Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-18T16:12:17.677Z Has data issue: false hasContentIssue false

Local population decline of the threatened Lesser Grey Shrike Lanius minor is linked to the modernisation of the rural landscape

Published online by Cambridge University Press:  08 July 2024

Anton Krištín*
Affiliation:
Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
Herbert Hoi
Affiliation:
Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
Peter Kaňuch
Affiliation:
Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
*
Corresponding author: Anton Krištín; Email: kristin@ife.sk

Summary

Landscape changes and the intensification of agriculture in recent centuries were largely responsible for the dramatic decline in the biodiversity of farmlands. Rural settlements have also been subject to radical changes due to modernisation, but their impact on bird populations is poorly quantified. The Lesser Grey Shrike Lanius minor is a threatened farmland bird and already extinct in many areas. We monitored a population of this long-distance migrant in a traditional farming area in the Poľana Mountains (central Slovakia) in three breeding seasons (1996, 2016, and 2021). We analysed the impact of the increase in number of modern habitations and the decrease in traditional farmsteads on the population decline. The number of breeding territories decreased from 73 in 1996 to 38 in 2016 and 22 in 2021. As the population has declined, the breeding area has also shrunk significantly. While there were no modern homesteads in the breeding territories in 1996, by 2021 their number had increased to the number of traditional farmsteads. Building a single modern house in a territory reduced the probability of nesting to about 6%, and this effect was also seen when one or two farms were still present (17% and 40%, respectively). An additional modern homestead in the territory reduced the nesting probability to almost zero, even if a farmstead was already present. In this long-term empirical study, we identified these changes as a local threat factor for the species studied. The results presented can help in the design and implementation of conservation measures in traditional farming landscapes.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of BirdLife International

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnström, J., Berg, Å. and Söderlund, H. (2008). Birds on farmsteads – effects of landscape and farming characteristics. Ornis Fennica 85, 98108.Google Scholar
Ambrosini, R., Bolzern, A.M., Canova, L., Arieni, S., Møller, A.P. and Saino, N. (2002). The distribution and colony size of barn swallows in relation to agricultural land use. Journal of Applied Ecology 39, 524534.CrossRefGoogle Scholar
Batáry, P., Dicks, L. V., Kleijn, D. and Sutherland, W. J. (2015). The role of agri‐environment schemes in conservation and environmental management. Conservation Biology 29, 10061016. https://doi.org/10.1111/cobi.12536.CrossRefGoogle ScholarPubMed
Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148.CrossRefGoogle Scholar
Benton, T.G., Bryant, D.M., Cole, L. and Crick, H.Q. (2002). Linking agricultural practice to insect and bird populations: a historical study over three decades. Journal of Applied Ecology 39, 673687.CrossRefGoogle Scholar
Benton, T.G., Vickery, J.A. and Wilson, J.D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution 18, 182188.CrossRefGoogle Scholar
Billeter, R., Liira, J., Baile, D., Bugter, R., Arens, P., Augenstein, I. et al. (2008). Indicators for biodiversity in agricultural landscapes: a pan-European study. Journal of Applied Ecology 45, 141150.CrossRefGoogle Scholar
Bronskov, O. and Keller, V. (2020). Lanius minor . In Keller, V., Herrando, S., Voříšek, P., Franch, M., Kipson, M., Milanesi, P. et al. (eds), European Breeding Bird Atlas 2: Distribution, Abundance and Change. Barcelona: European Bird Census Council/Lynx Edicions, pp. 536537.Google Scholar
Calenge, C. (2006). The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197, 516519.CrossRefGoogle Scholar
Dobrovodská, M., Kanka, R., David, S., Kollár, J., Špulerová, J., Štefunková, D. et al. (2019). Assessment of the biocultural value of traditional agricultural landscape on a plot-by-plot level: case studies from Slovakia. Biodiversity and Conservation 28, 26152645.CrossRefGoogle Scholar
Donald, P.F., Green, R.E. and Heath, M.F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society London B: Biological Sciences 268, 2529.CrossRefGoogle Scholar
Green, R.E., Cornell, S.J., Scharlemann, J.P.W. and Balmford, A. (2005). Farming and the fate of wild nature. Science 307, 550555.CrossRefGoogle ScholarPubMed
Hiron, M., Berg, Å., Eggers, S., Berggren, Å., Josefsson, J. and Pärt, T. (2015). The relationship of bird diversity to crop and non-crop heterogeneity in agricultural landscapes. Landscape Ecology 30, 20012013.CrossRefGoogle Scholar
Hiron, M., Berg, A., Eggers, S. and Pärt, T. (2013). Are farmsteads overlooked biodiversity hotspots in intensive agricultural ecosystems? Biological Conservation 159, 332342.CrossRefGoogle Scholar
Hoi, H., Krištín, A., Valera, F. and Hoi, C. (2012). Traditional versus non-traditional nest-site choice: alternative decision strategies for nest-site selection. Oecologia 169, 117124.CrossRefGoogle ScholarPubMed
Krištín, A. (1995). Why the Lesser Grey Shrike (Lanius minor) survives in Slovakia: food and habitat preferences, breeding biology. Folia Zoologica 44, 325334.Google Scholar
Krištín, A. (2010). Birds of the Special Protected Area Poľana Mts. Bratislava/Zvolen: SOS/BirdLife Slovensko/Ústav zoológie SAV/Ústav ekológie lesa SAV.Google Scholar
Krištín, A., Hoi, H., Valera, F. and Hoi, C. (2000). Breeding biology and breeding success of the Lesser Grey Shrike Lanius minor in a stable and dense population. Ibis 142, 305311.CrossRefGoogle Scholar
Krištín, A., Hoi, H., Valera, F. and Hoi, C. (2007). Philopatry, dispersal patterns and nest-site reuse in Lesser Grey Shrikes (Lanius minor). Biodiversity and Conservation 16, 987995. https://doi.org/10.1007/s10531-006-9019-8.CrossRefGoogle Scholar
Kvist, L., Giralt, D., Valera, F., Hoi, H., Krištín, A., Darchiashvili, G. et al. (2011). Population decline is accompanied by loss of genetic diversity in the Lesser Grey Shrike Lanius minor. Ibis 153, 98109.CrossRefGoogle Scholar
Lefranc, N. and Worfolk, T. (2022). Shrikes of the World, 2nd Edn. London: Bloomsbury.Google Scholar
Long, J.A. (2019). interactions: Comprehensive, User-friendly Toolkit for Probing Interactions. R package version 1.1.0. Available at https://cran.r-project.org/package=interactions.Google Scholar
Lüdecke, D. (2022). sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.11. Available at https://cran.r-project.org/package=sjPlot.Google Scholar
Noack, F., Larsen, A., Kamp, J. and Levers, C. (2021). A bird’s eye view of farm size and biodiversity: The ecological legacy of the iron curtain. American Journal of Agricultural Economics 104, 14601484.CrossRefGoogle Scholar
R Core Team (2021). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at https://www.r-project.org/.Google Scholar
Raven, P.H. and Wagner, D.L. (2021). Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proceedings of the National Academy of Sciences – PNAS 118, e2002548117.CrossRefGoogle ScholarPubMed
Rosin, Z.M., Hiron, M., Żmihorski, M., Szymański, P., Tobolka, M. and Pärt, T. (2020). Reduced biodiversity in modernized villages: A conflict between sustainable development goals. Journal of Applied Ecology 57, 467475.CrossRefGoogle Scholar
Rosin, Z.M., Pärt, T., Low, M., Kotowska, D., Tobolka, M., Szymański, P. et al. (2021). Village modernization may contribute more to farmland bird declines than agricultural intensification. Conservation Letters 14, e12843.CrossRefGoogle Scholar
Rosin, Z.M., Skórka, P., Pärt, T., Żmihorski, M., Ekner-Grzyb, A., Kwieciński, Z. et al. (2016). Villages and their old farmsteads are hot spots of bird diversity in agricultural landscapes. Journal of Applied Ecology 53, 13631372.CrossRefGoogle Scholar
Šálek, M., Bažant, M. and Żmihorski, M. (2018a). Active farmsteads are year-round strongholds for farmland birds. Journal of Applied Ecology 55, 19081918. https://doi.org/10.1111/1365-2664.13093CrossRefGoogle Scholar
Šálek, M., Hula, V., Kipson, M., Daňková, R., Niedobová, J. and Gamero, A. (2018b). Bringing diversity back to agriculture: Smaller fields and non-crop elements enhance biodiversity in intensively managed arable farmlands. Ecological Indicators 90, 6573. https://doi.org/10.1016/j.ecolind.2018.03.001CrossRefGoogle Scholar
Šálek, M., Kalinová, K., Daňková, R., Grill, S. and Żmihorski, M. (2021). Reduced diversity of farmland birds in homogenized agricultural landscape: A cross-border comparison over the former iron curtain. Agriculture, Ecosystems & Environment 321, 107628.CrossRefGoogle Scholar
Šálek, M. and Mayer, M. (2023). Farmstead modernization adversely affects farmland birds. Journal of Applied Ecology 60, 101110. https://doi.org/10.1111/1365-2664.14314.CrossRefGoogle Scholar
Stanton, R.L., Morrissey, C.A. and Clark, R.G. (2018). Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agriculture, Ecosystems & Environment 254, 244254.CrossRefGoogle Scholar
Sutcliffe, L.M., Batáry, P., Kormann, U., Báldi, A., Dicks, L.V., Herzon, I. et al. (2015). Harnessing the biodiversity value of Central and Eastern European farmland. Diversity and Distributions 21, 722730.CrossRefGoogle Scholar
Tryjanowski, P., Hartel, T., Báldi, A., Szymański, P., Tobółka, M., Herzon, I. et al. (2011). Conservation of farmland birds faces different challenges in Western and Central-Eastern Europe. Acta Ornithologica 46, 112.CrossRefGoogle Scholar
Valera, F., Hoi, H. and Krištín, A. (2003). Male shrikes punish unfaithful females. Behavioral Ecology 14, 403408.CrossRefGoogle Scholar
Wirtitsch, M., Hoi, H., Valera, F. and Krištín, A. (2001). Habitat composition and use in the Lesser Grey Shrike Lanius minor. Folia Zoologica 50, 137150.Google Scholar
Supplementary material: File

Krištín et al. supplementary material

Krištín et al. supplementary material
Download Krištín et al. supplementary material(File)
File 181.2 KB