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Sample thickness (t) projected along the electron beam path can be measured in a transmission electron 

microscope (TEM) equipped with an energy filter for example by the log-ratio method. The relation 

underlying the log-ratio method is 

𝑡 = 𝜆 ln (
𝐼

𝐼0
) (1) 

here t, λ, I and I0 are sample thickness, inelastic mean free path (IMFP), total intensity of the incident 

beam and zero-loss filtered intensity [1, 2]. Eq. (1) can be applied to a pair of unfiltered and filtered images 

pixel by pixel providing a two-dimensional sample thickness map. We investigate the upper limit of the 

method when applied to thick samples. In particular, we are concerned with the maximum thickness 

yielding a linear dependence of ln(I/I0) on t. 

Aluminum and Epon exhibit linear response up to ln(I/I0) < 5 at 200 kV [3]. Al and Si linear dependence 

for ln(I/I0) < ~1.2, and Fe up to ln(I/I0) < ~2.2 at 200 kV with collection semi-angle (β) 11.9 − 35.7 mrad 

was reported in [4]. Ni, Al2O3, Si and SiO2 linear dependence were limited to ln(I/I0) < 0.5 − 0.6 at 300 

kV with β=17.7-25.1 mrad [5]. 

Alternatively, t can be measured by convergent beam electron diffraction (CBED)[1, 6, 7], Kramers-

Kronig sum method [8, 9], and SEM [10, 11] Diameter of rod-shaped samples fabricated by a focus ion 

beam (FIB) was also used to estimate t at the center of rod-shaped samples[4, 5]. 

The maximum thickness tmax yielding linear response depends on collection semi-angle β and on the 

sample atomic number Z. We measured the relationships of ln(I/I0)-t for SiO2, Al, Si, Ti, Ni, Cu, Ag and 

Au rectangular profile rod sample, see Fig. 1a, using a 300 kV Hitachi H9500 TEM with Gatan TridiemTM 

electron energy filter. Slice sections from reconstructed images by electron tomography were used to 

measure local projected t precisely, see Fig. 1b. The dependence of ln(I/I0) on t with β=16 mrad are shown 

in Fig 2a. 

Fig. 2b shows plots of tmax extracted from Fig. 2a. The tmax decreases with increasing atomic number. The 

plots were fitted to a+b*log(Z). Here, Z is an atomic number, a and b are fit constants. Using this 

phenomenological fit, we it may be possible to predict tmax for other materials. The relationships the 

relationships of ln(I/I0)-t and t tmax were also measured for each material with β=3, 5, 9 and 99 mrad. 
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Figure 1. a) A TEM image of a rod-shaped multilayer sample fabricated by FIB. b) A slice section from 

a reconstructed 3D image of the sample in a). The slice section was extracted at location of the red dashed 

line in a). Two projected thicknesses t1 and t2 are indicated by arrows. 

 
Figure 2. (a) Measured relationships of ln(I/I0) vs.t for SiO2, Al, Si, Ti, Ni, Cu, Ag with β=16 mrad, t was 

extracted at multiple locations as indicated in Fig 1b. (b) Maximum thickness tmax yielding a linear 

dependence of ln(I/I0) on t from several element with β=16 mrad at 300 keV. 
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