Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-02T21:36:06.406Z Has data issue: false hasContentIssue false

Photomemristors using carbon nanowall/diamond heterojunctions

Published online by Cambridge University Press:  06 February 2019

Kenji Ueda*
Affiliation:
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Hideharu Itou
Affiliation:
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
Hidefumi Asano
Affiliation:
Department of Materials Physics, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
*
a)Address all correspondence to this author. e-mail: k-ueda@numse.nagoya-u.ac.jp
Get access

Abstract

This work demonstrates the in situ growth of carbon nanowalls (CNWs) on diamond semiconductors by microwave plasma-assisted chemical vapor deposition. The resulting CNW/diamond junctions behave as photomemristors having both photocontrollable multiple resistance states and nonvolatile memory functions. The resistance state (high or low resistance) can be selected by irradiation with blue or violet light in conjunction with the application of a bias voltage, giving a large resistance switching ratio of ∼106. The photoinduced resistance switching behaviors are rarely observed and has only been observed in a few materials and/or heterostructures. These junctions also exhibit a photoresponsivity of ∼12 A/W, which is much larger than that obtained from photodiodes composed of other materials. These results suggest that CNW/diamond (i.e., carbon sp2/sp3) junctions could have applications in novel photocontrollable devices, which have photosensing, memory, and switching functions.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kasu, M., Ueda, K., Yamauchi, Y., Tallaire, A., and Makimoto, T.: Diamond-based RF power transistors: Fundamentals and applications. Diamond Relat. Mater. 16, 1010 (2007).CrossRefGoogle Scholar
Kawarada, H., Tsuboi, H., Naruo, T., Yamada, T., Xu, T., Daicho, A., Saito, T., and Hiraiwa, A.: C–H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Appl. Phys. Lett. 105, 013510 (2014).CrossRefGoogle Scholar
Geim, A.K. and Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183 (2007).CrossRefGoogle ScholarPubMed
Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A., and Geim, A.K.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).CrossRefGoogle ScholarPubMed
Yu, J., Liu, G., Sumant, A.V., Goyal, V., and Baladin, A.A.: Graphene-on-diamond devices with increased current-carrying capacity: Carbon sp 2-on-sp 3 technology. Nano Lett. 12, 1603 (2012).CrossRefGoogle ScholarPubMed
Konabe, S., Cuong, N.T., Otani, M., and Okada, S.: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations. Appl. Phys. Express 6, 045104 (2013).CrossRefGoogle Scholar
Shiga, T., Konabe, S., Shiomi, J., Yamamoto, T., Maruyama, S., and Okada, S.: Graphene–diamond hybrid structure as spin-polarized conducting wire with thermally efficient heat sinks. Appl. Phys. Lett. 100, 233101 (2012).CrossRefGoogle Scholar
Ma, Y., Dai, Y., Guo, M., and Huang, B.: Graphene–diamond interface: Gap opening and electronic spin injection. Phys. Rev. B 85, 235448 (2012).CrossRefGoogle Scholar
Wang, Y., Jaiswal, M., Lin, M., Saha, S., Ozyilmaz, B., and Loh, K.P.: Electronic properties of nanodiamond decorated graphene. ACS Nano 6, 1018 (2012).CrossRefGoogle ScholarPubMed
Ueda, K., Aichi, S., and Asano, H.: Photo-controllable memristive behavior of graphene/diamond heterojunctions. Appl. Phys. Lett. 108, 222102 (2016).CrossRefGoogle Scholar
Tzeng, Y., Chen, W.L., Wu, C., Lo, J-Y., and Li, C-Y.: The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition. Carbon 53, 120 (2013).CrossRefGoogle Scholar
Davami, K., Shaygan, M., Kheirabi, N., Zhao, J., Kovalenko, D.A., Rummeli, M.H., Opitz, J., Cuniberti, G., Lee, J-S., and Meyyappan, M.: Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 72, 372 (2014).CrossRefGoogle Scholar
Hiramatsu, M., Shiji, K., Amano, H., and Hori, M.: Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma enhanced chemical vapor deposition assisted by hydrogen radical injection. Appl. Phys. Lett. 84, 4708 (2004).CrossRefGoogle Scholar
Ago, H., Ogawa, Y., Tsuji, M., Mizuno, S., and Hibino, H.: Catalytic growth of graphene: Toward large-area single-crystalline graphene. J. Phys. Chem. Lett. 3, 2228 (2012).CrossRefGoogle ScholarPubMed
Kondo, S., Kawai, S., Takeuchi, W., Yamakawa, K., Den, S., Kano, H., Hiramatsu, M., and Hori, M.: Initial growth process of carbon nanowalls synthesized by radical injection plasma enhanced chemical vapor deposition. J. Appl. Phys. 106, 094302 (2009).CrossRefGoogle Scholar
Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T.: Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films. Phys. Rev. B 38, 4067 (1988).CrossRefGoogle ScholarPubMed
Nemanich, R.J., Glass, J.T., Lucovsky, G., and Shroder, R.E.: Raman scattering characterization of carbon bonding in diamond and diamondlike thin films. J. Vac. Sci. Technol., A 6, 1783 (1988).CrossRefGoogle Scholar
Kolmogorov, A.N. and Crespi, V.H.: Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 71, 235415 (2005).CrossRefGoogle Scholar
Borst, T.H. and Weiss, O.: Electrical characterization of homoepitaxial diamond films doped with B, P, Li, and Na during crystal growth. Diamond Relat. Mater. 7, 948 (1995).CrossRefGoogle Scholar
Chen, C-C., Aykol, M., Chang, C-C., Levi, A.F.J., and Cronin, S.G.: Graphene–silicon Schottky diodes. Nano Lett. 11, 1863 (2011).CrossRefGoogle ScholarPubMed
Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Di Gaspare, L., Palange, E., and Evangelisti, F.: Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett. 72, 3175 (1998).CrossRefGoogle Scholar
Zeng, L., Wang, M., Hu, H., Nie, B., Yu, Y., Wu, C., Wang, L., Hu, J., Xie, C., Liang, F., and Luo, L.: Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector. ACS Appl. Mater. Interfaces 5, 9362 (2013).CrossRefGoogle ScholarPubMed
Pershin, Y.V. and Ventra, M.D.: Memory effects in complex materials and nanoscale systems. Adv. Phys. 60, 145 (2011).CrossRefGoogle Scholar
Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., and Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 012107 (2005).CrossRefGoogle Scholar
Wang, W., Panin, G.N., Fu, X., Zhang, L., IIanchezhiyan, P., Pelenovich, V.O., Fu, D., and Kang, T.W.: MoS2 memristor with photoresistive switching. Sci. Rep. 6, 31224 (2016).CrossRefGoogle ScholarPubMed
Maier, P., Hartmann, F., Dias, M.R.S., Emmerling, M., Schneider, C., Castelano, L.K., Kamp, M., Marques, G.E., Lopez-Richard, V., Worschech, L., and Hofling, S.: Light sensitive memristor with bi-directional and wavelength-dependent conductance control. Appl. Phys. Lett. 109, 023501 (2016).CrossRefGoogle Scholar
Porro, S., Accornero, E., Pirri, C.F., and Ricciardi, C.: Memristive devices based on graphene oxide. Carbon 85, 383 (2015).CrossRefGoogle Scholar
Raeber, T.J., Zhao, Z.C., Mordoch, B.J., McKenzie, D.R., McCulloch, D.G., and Partridge, J.G.: Resistive switching and transport characteristics of an all-carbon memristor. Carbon. 136, 280 (2018).Google Scholar
Chen, Y., Chang, K., Chang, T., Chen, H., Young, T., Tsai, T., Zhang, R., Chu, T., Ciou, J., Lou, J., Chen, K., Chen, J., Zheng, J., and Sze, S.M.: Resistance switching induced by hydrogen and oxygen in diamond-like carbon memristor. IEEE Electron Device Lett. 35, 1016 (2014).CrossRefGoogle Scholar
Ueda, K., Kawamoto, K., Soumiya, T., and Asano, H.: High-temperature characteristics of Ag and Ni/diamond Schottky diodes. Diamond Relat. Mater. 38, 41 (2013).CrossRefGoogle Scholar