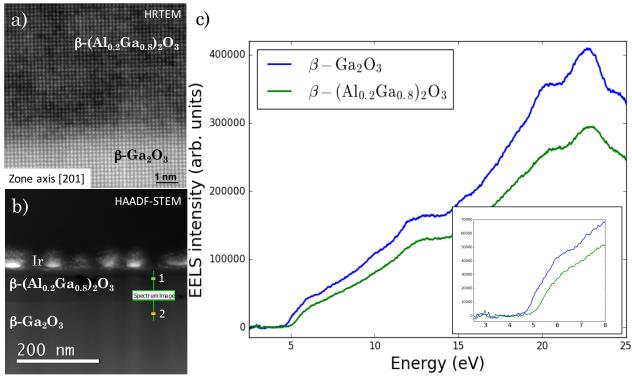
Investigation of the Atomic and Electronic Structure of β-(Al_{0.2}Ga_{0.8})₂O₃ Alloys by STEM-EELS

Adrian Chmielewski¹, Parivash Moradifar¹, Leixin Miao¹, Kleyser A. Lopez¹, Yuewei Zhang², Akhil Mauze², James S. Speck² and Nasim Alem^{1*}

As a group III wide band gap (WBG) oxide, β -Ga₂O₃ is considered an ideal material system for power electronics at extreme environments. Due to its high band gap, β -Ga₂O₃ has a high breakdown voltage (8 MV.cm⁻¹) and high resistivity to electric field and temperature. In addition, β -Ga₂O₃ can serve as an ideal lattice-matched substrate for group III nitride optical applications while maintaining transparency. β -Ga₂O₃ has been intensively investigated as a wide band-gap semiconductor for solar-blind UV photodetectors [1] and high-power transistors [2]. Band gap engineering can be accomplished by incorporating a variety of dopants into the matrix, adding great flexibility to device design. Modulation doping of (Al_xGa_{1-x})₂O₃/Ga₂O₃ heterostructures can be used to spatially separate the ionized donors in the (Al_xGa_{1-x})₂O₃ film from the conduction electrons in the Ga₂O₃ film, highly increasing the electron mobility by suppressing scattering from the ionized impurities.

In this study we show the interfacial structure and the band gap modulation in a β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ epitaxial film using high resolution scanning/transmission (HR-S/TEM) imaging and electron energy loss spectroscopy (EELS). In addition, this study further investigates the distribution of the dopants, such as Al and Mg, as well as oxygen vacancies in β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ epitaxial film. Figure 1 shows a HR-STEM image of the β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface. β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ with a 20% concentration of Al is obtained by plasma assisted molecular beam epitaxy (PAMBE).

This study investigates the distribution of the dopants within the matrix to further uncover the oxygen vacancy cluster within the lattice in the β -(Al_{0.2}Ga_{0.8})₂O₃ film. Oxygen vacancies can modulate the band gap and electronic structures further affecting the efficiency of power devices. In order to measure the band gap of the β -(Al_{0.2}Ga_{0.8})₂O₃ and its variation with respect to the β -Ga₂O₃ substrate, we have performed EELS scan across the interface, as shown in Figures 1(b-c). Using a polynomial fitting, we observe a modulation and an increase in the band gap across the interface with the addition of Al in the lattice. This band gap modulation across the β -(Al_{0.2}Ga_{0.8})₂O₃/ β -Ga₂O₃ interface is in a good agreement with the recent density functional theory calculations performed on β -(Al_{0.2}Ga_{0.8})₂O₃ [3]. This study uncovers the changes in the atomic and electronic structure in β -(Al_{0.2}Ga_{0.8})₂O₃ with the addition of dopants and substitutional elements. This understanding is the key for further design of electronic devices of this crystal.


^{1.} Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, USA

² Materials Department, University of California Santa Barbara, Santa Barbara, California, USA

^{*} Corresponding author: nua10@psu.edu

References:

- [1] T. Oshima, T. Okuno et al., Appl. Phys. Express 1 011202 (2018)
- [2] M. Higashiwaki, K. Sasaki et al., Appl. Phys. Lett. 100, 013504 (2012)
- [3] T. Wang et al, Phys. Rev. A. 10, 011003 (2018)

Figure 1. (a) HR-STEM image of the β-($Al_{0.2}Ga_{0.8}$)₂O₃/β-Ga₂O₃ interface. (b) HAADF-STEM image of the β-($Al_{0.2}Ga_{0.8}$)₂O₃/β-Ga₂O₃ sample under study. EELS line (in green) was performed to study the band gap offset between β-($Al_{0.2}Ga_{0.8}$)₂O₃ (point 1) and β-Ga₂O₃ (point 2). (c) Green line: EELS spectrum corresponding to β-($Al_{0.2}Ga_{0.8}$)₂O₃ (point 1 on Figure 1(b)). Blue line: EELS spectrum of β-Ga₂O₃ (point 2 on Figure 1(b)). Insert: Zoom-in on the band gap offset between β-($Al_{0.2}Ga_{0.8}$)₂O₃ and β-Ga₂O₃.