Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-27T19:05:13.876Z Has data issue: false hasContentIssue false

Fragilariopsis kerguelensis size variability from the Indian subtropical Southern Ocean over the last 42 000 years

Published online by Cambridge University Press:  02 November 2016

Sunil Kumar Shukla*
Affiliation:
Birbal Sahni Institute of Palaeosciences, 53, University Road, Lucknow 226 007, India UMR-CNRS 5805 EPOC, Université de Bordeaux, Allée Geoffroy Saint Hilaire, 33615Pessac Cedex, France
Xavier Crosta
Affiliation:
UMR-CNRS 5805 EPOC, Université de Bordeaux, Allée Geoffroy Saint Hilaire, 33615Pessac Cedex, France

Abstract

In the open Southern Ocean (SO), both modern and past size changes of the diatom Fragilariopsis kerguelensis appear to be strongly controlled by iron availability. Conversely, sea surface temperatures (SST) and sea ice seasonal dynamics take over in the seasonal sea-ice zone where iron is not limiting. No information exists on F. kerguelensis biometry from the subtropical SO, on the other extreme of the thermal and nutrient gradients. We present here new data on mean valve area of F. kerguelensis (FkergArea) from a sediment core covering the last ~42 cal kyrs from the southern Subtropical Front (SSTF) of the Indian sector of the SO, where iron and silica stocks are thought to have been consistently low over this period. Our results suggest that larger F. kerguelensis valves occurred during the Last Glacial period, and declined during the Holocene period. These findings indicate that more favourable SST, within the F. kerguelensis ecological range, during the Last Glacial period may have enabled F. kerguelensis to make better use of the low silica stocks prevailing in the subtropical zone leading to larger valves. Conversely, declining FkergArea during the deglacial and the Holocene periods may have been a result of higher SST which hampered the utilization of silica.

Type
Biological Sciences
Copyright
© Antarctic Science Ltd 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelmann, A., Gersonde, R., Cortese, G., Kuhn, G. & Smetacek, V. 2006. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean. Paleoceanography, 21, 10.1029/2005PA001199.Google Scholar
Abelmann, A., Gersonde, R., Knorr, G., Zhang, X., Chapligin, B., Maier, E., Esper, O., Friedrichsen, H., Lohmann, G., Meyer, H. & Tiedemann, R. 2015. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nature Communications, 6, 10.1038/ncomms9136.Google Scholar
Amato, A., Orsini, L., D’Alelio, D. & Montresor, M. 2005. Life cycle, size reduction patterns, and ultrastructure of the pennate planktonic diatom Pseudo-nitzschia delicatissima (Bacillariophyceae). Journal of Phycology, 41, 542556.Google Scholar
Andersen, K.K., Armengaud, A. & Genthon, C. 1998. Atmospheric dust under glacial and interglacial conditions. Geophysical Research Letters, 25, 10.1029/98GL51811.Google Scholar
Assmy, P., Henjes, J., Klaas, C. & Smetacek, V. 2007. Mechanisms determining species dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx in the Southern Ocean. Deep-Sea Research I - Oceanographic Research Papers, 54, 10.1016/j.dsr.2006.12.005.Google Scholar
Assmy, P., Henjes, J., Smetacek, V. & Montresor, M. 2006. Auxospore formation by the silica-sinking, oceanic diatom Fragilariopsis kerguelensis (Bacillariophyceae). Journal of Phycology, 42, 10.1111/j.1529-8817.2006.00260.x.CrossRefGoogle Scholar
Beucher, C.P., Brzezinski, M.A. & Crosta, X. 2007. Silicic acid dynamics in the glacial sub-Antarctic: implications for the silicic acid leakage hypothesis. Global Biogeochemical Cycles, 21, 10.1029/2006gb002746.Google Scholar
Blank, G.S., Robinson, D.H. & Sullivan, C.W. 1986. Diatom mineralization of silicic acid. 8. Metabolic requirements and the timing of protein synthesis. Journal of Phycology, 22, 10.1111/j.1529-8817.1986.tb00039.x.Google Scholar
Boyd, P.W., Dillingham, P.W., McGraw, C.M., Armstrong, E.A., Cornwall, C.E., Feng, Y.-Y., Hurd, C.L., Gault-Ringold, M., Roleda, M.Y., Timmins-Schiffman, E. & Nunn, B.L. 2016. Physiological responses of a Southern Ocean diatom to complex future ocean conditions. Nature Climate Change, 6, 10.1038/nclimate2811.Google Scholar
Cortese, G. & Gersonde, R. 2007. Morphometric variability in the diatom Fragilariopsis kerguelensis: implications for Southern Ocean paleoceanography. Earth and Planetary Science Letters, 257, 10.1016/j.epsl.2007.03.021.CrossRefGoogle Scholar
Cortese, G. & Gersonde, R. 2008. Plio/Pleistocene changes in the main biogenic silica carrier in the Southern Ocean, Atlantic Sector. Marine Geology, 252, 10.1016/j.margeo.2008.03.015.Google Scholar
Cortese, G., Gersonde, R., Maschner, K. & Medley, P. 2012. Glacial-interglacial size variability in the diatom Fragilariopsis kerguelensis: possible iron/dust controls? Paleoceanography, 27, 10.1029/2011pa002187.CrossRefGoogle Scholar
Crosta, X. 2009. Holocene size variations in two diatom species off East Antarctica: productivity vs environmental conditions. Deep-Sea Research I - Oceanographic Research Papers, 56, 10.1016/j.dsr.2009.06.009.Google Scholar
Crosta, X., Romero, O., Armand, L.K. & Pichon, J.J. 2005a. The biogeography of major diatom taxa in Southern Ocean sediments. 2. Open ocean related species. Palaeogeography Palaeoclimatology Palaeoecology, 223, 10.1016/j.palaeo.2005.03.028.Google Scholar
Crosta, X., Shemesh, A., Etourneau, J., Yam, R., Billy, I. &Pichon, J.J. 2005b. Nutrient cycling in the Indian sector of the Southern Ocean over the last 50,000 years. Global Biogeochemical Cycles, 19, 10.1029/2004gb002344.Google Scholar
D’Alelio, D., Amato, A., Luedeking, A. & Montresor, M. 2009. Sexual and vegetative phases in planktonic diatom Pseudo-nitzschia multistriata . Harmful Algae, 8, 225232.Google Scholar
DeFelice, D.R. & Wise, S.W. 1981. Surface lithofacies, biofacies, and diatom diversity patterns as models for delineation of climatic change in the south-east Atlantic Ocean. Marine Micropaleontology, 6, 2970.CrossRefGoogle Scholar
Dézileau, L., Reyss, J.L. & Lemoine, F. 2003. Late Quaternary changes in biogenic opal fluxes in the southern Indian Ocean. Marine Geology, 202, 10.1016/s0025-3227(03)00283-4.Google Scholar
Fenner, J., Schrader, H.J. & Wienigk, H. 1976. Diatom phytoplankton studies in the southern Pacific Ocean, composition and correlation to the Antarctic Convergence and its paleoecological significance. Initial Reports of the Deep Sea Drilling Project, 35, 757813.Google Scholar
Froneman, P.W., Perissinotto, R., McQuaid, C.D. & Laubscher, R.K. 1995. Summer distribution of net phytoplankton in the Atlantic sector of the Southern Ocean. Polar Biology, 15, 7784.Google Scholar
Grigorov, I., Pearce, R.B. & Kemp, A.E.S. 2002. Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP leg 177, Site 1093. Deep-Sea Research II - Topical Studies in Oceanography, 49, 33913407.Google Scholar
Hasle, G.R. 1969. An analysis of the phytoplankton of the Pacific Southern Ocean: abundance, composition, and distribution during the Brategg Expedition, 1947–1948. Oslo: Univ. Forl.Google Scholar
Hildebrand, M. 2000. Silicic acid transport and its control during cell wall silicification in diatoms. In Baeüerlein, E., ed. Biomineralization: from biology to biotechnology and medical application. Weinheim, NY: Wiley-VCH, 171188.Google Scholar
Hilligsøe, K.M., Richardson, K., Bendtsen, J., Sørensen, L.-L., Nielsen, T.G. & Lyngsgaard, M.M. 2011. Linking phytoplankton community size composition with temperature, plankton food web structure and sea-air CO2 flux. Deep-Sea Research I - Oceanographic Research Papers, 58, 10.1016/j.dsr.2011.06.004.Google Scholar
Kiørboe, T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology, 29, 10.1016/S0065-2881(08)60129-7.Google Scholar
Lambert, F., Delmonte, B., Petit, J.R., Bigler, M., Kaufmann, P.R., Hutterli, M.A., Stocker, T.F., Ruth, U., Steffensen, J.P. & Maggi, V. 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature, 452, 10.1038/nature06763.Google Scholar
Lamy, F., Gersonde, R., Winckler, G., Esper, O., Jaeschke, A., Kuhn, G., Ullermann, J., Martinez-Garcia, A., Lambert, F. & Kilian, R. 2014. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science, 343, 10.1126/science.1245424.Google Scholar
Lefèvre, N. & Watson, A.J. 1999. Modeling the geochemical cycle of iron in the oceans and its impact on atmospheric CO2 concentrations. Global Biogeochemical Cycles, 13, 10.1029/1999GB900034.Google Scholar
Leynaert, A., Bucciarelli, E., Claquin, P., Dugdale, R.C., Martin-Jézéquel, V., Pondaven, P. & Ragueneau, O. 2004. Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnology and Oceanography, 49, 10.4319/lo.2004.49.4.1134.Google Scholar
Locarnini, R.A., Mishonov, A.V., Antonov, J.I., Boyer, T.P., Garcia, H.E., Baranova, O.K., Zweng, M.M. & Johnson, D.R. 2010. World ocean atlas 2009. Volume 1: temperature. In Levitus, S., ed. NOAA atlas. NESDIS 68. Washington, DC: US Government Printing Office, 184 pp.Google Scholar
Mahowald, N.M., Baker, A.R., Bergametti, G., Brooks, N., Duce, R.A., Jickells, T.D., Kubilay, N., Prospero, J.M. & Tegen, I. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles, 19, 10.1029/2004GB002402.Google Scholar
Martin-Jézéquel, V., Hildebrand, M. & Brzezinski, M.A. 2000. Silicon metabolism in diatoms: implications for growth. Journal of Phycology, 36, 10.1046/j.1529-8817.2000.00019.x.Google Scholar
Nair, A., Mohan, R., Manoj, M.C. & Thamban, M. 2015. Glacial-interglacial variability in diatom abundance and valve size: implications for Southern Ocean paleoceanography. Paleoceanography, 30, 10.1002/2014PA002680.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. & Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429436.Google Scholar
Shukla, S.K., Crespin, J. & Crosta, X. 2016. Thalassiosira lentiginosa size variation and associated biogenic silica burial in the Southern Ocean over the last 42 kyrs. Marine Micropalaeontology, 127, 10.1016/j.marmicro.2016.07.006.Google Scholar
Shukla, S.K., Crosta, X., Cortese, G. & Nayak, G.N. 2013. Climate mediated size variability of diatom Fragilariopsis kerguelensis in the Southern Ocean. Quaternary Science Reviews, 69, 10.1016/j.quascirev.2013.03.005.Google Scholar
Smith, W.O. Jr, ed. 1990. Polar oceanography. Part B: chemistry, biology and geology. San Diego, CA: Academic Press, 477517.Google Scholar
Timmermans, K.R. & van der Wagt, B. 2010. Variability in cell size, nutrient depletion, and growth rates of the Southern Ocean diatom Fragilariopsis kerguelensis (Bacillariophyceae) after prolonged iron limitation. Journal of Phycology, 46, 10.1111/j.1529-8817.2010.00827.x.Google Scholar
Timmermans, K.R., van der Wagt, B. & de Baar, H.J.W. 2004. Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnology and Oceanography, 49, 10.4319/lo.2004.49.6.2141.Google Scholar
Zielinski, U. & Gersonde, R. 1997. Diatom distribution in Southern Ocean surface sediments (Atlantic sector): implications for paleoenvironmental reconstructions. Palaeogeography Palaeoclimatology Palaeoecology, 129, 10.1016/S0031-0182(96)00130-7.Google Scholar
Supplementary material: PDF

Shukla and Crosta supplementary material

Shukla and Crosta supplementary material 1

Download Shukla and Crosta supplementary material(PDF)
PDF 355.4 KB