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The new frontiers of the investigation into biosensors based on the field effect transistor (FET) opened the 

way for sensing single-molecular DNA [1], for single-cell analysis [2] and early cancer diagnosis [3]. 

Recently Zhang et al. [1] presented a FET based on poly-pyrrole (PPy). PPy-FET is manufactured on the 

tip of a spear-shaped dual carbon nanoelectrode derived from carbon deposition inside double-barrel 

nanopipettes. This structure can measure the pH gradient in three-dimensional space, detect adenosine 

triphosphate and identify biochemical properties of a single living cell. However, PPy is not stable and 

degrades after few measurement cycles. The challenge is to create the FET structure based on inorganic 

semiconductor materials on a nanometric tip which is biocompatible, does not degrade over time and is 

capable of detecting the gradient of a few mV potential in living cells, dendrites and axons of neurons in 

vivo. 

We present the fabrication and study of the current–voltage (I-V) characteristic of a nano-FET based on 

germanium (Ge) which was deposited on the spearhead of a double-barrel quartz nanopipette with two 

carbon nanoelectrodes on the tip and along the surface of the nanopipette. The technology of creating and 

characterization of the double-barrel quartz nanopipette with two carbon nanoelectrodes can be found 

elsewhere [1,2]. The Ge was used due to the well-known technology, high electron mobility and carrier 

concentration at room temperature [4]. 

Germanium was deposited by RF magnetron sputtering on the spearhead of a double-barrel quartz 

nanopipette. The germanium layer was used as a channel of the nano-FET. The layer thickness was 50 

nm. In the next step the Ge layer was covered by silicon oxide (approximately 5 nm) by using a second 

RF magnetron. The silicon oxide layer was used as an insulator and protected the Ge channel of the nano-

FET. The schematic representation of the nano-FET on a nanopipette and the scanning electron 

microscopy (SEM) image provided by JSM-6700F microscope are shown in Figure 1. The germanium 

and the silicon oxide functional layers were magnetron-sputtered using a SUNPLA-40TM ADVAC-

90PRO equipment. The nanopipette was placed in a home-made grounded box for I-V measurements. All 

the I-V measurements were carried out on a B1500A Semiconductor Device Parameter Analyzer. 

A current–voltage (I-V) characteristic of the nano-FET is presented in Figure 2. The left panel of Figure 

2 shows the dependence of the drain current on the drain-to-source voltage varying from -1 V to 1 V in 

steps of 50 mV. During the experiments we measured the I-V characteristic for more than 100 cycles (one 

cycle is a passage from negative to positive voltage and vice versa). This typical non-linear behavior of 

the I-V characteristic corresponds to a Schottky barrier structure. 

In order to measure the FET I-V characteristic we prepared a third electrode (gate) by covering the nano-

FET with a silver paste. The drain-to-source voltage varied from 0 V to 1 V in steps of 50 mV, and the 

gate voltage was changed from 0 V to 500 mV in steps of 10 mV. The results are presented in the right 
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panel of Figure 2. The drain current drops from 190 nA at VG=0 V to 60 nA at VG=500 mV. The gate 

current was lower than 10 pA at VGS=1 V. The nano-FET structure showed a sensitivity of 260 nS·V
-1

. 

This sensitivity is very competitive with recently presented results [5–8]. 

Furthermore, the suggested biosensor includes all the advantages of a double-barrel quartz nanopipette as 

intracellular measurements, extracellular analyte mapping, nanometric dimensions, and etc. It will be a 

multilateral biosensor platform to measure biopotentials of single living cells, dendrites and axons of 

neurons. The suggested nano-FET sensor is stable and demonstrates properties which are highly 

repeatable in time. 
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Figure 1. (left) Schematic representation of the nano-FET. (right) SEM image of the fabricated nano-FET 

double-barrel quartz nanopipette (scale bar 400 nm). 
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Figure 2. (left) I-V curve drain current vs VDS of the nano-FET. (right) I-V curves of the nano-FET vs 

gate voltage (VG). 
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