Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-07T13:27:39.216Z Has data issue: false hasContentIssue false

Atenuación de la indefensión aprendida en ratas después del trasplante de médula adrenal en la médula espinal

Published online by Cambridge University Press:  12 May 2020

P. Tejedor-Real
Affiliation:
Departamento de Neurociencias, Escuela de Medicina, Universidad de Cádiz, Cádiz, España
J.A. Micó
Affiliation:
Departamento de Neurociencias, Escuela de Medicina, Universidad de Cádiz, Cádiz, España
J. P. Corbalán
Affiliation:
Departamento de Neurociencias, Escuela de Medicina, Universidad de Cádiz, Cádiz, España
I. Ruz-Franzi
Affiliation:
Departamento de Neurociencias, Escuela de Medicina, Universidad de Cádiz, Cádiz, España
J. M. González-Darder
Affiliation:
Departamento de Neurociencias, Escuela de Medicina, Universidad de Cádiz, Cádiz, España
J. Gibert-Rahola
Affiliation:
Departamento de Neurociencias, Escuela de Medicina, Universidad de Cádiz, Cádiz, España
Get access

Resumen

Se examinó la influencia de un trasplante medular adrenal en el espacio subaracnoideo lumbar sobre la indefensión aprendida, un modelo animal de depresión. Se encontró que las ratas trasplantadas eran menos susceptibles de sufrir indefensión de choques inescapables después de la administración que los animales con un falso trasplante. El efecto se atribuyó a la liberación de péptidos opioides por células cromafines, pues Io invirtió la naloxona. La viabilidad del tejido trasplantado se verificó por microscopio electrónico.

Type
Artículo original
Copyright
Copyright © European Psychiatric Association 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliografia

Anissman, HSuissa, ASklar, LSEscape deficits induced by uncontrollabe stress: antagonism by dopamine and norepinephrine agonists. Behav Neural Biol 1980; 28: 3444–74.Google Scholar
Bommer, NHerz, ANeuropeptides and other secretagogues in bovine chromaffin cells: their on opioid peptide metabolism. Neuropetides 1989; 13:2443–51.CrossRefGoogle ScholarPubMed
Devoize, JLRigal, FEschalier, ATrolese, JFRenoux, MInfluence of naloxone on antidepressant drug effect in the forced-swimming test in mice. Psychopharmacology 1984; 84: 71–5.CrossRefGoogle ScholarPubMed
Extein, IPottash, ALCGold, MSA possible opioid receptor dysfunction in some depressive disorders. In: Verebey, K ed. Opioids in Mental Illness: Theory, Clinical Observations, and Treatment Possibilities. New York: The New York Academy of Sciences, 1982; 108–12.Google Scholar
Gaumann, DMYaksh, TLEffects and opiate antagonistson adrenal release of neuropeptides in cats. Peptides 1988; 9: 393405.CrossRefGoogle ScholarPubMed
Guide for the Care and Use of Laboratory Animais. US Department of Health, Education and Welfare, Public health Service National Institute of Health, DHEW Publication NO (NIH) 78-23, Revised 1978.Google Scholar
Hammon, MGozlan, HBourgoin, S et al. Opioid receptors qnd neuropeptides in the CNS in rats treated chronically with amoxapine or amitriptyline. Neuropharmacology 1987; 26: 531–9.CrossRefGoogle Scholar
Isemberg, KECicero, TPossible involvement of opiate receptors in the pharmacological profiles of antidepressant compounds. Eur J Pharmacol 1984; 103: 5763.CrossRefGoogle Scholar
Kuramoto, HKondo, HFujita, TCalcitonine gene-related peptide (CGPR)-like immunoreactivity in scattered chromaffin cells and nerve fibers in the adrenal gland. Cell Tissue Res 1987; 247: 309–15.CrossRefGoogle Scholar
Linberg, IYang, HYTDistribution of met(5)-enk-arg(6)- gly(7)-leu(8)-immunoreactive peptides in rat brain: presence of multiple molecular form. Brain Res 1984; 299: 73–8.CrossRefGoogle Scholar
Livett, BGDean, DMWhelan, LGUndenfriend, SRossier, JCo-release of enkephalin and catecholamines from cultured adrenal chromaffin cells. Nature 1981; 289: 317–9.CrossRefGoogle ScholarPubMed
Martin, PSoubrié, PSimon, PNoradrenergic and opioid mediation of tricyclic-induced reversal of escape deficits caused by inescapable shock pretreatment in rats. Psychopharmacology (Berlin) 1986a; 90: 90–4.CrossRefGoogle Scholar
Martín, PSoubrié, PSimon, PShuttle-box deficits induced by inescapable shocks in rats: Reversal by the beta-adrenoceptor stimulants clenbuteron and salbutamol. Pharmacol Biochem Behav 1986b; 24: 177–81.CrossRefGoogle Scholar
Naber, DOpioids on the etiology and treatment of psychiatric disorders. In: Herz, A ed. Opioid II. Berlin, Heidelberg: Springer-Verlag, 1993; 781801.CrossRefGoogle Scholar
Ortega, JDSagen, JPharmacologic characterization of opioid peptide release from chromaffin cell transplant using a brain slice superfusion method. J Exp Brain Res 1993; 95: 381–7.Google ScholarPubMed
Ortega-Alvaro, AGibert-Rahola, JChover, AJTejedro-Real, PCasa, JMicó, JAEffect of amitriptyline on the analgesia induced by adrenal medullary tissue transplanted in the rat spinal subarachnoid space as measured by an experimental model of acute pain. Exp Neurol 1994; 130: 914.CrossRefGoogle ScholarPubMed
Petty, FSherman, ADReversal of learned helplessness by imipramine. Community Psychopharmacol 1980; 3: 371–3.Google Scholar
Ruz-Franzi, JI González-Darder JM. Study of the analgesic effects of the implant of adrenal medullary into the subarachnoid space in rats. Acta Neurochir (Wein) 1991; 52 (suppl): 3941.CrossRefGoogle ScholarPubMed
Sagen, JPappas, GDPollard, HBAdrenal medullary tissue transplants in rat spinal cord reduce pain sensitivity. Brain Res 1986a: 384–9.Google Scholar
Sagen, JPappas, GDPollard, HBAnalgesia induced by isolated bovine chromaffin cells implanted in rat spinal cord. Proc Nati Acad Sci USA 1986b; 83: 7522.CrossRefGoogle Scholar
Sagen, JKemmler, EIncreased levels of met-enkephalinlike immunorreactivity in the spinal cord CSF of rats with adrenal medullary transplant. Brain Res 1989; 502: 110.CrossRefGoogle Scholar
Sagen, JWang, HProlonged analgesia by enkephalinase inhibition in rats with spinal cord adrenal medullary transplant. Eur J Pharmacol 1990; 179: 427–33.CrossRefGoogle Scholar
Sagen, JSortwell, CEPappas, GDMonoaminergic neural transplant prevent learned helplessness in a rat depression model. Biol Psychiatry 1990; 28: 1037–47.CrossRefGoogle Scholar
Sagen, JKemmler, JEWang, HAdrenal medullary transplants increase spinal cord cerebrospinal fluid catecholamine levels and reduce pain sensitivity. J Neurochem 1991; 56: 623–7.CrossRefGoogle ScholarPubMed
Sawynok, JPinsky, C La Bella FS. Minireview on the specifity of naloxone as an opiate antagonist. Life Sci 1979; 25: 1621–32.CrossRefGoogle Scholar
Sherman, ADPetty, FAdditivity of neurochemical changes in learned helplessness and imipramine. Behav Neural Biol 1982; 35: 344–53.CrossRefGoogle ScholarPubMed
Tejedor-Real, PMicó, JAMaldonado, RRoques, BPGibert-Rahola, JEffect of mixed (RB 38A) and selective (RB 38B) inhibitors of enkephalin degrading enzymes on a model of depression in the rat. Biol Psychiatry 1993; 34: 100–7.CrossRefGoogle ScholarPubMed
Tejedor-Real, PMicó, JAMaldonado, RRoques, BGibert-Rahola, JImplication of endogenous opioid system in the learned helplessness model of depression. Pharmacol Biochem Behav 1995; 52: 145–52.CrossRefGoogle ScholarPubMed
Tejedor-Real, PRomero, PMicó, JAGibert-Rahola, JEfecto del NPY en el modelo de depresión #«learned helplessness#». Posible interacción con el sistema noradrenérgico. Anales Psiquiatría Biológica 1994; 10 (suppl 1): 49.Google Scholar
Vaquero, JArias, AOya, SantiagoZurita, MChromaffin allografts into arachnoid of spinal cord reduce basal pain responses in rats. Neuroreport 1991; 2: 149–51.CrossRefGoogle ScholarPubMed
Widerlöv, MDHeilig, MDBjartell, AEkman, RInvolvement of Neuropeptide Y and Delta-Sleep-Inducing Peptide Neuropsychiatric Illness. In: Nemeroff, CB ed. Neuropeptides and Psychiatric Disorders. Washington DC: American Psychiatric Press, Inc, 1991: 227–60.Google Scholar
Willner, PThe validity of animal models of depression. Psychopharmacology 1984; 83: 116.CrossRefGoogle ScholarPubMed
Willner, PBehavioral Models in Psychopharmacology, Theoretical, Industrial and Clinical Perspectives. Cambridge: Cambridge University Press, 1990.Google Scholar
Willson, SPChang, JViveros, OHProportional secretion of opioid peptides and catecholamines from adrenal cromaffin cells in culture. J Neuro sci 1982; 2: 1150–6.Google Scholar
Yang, HTHexum, TCosta, EOpioid peptides in adrenal gland. Life Sci 1980; 27: 1119–25.CrossRefGoogle ScholarPubMed