Bryant, S.J., Anseth, K.S., J. Biomed. Mater. Res. 59, 63 (2002).CrossRefGoogle Scholar
4.Yamanlar, S., Sant, S., Boudou, T., Picart, C., Khademhosseini, A., Biomaterials 32, 5590 (2011).CrossRefGoogle Scholar
5.O’Brien, F.J., Harley, B.A., Yannas, I.V., Gibson, L.J., Biomaterials 26, 433 (2005).CrossRefGoogle Scholar
6.Zhang, Y.Z., Ouyang, H.W., Lim, C.T., Ramakrishna, S., Huang, Z.M., J. Biomed. Mater. Res. Part B 72B, 156 (2005).CrossRefGoogle Scholar
7.Mauck, R.L., Yuan, X., Tuan, R.S., Osteoarthritis Cartilage 14, 179 (2006).CrossRefGoogle Scholar
8.Pattison, M.A., Wurster, S., Webster, T.J., Haberstroh, K.M., Biomaterials 26, 2491 (2005).CrossRefGoogle Scholar
9.Xie, C.Q., Hu, J., Ma, H., Zhang, J., Chang, L.J., Chen, Y.E., Ma, P.X., Biomaterials 32, 4369 (2011).CrossRefGoogle Scholar
10.Vidovic, E., Klee, D., Hocker, H., J. Appl. Polym. Sci. 119, 1322 (2010).CrossRefGoogle Scholar
11.Jintang, H., Beckemper, S., Gillner, A., Wang, K., J. Micromech. Microeng. 20, 095004 (2010).Google Scholar
12.Gombotz, W.R., Guanghui, W., Horbett, T.A., Hoffman, A.S., J. Biomed. Mater. Res. 25, 1547 (1991).CrossRefGoogle Scholar
13.West, J.L., Hubbell, J.A., Macromolecules 32, 241 (1999).CrossRefGoogle Scholar
14.Nam, Y.S., Yoon, J.J., Park, T.G., J. Biomed. Mater. Res. 53, 1 (2000).3.0.CO;2-R>CrossRefGoogle Scholar
15.Sachlos, E., Czernuszka, J.T., Eur. Cells Mater. 5, 29 (2003).CrossRefGoogle Scholar
16.Jang, J.W., Lee, B., Whan, H.W., Polym. Korea 28, 382 (2004).Google Scholar
17.Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L., Biomacromolecules 3, 232 (2002).CrossRefGoogle Scholar
18.Nam, Y.S., Park, T.G., J. Biomed. Mater. Res. 47, 8 (1999).3.0.CO;2-L>CrossRefGoogle Scholar
19.Cai, Z.J., Cheng, G.X., J. Mater. Sci. Lett. 22, 153 (2003).CrossRefGoogle Scholar
20.Norman, J., Desai, T., Ann. Biomed. Eng. 34, 89 (2006).CrossRefGoogle Scholar
21.Huang, J.T., Wu, S., Beckemper, S., Gillner, A., Zhang, Q., Wang, K.Y., Opt. Lett. 35, 2711 (2010).CrossRefGoogle Scholar
22.Qiu, J., Teichman, J., Wang, T., Elmaanaoui, B., Gamez, D., Milner, T.E., J. Biophotonics 3, 277 (2010).CrossRefGoogle Scholar
23.Maruo, S., Nakamura, O., Kawata, S., Opt. Lett. 22, 132 (1997).CrossRefGoogle Scholar
24.Ovsianikov, A., Malinauskas, M., Schlie, S., Chichkov, B., Gittard, S., Narayan, R., Löbler, M., Sternberg, K., Schmitz, K.P., Haverich, A., Acta Biomater. 7, 967 (2010).CrossRefGoogle Scholar
25.Qiu, J., Wang, T., Paranjape, A.S., Milner, T.E., Proc. SPIE 7203 (2009).Google Scholar
26.Göppert-Mayer, M., Ann. Phys. 401, 273 (1931).CrossRefGoogle Scholar
27.Qiu, J., Wang, T., Milner, T.E., Teichman, J.M.H., Neev, J., Glickman, R.D., Chan, K.F., J. Biomed. Opt. 15, 5 (2010).CrossRefGoogle Scholar
28.Serbin, J., Egbert, A., Ostendorf, A., Opt. Lett. 28, 301 (2003).CrossRefGoogle Scholar
29.Grimstad, I.A., Exp. Cell. Res. 173, 515 (1987).CrossRefGoogle Scholar
30.Nicolson, G.L., Biochim. Biophys. Acta 948, 175 (1988).Google Scholar
31.Bettinger, C.J., Langer, R., Borenstein, J.T., Angew. Chem. Int. Ed. 48, 5406 (2009).CrossRefGoogle Scholar
32.Lim, J.Y., Shaughnessy, M.C., Zhou, Z.Y., Noh, H., Vogler, E.A., Donahue, H.J., Biomaterials 29, 1776 (2008).CrossRefGoogle Scholar
33.Miller, E.D., Li, K., Kanade, T., Weiss, L.E., Walker, L.M., Campbell, P.G., Biomaterials 32, 2775 (2011).CrossRefGoogle Scholar
34.Zhang, W., Han, L.-H., Chen, S., J. Manuf. Sci. Eng. 132, 030907 (2010).CrossRefGoogle Scholar