
JFP 11 (6): 673–680, November 2001. c© 2001 Cambridge University Press

DOI: 10.1017/S0956796801004166 Printed in the United Kingdom

673

F U N C T I O N A L P E A R L S

Normalization by evaluation
with typed abstract syntax

OLIVIER DANVY, MORTEN RHIGER

BRICSã, Department of Computer Science, University of Aarhus,

Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark

(e-mail: {danvy,mrhiger}@brics.dk)

(Home pages: http://www.brics.dk/~{danvy,mrhiger})

KRISTOFFER H. ROSE

IBM T. J. Watson Research Center,

30 Saw Mill River Road, Hawthorne, NY 10532, USA

(e-mail: krisrose@us.ibm.com)

1 A write-only typed abstract syntax

In higher-order abstract syntax, the variables and bindings of an object language are

represented by variables and bindings of a meta-language. Let us consider the simply

typed λ-calculus as object language and Haskell as meta-language. For concreteness,

we also throw in integers and addition, but only in this section.

data Term = INT Int | ADD Term Term

| APP Term Term | LAM (Term → Term)

The constructors are typed as follows.

INT :: Int → Term

ADD :: Term → Term → Term

APP :: Term → (Term → Term)

LAM :: (Term → Term) → Term

They do not prevent us from forming ill-typed terms. For example, in the scope of

these constructors, evaluating LAM(λx→APP x x) yields a value of type Term.

We can, however, provide a typed interface to these constructors preventing us

from forming ill-typed terms.

newtype Exp t = EXP Term

int :: Int → Exp Int

int i = EXP (INT i)

ã Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

674 O. Danvy et al.

add :: Exp Int → Exp Int → Exp Int

add (EXP e1) (EXP e2) = EXP (ADD e1 e2)

app :: Exp (a → b) → (Exp a → Exp b)

app (EXP e1) (EXP e2) = EXP (APP e1 e2)

lam :: (Exp a → Exp b) → Exp (a → b)

lam f = EXP (LAM (λx → let EXP b = f (EXP x) in b))

The type Exp is parameterized over a type t but does not use it: t is a phantom type.

These typeful constructors prevent us from forming ill-typed terms. For exam-

ple, in the scope of these constructors, evaluating lam(λx→app x x) yields a type

error. Conversely, if a term has the simple type t then its typed abstract-syntax

representation has type Exp t, which can be illustrated as follows:

λx → x + 5 :: Int → Int

lam (λx → add x (int 5)) :: Exp (Int → Int)

We intend to use this typed abstract syntax to show that normalization by

evaluation preserves types (Section 2) and yields normal forms (Section 3) for the

pure and simply typed λ-calculus. Therefore, we are only interested in constructing

abstract syntax. (To convert a constructed term into first-order abstract syntax where

variables are represented as strings, one needs to add another constructor to Term

for free variables.) Furthermore, such a write-only typed abstract syntax does not

solve the basic problem of programming higher-order abstract syntax in Haskell,

which is that the function space in the LAM summand is ‘too big’, in the sense that

it allows both non-strict and non-total functions. But again, this representation is

sufficient for our purpose here. In the remainder of this pearl, Term and Exp are

restricted to the pure λ-calculus.

2 Normalization by evaluation preserves types

Normalization by evaluation is an extensional, reduction-free technique for strongly

normalizing closed λ-terms. Source terms are represented as meta-language values

and a normalization function maps these values into a syntactic representation of

their normal form.

The technique is extensional instead of intensional because the source terms are

(higher-order) values, not (first-order) symbolic representations. It is reduction-free

because all the β-reductions needed to yield a normal form are carried out implicitly

by the underlying implementation of the meta-language. For this reason, it runs at

native speed, and thus is more efficient than traditional, symbolic normalization.

Normalization by evaluation uses two type-indexed and mutually recursive func-

tions. One, reify, traditionally noted ↓, maps a value into its representation and the

other, reflect, traditionally noted ↑, maps a representation into a value. These two

functions are canonically defined as follows, for the simply typed λ-calculus.

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

Functional pearls 675

t ::= α | t1 → t2

↓α = λv.v

↓t1→t2 = λv.λx.↓t2 @ (v @ (↑t1 @ x))

↑α = λe.e

↑t1→t2 = λe.λx.↑t2 @ (e@ (↓t1 @ x))

where overlined λ and @ denote meta-level abstractions and applications, respect-

ively, and underlined λ and @ denote object-level abstractions and applications.

A simply typed term is normalized by reifying its value. For example, let us

consider Church numbers.

zero = λs.λz.z

succ = λn.λs.λz.s@ (n@ s@ z)

three = succ @ (succ @ (succ @ zero))

add = λm.λn.λs.λz.m@ s@ (n@ s@ z)

Reifying three yields λs.λz.s@ (s@ (s@ z)), i.e., the representation in normal form

of 3. Similarly, reifying add @ zero yields λn.λs.λz.n@ (λn′.s@ n′) @ z, i.e., the

representation in long βη-normal form of the identity function over Church numbers,

reflecting that zero is neutral for addition. And finally, reifying add @ three yields

the representation in normal form of a function iterating the successor function

three times, i.e., λn.λs.λz.s@ (s@ (s@ (n@ (λn′.s@ n′) @ z))). The source terms are

values (i.e., with overlined λ and @) and, using ↓, we have reified them into a

syntactic representation of their normal form (i.e., with underlined λ and @).

The type of a Church number is (a→a) → a → a. The type of its normal form is

Term, or, perhaps more vividly, Exp ((a → a) → a → a).

Normalization by evaluation is defined by induction on the structure of types,

which makes it a natural candidate to be expressed with type classes. We thus

define a type class Nbe hosting two type-indexed functions, reify and reflect.

Representing object terms with the type Term of Section 1 would give us the usual

uninformative type t→Term for reify and Term→t for reflect. Instead, let us use

the parameterized type Exp of Section 1:

class Nbe a

where reify :: a → Exp a

reflect :: Exp a → a

The challenge now is to populate this type class with values of function type and

of base type implementing normalization by evaluation. If we can do that, the type

inferencer of Haskell will act as a theorem prover and will demonstrate that this

implementation of normalization by evaluation preserves types.

The canonical definition above dictates how to instantiate Nbe at function type.

instance (Nbe a, Nbe b) ⇒ Nbe (a → b)

where reify v = lam (λx → reify (v (reflect x)))

reflect e = λx → reflect (app e (reify x))

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

676 O. Danvy et al.

For base types, reify and reflect are two identity functions. To be type correct,

however, reify must produce a term and reflect must consume a term. We can

ensure that reify produces a term when its argument is a term. Similarly, we can

ensure that reflect consumes a term when its result is a term. Taking advantage

of the fact that the type parameter of Exp is a phantom type, we thus introduce the

following two ‘phantom’ identity functions for the base case:

coerce :: Exp (Exp a) → Exp a

coerce (EXP v) = EXP v

uncoerce :: Exp a → Exp (Exp a)

uncoerce (EXP e) = EXP e

instance Nbe (Exp a)

where reify = uncoerce

reflect = coerce

A value v is normalized by applying reify to it. In usual implementations of

normalization by evaluation, (a representation of) the type of v must be supplied

on par with v, as an input data. Here, because we use type classes, this type

is supplied as a cast, to resolve overloading. It is obtained by instantiating type

variables a with Exp a, in the original type. So for example, id . id has the

type a→a. Reifying it at type Exp a → Exp a yields λx→x, and reifying it at type

(Exp a → Exp a) → (Exp a → Exp a) yields λx→λx’→x x’.

3 Normalization by evaluation yields normal forms

In the simply typed λ-calculus, long βη-normal forms are closed terms without

β-redexes that are fully η-expanded with respect to their type. A closed term e of

type t and in normal form satisfies `nf e :: t, where terms in normal form (and

atomic form) are defined by the following rules:

∆, x :: t1 `nf e :: t2

∆ `nf (λx :: t1. e) :: t1 → t2
(Lam)

∆ `at e :: α

∆ `nf e :: α
(Coerce)

∆ `at e0 :: t1 → t2 ∆ `nf e1 :: t1

∆ `at e0 e1 :: t2
(App)

∆(x) = t

∆ `at x :: t
(Var)

No term containing β-redexes can be derived by these rules, and restricting the

Coerce rule to base types ensures that the derived terms are fully η-expanded.

As in Section 1, we provide a typed interface to the constructors of terms in

normal form, preventing us from forming ill-typed terms.

data NfTerm = COERCE AtTerm | LAM (AtTerm → NfTerm)

data AtTerm = APP AtTerm NfTerm

newtype NfExp a = NF NfTerm

newtype AtExp a = AT AtTerm

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

Functional pearls 677

app’ :: AtExp (a → b) → (NfExp a → AtExp b)

app’ (AT e1) (NF e2) = AT (APP e1 e2)

lam’ :: (AtExp a → NfExp b) → NfExp (a → b)

lam’ f = NF (LAM (λx → let NF t = f (AT x) in t))

coerce’ :: AtExp (NfExp a) → NfExp a

coerce’ (AT v) = NF (COERCE v)

uncoerce’ :: NfExp a → NfExp (NfExp a)

uncoerce’ (NF e) = NF e

These declarations specialize the representation from Section 2 to reflect that the

represented terms are in normal form. As in Section 2, we provide two phantom

identity functions, coerce’ and uncoerce’, where coerce’ constructs terms that

arise from using the above Coerce rule.

Thus equipped, we can re-express normalization by evaluation in an implementa-

tion that yields a representation of λ-terms in normal form.

class Nbe’ a

where reify :: a → NfExp a

reflect :: AtExp a → a

Again, the challenge is to populate this type class with values of function type and

of base type implementing normalization by evaluation. If we can do that, the type

inferencer of Haskell will act as a theorem prover and will demonstrate that this

implementation of normalization by evaluation preserves types and yields normal

forms.

The instances use the constructors for terms in normal forms but are otherwise

defined as in Section 2.

instance (Nbe’ a, Nbe’ b) ⇒ Nbe’ (a → b)

where reify v = lam’ (λx → reify (v (reflect x)))

reflect e = λx → reflect (app’ e (reify x))

instance Nbe’ (NfExp a)

where reify = uncoerce’

reflect = coerce’

As in Section 2, reifying id . id at type NfExp a → NfExp a yields λx→x, and reifying

it at type (NfExp a → NfExp a) → (NfExp a → NfExp a) yields λx→λx’→x x’.

For a last example, here are the Haskell definitions of Church numbers mentioned

in Section 2.

type Number a = (a → a) → a → a

zero = λs z → z

succ = λn s z → s (n s z)

three = succ (succ (succ zero))

add = λm n s z → m s (n s z)

Reifying three, add zero, and add three gives the text of their normal form at

type Number (Exp a) → Number (Exp a).

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

678 O. Danvy et al.

4 Conclusions and issues

We have presented a simple encoding of typed abstract syntax in Haskell, and

we have used this typed abstract syntax to demonstrate that normalization by

evaluation preserves simple types and yields residual programs in βη-normal form.

The encoding is write-only because it does not lend itself to programs taking typed

abstract syntax as input, such as a typed transformation into continuation-passing

style. Nevertheless, it is sufficient to establish two key properties of normalization

by evaluation automatically, using the Haskell type inferencer as a theorem prover.

These two properties could be illustrated more directly in a language with depen-

dent types such as Martin-Löf’s type theory. In such a language, one can directly

embed simply typed λ-terms (in normal form or not), express normalization by

evaluation, and prove that it preserves types and yields normal forms.

Related work Normalization by evaluation takes its roots in type theory (Coquand

& Dybjer, 1997; Martin-Löf, 1975), proof theory (Berger, 1993; Berger et al., 1998;

Berger & Schwichtenberg, 1991), logic (Altenkirch et al., 1996), category theory (Al-

tenkirch et al., 1995; Čubrić et al., 1998; Reynolds, 1998), and partial evalua-

tion (Danvy, 1998; Filinski, 1999; Rhiger, 1999; Rose, 1998). Long βη-normal forms

were specified, for example, in Huet’s thesis (Huet, 1976). The particular character-

ization we use originates in Pfenning’s work on Logical Frameworks, and so does

higher-order abstract syntax (Pfenning & Elliott, 1988). We use it further to pair

normalization by evaluation and run-time code generation (Balat & Danvy, 1998;

Rhiger, 2001). Our typed abstract syntax is akin to Leijen and Meijer’s embedding

of SQL into Haskell, which introduced phantom types (Leijen & Meijer, 1999).

Phantom types provide a typing discipline for otherwise untyped values such as

pointers in a foreign language interface (Finne et al., 1999).

Acknowledgements

A preliminary and longer version of this article is available in the proceedings of

FLOPS 2001 (Danvy & Rhiger, 2001). We would like to thank Simon Peyton Jones

for identifying phantom types in it. The present version has benefited from Richard

Bird’s editorial advice and from Ralf Hinze’s comments.

Part of this work was carried out while the second author was visiting Jason

Hickey at Caltech, in the summer and fall of 2000, and while the third author was

affiliated with BRICS, in 1996-1997. We are supported by the ESPRIT Working

Group APPSEM (www.md.chalmers.se/Cs/Research/Semantics/APPSEM/).

References

Altenkirch, T., Hofmann, M. & Streicher, T. (1995) Categorical reconstruction of a reduction-

free normalization proof. In: Pitt, D. H., Rydeheard, D. E. & Johnstone, P. (eds.), Cate-

gory Theory and Computer Science: Lecture Notes in Computer Science 953, pp. 182–199.

Springer-Verlag.

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

Functional pearls 679

Altenkirch, T., Hofmann, M. & Streicher, T. (1996) Reduction-free normalisation for a

polymorphic system. In: Clarke E. M. (ed.), Proceedings 11th Annual IEEE Symposium on

Logic in Computer Science, pp. 98–106. IEEE Press.

Balat, V. & Danvy, O. (1998) Strong normalization by type-directed partial evaluation and

run-time code generation. In: Leroy, X. & Ohori, A. (eds.), Proceedings 2nd International

Workshop on Types in Compilation: Lecture Notes in Computer Science 1473, pp. 240–252.

Springer-Verlag.

Berger, U. (1993) Program extraction from normalization proofs. In: Bezem, M. & Groote, J.

F. (eds.), Typed Lambda Calculi and Applications: Lecture Notes in Computer Science 664,

pp. 91–106. Springer-Verlag.

Berger, U. & Schwichtenberg, H. (1991) An inverse of the evaluation functional for typed λ-

calculus. In: Kahn, G. (ed), Proceedings 6th Annual IEEE Symposium on Logic in Computer

Science, pp. 203–211. IEEE Press.

Berger, U., Eberl, M. & Schwichtenberg, H. (1998) Normalization by evaluation. In: Möller,

B. & Tucker, J. V. (eds.), Prospects for Hardware Foundations (NADA): Lecture Notes in

Computer Science 1546, pp. 117–137. Springer-Verlag.

Coquand, T. & Dybjer, P. (1997) Intuitionistic model constructions and normalization proofs.

Mathematical Structures in Computer Science, 7, 75–94.

Čubrić, D., Dybjer, P. & Scott, P. (1998) Normalization and the Yoneda embedding. Mathe-

matical Structures in Computer Science, 8, 153–192.

Danvy, O. (1998) Type-directed partial evaluation. In: Hatcliff, J., Mogensen, T. Æ. &

Thiemann, P. (eds.), Partial Evaluation – Practice and Theory; proceedings of the 1998 DIKU

Summer School: Lecture Notes in Computer Science 1706, pp. 367–411. Springer-Verlag.

Danvy, O. & Dybjer, P. (eds.) (1998) Preliminary Proceedings of the 1998 APPSEM Workshop

on Normalization by Evaluation, NBE ’98, Chalmers, Sweden. BRICS Note Series, nos. NS–

98–1.

Danvy, O. & Rhiger, M. (2001) A simple take on typed abstract syntax in Haskell-like

languages. In: Kuchen, H. & Ueda, K. (eds)., 5th International Symposium on Functional

and Logic Programming: Lecture Notes in Computer Science 2024, pp. 343–358. Springer-

Verlag.

Filinski, A. (1999) A semantic account of type-directed partial evaluation. In: Nadathur, G.

(ed.), Proceedings of the International Conference on Principles and Practice of Declarative

Programming: Lecture Notes in Computer Science 1702, pp. 378–395. Springer-Verlag.

Finne, S., Leijen, D., Meijer, E. & Peyton Jones, S. (1999) Calling hell from heaven and heaven

from hell. In: Lee, P. (ed.), Proceedings 1999 ACM SIGPLAN International Conference on

Functional Programming, pp. 114–125. ACM Press.

Huet, G. (1976) Résolution d’équations dans les langages d’ordre 1, 2, ..., ω. Thèse d’État,

Université de Paris VII, Paris, France.

Leijen, D. & Meijer, E. (1999) Domain specific embedded compilers. In: Ball, T. (ed.),

Proceedings of the 2nd USENIX Conference on Domain-Specific Languages, pp. 109–122.

Martin-Löf, P. (1975) About models for intuitionistic type theories and the notion of defi-

nitional equality. Proceedings 3rd Scandinavian Logic Symposium: Studies in Logic and the

Foundation of Mathematics 82, pp. 81–109. North-Holland.

Pfenning, F. & Elliott, C. (1988) Higher-order abstract syntax. In: Schwartz, M. D. (ed.),

Proceedings ACM SIGPLAN’88 Conference on Programming Languages Design and Imple-

mentation, pp. 199–208. (SIGPLAN Notices, 23(7).) ACM Press.

Reynolds, J. C. (1998) Normalization and functor categories. In: Danvy, O. & Dybjer, P. (eds.),

Preliminary Proceedings of the 1998 APPSEM Workshop on Normalization by Evaluation,

NBE ’98, Chalmers, Sweden.

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

680 O. Danvy et al.

Rhiger, M. (1999) Deriving a statically typed type-directed partial evaluator. In: Danvy, O.

(ed.), Proceedings ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based

Program Manipulation, pp. 25–29. BRICS Note Series, no. NS–99–1.

Rhiger, M. (2001) PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark.

Forthcoming.

Rose, K. (1998) Type-directed partial evaluation using type classes. In: Danvy, O. & Dybjer,

P. (eds.), Preliminary Proceedings of the 1998 APPSEM Workshop on Normalization by

Evaluation, NBE ’98, Chalmers, Sweden.

https://doi.org/10.1017/S0956796801004166 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796801004166

