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Abstract

The study of the sinking phenomenon of diatom cells, which have a slightly larger specific gravity (~1.3) compared to that of water, is an
important research topic for understanding photosynthetic efficiency. In this study, we successfully demonstrated the observation of the
sinking behaviors of four different species of diatom using a homemade “tumbled” optical microscope. A homemade 1 mm® microchamber
was employed to decrease the effects of convection currents. In the microchamber, diatom cells were basically settled in a linear manner
without floating, although some of the cells were rotated during their sinking. Sinking speeds of the four species of diatom cells, Nitzschia
sp., Pheodactylum tricornutum, Navicula sp., and Odontella aurita, were 0.81 +5.56, 3.03 £10.17, 3.29+7.39, and 11.22 +21.42 um/s,
respectively, based on the automatic tracking analysis of the centroids of each cell. Manual analysis of a vector between two longitudinal
ends of the cells (two-point analysis) was effective for quantitatively characterizing the rotation phenomenon; therefore, angles and angular
velocities of rotating cells were well determined as a function of time. The effects of the cell shapes on sinking velocity could be explained by
simulation analysis using the modified Stokes’ law proposed by Miklasz et al.
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Introduction is periodic vertical migration combining photosynthesis when
near the surface with nutrient uptake when at the thermocline.
As for loss factors, the enhanced sinking rate of infected cells
might remove virally infected cells from the uninfected popula-
tion and decrease the change of infection of infected cells.
Increased sinking rate increases the chances of loss of cells from
the upper mixed layer and hence the photic zone. Finally, sinking
relates to the possibility of sexual reproduction in pennate diatoms
(Raven & Waite, 2004; Raven & Doblin, 2014; Font-Munoz et al.,
2019). However, direct observation of the floating or sinking
behaviors of cells and biomolecules by microscopes is not an
easy topic.

Diatoms, one of the major photosynthetic planktons, live in
various waters. The size of diatom cells is typically from several
micrometer to several hundred micrometer (Moore & Villareal,
1996; Montagnes & Franklin, 2001; Snoeijs et al., 2002). While
many diatoms live in rivers, lakes, and seas, some of the species
are found in hot springs (Owen et al., 2008). It is known that dia-
toms produce 20% of oxygen on the earth. It is also well known
that optimal irradiation by sunlight is an important factor for
their photosynthesis (Armbrust, 2009; Guiry, 2012; Malviya
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Direct observation of floating or sinking phenomenon of living
cells or biomolecules is an attractive research subject (Malkiel
et al, 1999; Xiao et al, 2012; Treguer et al, 2018; Ide et al,
2020; Shoumura et al., 2020). The fluidity (or reciprocal of viscos-
ity) refers to the ease with which fluids can flow, and in medical
science, for example, the fluidity of cells and molecules is one of
the important factors for human health from the perspective of
body fluids that make up living organisms such as blood flow
(Mabher et al., 2018). In nature, the floating and sinking of micro-
organisms such as photosynthetic plankton with respect to a ref-
erence point that is unrelated to the movement of water, such as
the seabed, is an important parameter of cell proliferation
(Armbrust, 2009; Guiry, 2012; Malviya et al, 2016). Growth
also requires photosynthesis and nutrient uptake, which can be
increased at low nutrient concentrations by faster movement
through the water, which decreases the thickness of the diffusion
boundary layer. In a few large diatoms that can switch between
being denser than seawater and less dense than seawater, there
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The specific weight of diatoms has been studied by several
authors (Hansen et al., 2014; Aitken et al., 2016; Luo & Greer,
2018). The value is slightly larger than that of water (Hansen
et al., 2014; Aitken et al,, 2016; Luo & Greer, 2018). The density
of seawater is 1,023 kg/m’ at 20°C and 33 g/L salinity, and diatom
cells are 1,030—1,100 kg/m’ in the cytoplasm and 1,400
—2,200 kg/m® in the shell called the frustule (Miklasz & Denny,
2010). Some species of diatom suspend in seawater, although
some others attach to solid surfaces such as stones. In the case
of floating diatoms, it is known that the stronger the waves and
turbulence near the upper mixed layers of the seas or lakes, the
faster the diatoms sink (Ruiz et al., 2004).

Frustules are made of nanoporous silica (Nelson et al., 1995;
Umemura et al,, 2007, 2008, 2010; Jang et al., 2013; Maher et al,,
2018; Terracciano et al., 2018) and are composed of 10-70% amor-
phous silica at a density of <2,600 kg/m’ and the balance being
sugars and proteins with a density of <1,300 kg/m’ (Schmid
et al., 1981; Csogor et al., 1999). With its unique 3D nanoporosity,
the frustule optimizes diatom floating and sinking and diatom sur-
vival in water and helping to control photosynthesis, nutrient mol-
ecule selection, and antibacterial protection (Maher et al., 2018).

When one wishes to observe the floating behavior of cells, par-
ticle imaging velocimetry (PIV) is one of the advanced methods.
Several authors have observed the movement of suspended dia-
toms in water (Malkiel et al., 1999; Xiao et al., 2012; Hansen
et al., 2014). For example, Malkiel et al. (1999) successfully
observed 10-20 um spherical particles and 3 ym linear particles
using a homemade PIV system. Their purpose was to study the
distribution of diatoms at various depths, not to measure the
velocity of diatom motion. Xiao et al. (2012) observed aggregates
of diatoms with their own PIV for their environmental studies.
They estimated the settlement speed of the diatom aggregates.
Hansen et al. (2014) achieved comparison of fluid mechanical
parameters for microorganisms, including diatoms, in the labora-
tory and in the field. PIV is a valuable and powerful method to
study diatom behaviors in water; however, it is not similar to
direct observation of individual cells by optical microscopy.

We have developed a “tumbled” optical microscope system
(Shoumura et al.,, 2020). A commercially available inverted micro-
scope was tilted 90° using a homemade microscope stand. We
named it a “tumbled” microscope. Then, the sample stage of
the microscope became vertical with respect to the horizontal
benchtop. When we mounted a sample, such as a sealed Petri
dish with diatom cell suspension, we could directly observe the
floating behavior of individual diatom cells in the microscope.
This method is a kind of miniature aquarium. We can observe
the swimming of fishes via small windows at an aquarium. In
our method, we observe floating cells with the microscope system.
Furthermore, we found that diatom floating was heavily affected
by convection currents when we used a large vessel such as a
Petri dish. Most of the cells floated to same directions. On the
other hand, when a microchamber was employed, most of cells
settled with constant speed. We also attached a heater to the sam-
ple stage in order to estimate effects of global warming. At higher
temperature, the effects of convection currents were much larger
(Ide et al., 2020).

In this study, we compared four species diatoms in order to
evaluate effects of sizes and shapes of the diatom cells on the set-
tlement phenomenon of the diatom cells. For Nitzschia sp., the
approximate lengths of the apical, transapical, and pervalvar
axes were 45, 2.5, and 3.9 um, respectively. For Pheodactylum tri-
cornutum, the approximate lengths of the apical, transapical, and
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pervalvar axes were 23, 2.8, and 3.8 um, respectively. For Navicula
sp., the approximate lengths of the apical, transapical, and perval-
var axes were 31, 7.7, and 8.8 um, respectively. For Odontella
aurita, the approximate lengths of the apical, transapical, and
pervalvar axes were 57, 9.2, and 10 um, respectively.

Materials and Methods

For the isolated Nitzschia sp. (NIT), we used cells collected in
Chiba Prefecture, Japan for the experiment. For the isolated P. tri-
cornutum (PHE), we used cells provided by Laboratory Hanjia at
Taiwan Ocean University. For the isolated Navicula sp. (NAV), we
used cells collected in Shizuoka Prefecture, Japan. For the isolated
O. aurita (ODOQ), we used cells purchased from NIES collection,
National institute for Environmental Studies (Ibaraki, Japan). To
subculture these cells, Guildard’s ( f/2) marine water enrichment
solution (G9903; Sigma-Aldrich, Munich, Germany) was used.
It was dissolved in 1,000 mL of pure water. Photosynthetic photon
flux density was measured using a SpectroMaster C-7000
(SECONIC, Tokyo, Japan). The culture temperature was 21°C,
and the culture was irradiated with a white fluorescent lamp of
85 umol/m?/s' for 12 h every day. For each subculture, 1 mL of
diatom cells suspension was transferred to 10 mL of fresh culture
solution. For the subculture, cycles were every 3 weeks for
Nitzschia sp. and Navicula sp., every 1 week for P. tricornutum,
every 4 weeks for O. aurita. Sizes and shapes of the diatom cells
were observed by a holographic microscope (HT-2, Tomocube
Inc., Deajeon, Korea).

The cells were observed using a homemade “tumbled” optical
microscope system. This “tumbled” optical microscope is a commer-
cial inverted microscope (CKX53; Olympus Co., Tokyo, Japan) tum-
bled by a homemade stand, and the vertical sample stage of the
microscope is changed horizontally (Ide et al, 2020; Shoumura
et al, 2020). Microscopic examination of the diatom suspension
was performed approximately 10 days after the latest subculture.

A 1 mm® microchamber was created by irradiation of the pho-
tosensitive chamber (FORTURN, Mainz, Germany) to a laser fol-
lowed by wet etching (Hanada et al., 2008, 2011). The fabricated
microchamber was glued with a piece of Scotch tape (SWP-15;
3M, St. Paul, MN, USA) inside of the cover of a disposable
Petri dish (52¢, 12 mm in thickness). The cover of another
Petri dish was arranged with the upper part comprising the
microchamber, and the bonding surface was hermetically sealed
with parafilm. A quarter of the area of the composited Petri dishes
was extracted to make a hole to inject a cell suspension.

The composited Petri dish was attached with a rubber band to
the vertical sample stage of an “tumbled” microscope. The cell
suspension was diluted 40-fold with medium, and 10 mL of the
diluted cell suspension was injected into the composited Petri
dish. Observations of diatom cells were initiated at room temper-
ature using a 20x objective lens under 85 umol/m?/s" illumination
and within 5 min of injection.

Observation movies of floating diatom cells were recorded for
1 h using a HDR-CX590 video camera (SONY, Tokyo, Japan) at a
shutter speed of 1/30 s. The movies were recorded as AVCHD
files. The resulting observation movies were analyzed using 2D
tracking analysis software (Move-tr/2D, Library, Tokyo, Japan)
(Umemura et al.,, 2013, 2015). The movies were processed accord-
ing to the following procedure. The movies were converted into
WMV format, the image contrast was adapted using a back-
ground subtraction function, and calibration was made using an
image of a scale.
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Next, the images were analyzed by two methods. The first
image analysis method was automatic analysis using the centroid
mode. The centroid of each cell was automatically tracked every
0.03 s using software, and each centroid was acquired as a func-
tion of time (x(¢), y(¢)) in a two-dimensional rectangular coordi-
nate system. To analyze the movement of diatom cells, 100
individuals were randomly selected for each type of diatom, and
a total of the movement of 400 individuals were analyzed using
four species of diatoms. The second image analysis method was
a manual analysis performed to evaluate the rotation of each
cell. Both ends of the cell were marked manually (major axis
direction) every second, and the coordinates of the two points
were recorded as a function of time (x;(f), y;(t)) and (x,(¢),
¥5(t)). In the manual analysis, 10 individuals were randomly
selected for each type of diatom, and the movement of a total
of 40 individuals was analyzed using the four species of diatoms.
In this two-point analysis, some characteristics of the motion—
such as rotation and unrotation—were selected for the analysis.

The sinking speeds of diatom cells were simulated using the
traditional Stokes’ law [equation (1)] and the modified Stokes’
law [(equation (2)] (Miklasz & Denny, 2010).
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where D, is the particle size when diatoms are assumed to be the
same volume sphere, pyo; = 1,800 kg/m” is the total density of dia-
tom cells, p,, = 1,023 kg/m” is the density of seawater at 25°C and
33 g/L salinity, g= 9.8 m/s” is the gravitational acceleration, and 7
=1.07 x 107* Pa-s is the dynamic viscosity of seawater at 25°C and
33 g/L salinity. Also, r is the radius of the cylindrical model, p, =
1,030 kg/m® is the cytoplasmic density, pg = 1,400 kg/m’ is the
diatom shell density, and t,=t,=1um is the shell thickness,
and h, and hg are the heights. The variables used were values
based on microscopic images (see Supplementary Fig. 1 and
Table 1). Miklasz et al. focused on the difference in mass between
diatom frustule and cytoplasm. It is assumed that the thickness of
the frustule is constant regardless of the size of the diatom, the
mass of the frustule is proportional to the surface area of the
cell, and the mass of the cytoplasm is proportional to the volume.
Therefore, the density of the entire cell is dominated by the den-
sity of the cytoplasm rather than the density of frustule, as the cell
size increases. To reflect this fact in the calculations, Miklasz et al.
proposed a modified Stokes’ law that separated the overall cell
density into diatom frustule and cytoplasm.

Results and Discussions

We evaluated sinking phenomena of four different diatom species
by using our homemade optical microscope system. The “tum-
bled” optical microscope, which allows the sample stage to be
tilted by 90°, is shown in Figure la. When a sample was attached
on the tilted sample stage, sinking and floating phenomena of liv-
ing cells and other micron size objects were observed. The sinking
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(a) Overview of
‘tumbled’ optical microscope

(b) DHM Images of diatoms
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Fig. 1. (a) Schematic diagram of the “tumbled” optical microscope. (b) Microscopic
image of diatoms by holographic microscope: (b-1) Nitzschia sp. (NIT), (b-2) P. tricor-
nutum (PHE), (b-3) Navicula sp. (NAV), and (b-4) O. aurita (ODO). (c) Time-lapse of
diatom cell (NIT) sedimentation taken with “tumbled” optical microscope. (d) 15-s
trajectory diagram of diatom cells by automatic center of gravity analysis and manual
two-point analysis: (d-1) NIT, (d-2) PHE, (d-3) NAV, and (d-4) ODO.

direction was defined as the y-axis. We have reported sinking phe-
nomenon of Navicula sp. in a previous paper (Shoumura et al.,
2020). This time, we employed Nitzschia sp., P. tricornutum,
Navicula sp., and O. aurita in order to understand effects of
sizes and shapes of diatom cells on the sinking phenomena. For
the approximate lengths of the apical, transapical, and pervalvar
axes of NIT, PHE, NAV, and ODO, the average values of five indi-
viduals of four species of diatoms were recorded by digital holo-
graphic microscopy (DHM) observation (Fig. 1b; Umemura et al.,
2020). By DHM observation, three-dimensional information of
diatom cells was obtained without any pretreatment. The approx-
imate lengths of the apical, transapical, and pervalvar axes were
for NIT 45, 2.5, and 3.9 um, respectively, for PHE 23, 2.8, and
3.8 um, respectively, for NAV 31, 7.7, and 8.8 um, respectively,
and for ODO 57, 9.2, and 10 um, respectively. The diatom cell
shape was lanceolate for NIT and PHE, narrow elliptic for
NAYV, and cylindrical for ODO.

A typical example of sinking cells of NIT was indicated as
Figure 1c. Cells were sunk at the middle area not along the
basal surface of a microchamber (1 x 1 x 1 mm); therefore, the
focus of the image was not perfect. However, the slender shape
of the NIT cells was clearly visualized. As we described in our pre-
vious paper, perturbation of the culture medium was affected
when we employed a Petri dish instead of the microchamber
(Shoumura et al, 2020). To observe sinking phenomena, the
use of the microchamber is one of the key features of these
experiments.

Figure 1d shows typical trajectories for sinking of the four spe-
cies diatom cells during 15-s intervals, and it is obvious that ODO
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Table 1. Comparison of Experimental Velocity Values Obtained by Automatic Centroid Mode and Manual Two-Point Analysis with Velocity Values Calculated by

Traditional and Modified Stokes’ law.

Experiments Simulates
Centroid Two Points Stokes’ Modified
Law Stokes’ Law
Diatom Species Vi (um/s) vy (um/s) Via (um/s) Vy1 (um/s) Vyo (um/s) Vyy (um/s) Us (um/s) Uw (um/s)
NIT 0.03+3.07 0.81 +£5.56 —0.04+0.78 0.76 £0.73 0.05+0.77 0.75+0.76 31 1.7
PHE —0.49+9.10 3.03+£10.17 —0.22+£1.22 2.24+1.73 —0.18+1.37 2.20+1.83 21 1.8
NAV —0.07 +6.87 3.29+7.39 0.13+1.97 3.52+2.53 0.13+1.87 3.73+2.72 85 6.1
OoDO —1.36 £ 26.26 11.22+21.42 —1.33+£3.87 12.46 £5.97 —0.90 +4.63 12.89+5.42 156 7.2

sank very quickly. It might be due the large size of the diatom cell.
Sinking speed of NIZ was much slower than ODO. PHE and
NAV were rather faster than NIT. In Figure 1d, we demonstrated
two methods, “centroid” and “two points”, to obtain trajectories.
In the “centroid” method, we used automatic analysis of the two-
dimensional trajectory analysis software. The software automati-
cally estimated centroid of each cell, and then, the trajectory of
the centroids was obtained as numerical data. In the “two-point”
method, we manually selected coordinates of two terminals of
major axis of each cell (see Fig. 1d), and trajectories of the two
terminals were obtained as numerical data. Because the two-point
analysis were manually carried out, each coordinate was obtained
every 1.00 s.

Table 1 shows numerical data of sinking speeds of the four
species diatom cells obtained by the two-point analysis methods.
Y-axis is the sinking direction. When the movies of diatom sink-
ing were analyzed the automatic centroid method, average sinking
speeds (vy) were 0.81 +5.56, 3.03 +10.17,3.29 £7.39, and 11.22 £
21.42 um/s for NI1Z, PHE, NAV, and ODO, respectively. The val-
ues were obtained with 2,995 fractions of five cells for each spe-
cies. Velocities of lateral direction (vy) were almost zero in NIZ,
PHE, and NAV, although it was 1.36+26.26 um/s in ODO.
Note the huge standard deviation, this will be discussed later.

In addition, the n values of the automatic center of gravity
analysis and the manual two-point method were 2,995 and 75
for each cell, respectively, and the obtained velocity values were
almost similar in all cells. When assessing the movement of indi-
vidual cells, the two-point analysis provided more information
than the centroid analysis. From the coordinates of both ends
of the elongated cell, it was possible to obtain, for example, the
posture and rotation of diatoms at a certain time and the angular
velocity.

Figure 2 revealed trajectories of movements of individual cells,
which are analyzed by the centroid method (upper figures) and
the two-point method (lower figures). In Figure 2, whole trajecto-
ries during the crossing observation area were delineated. Because
sinking speeds were different due to cell species as discussed in
Figure 1 and Table 1, time periods of each trajectory in
Figure 2 were not uniform. Five cells were analyzed for each spe-
cies. First, the trajectories of ODO obtained by the centroid
method fluctuated markedly and were due to the fact that ODO
was larger than NIT, PHE, and NAV; therefore, the coordinates
of centroid of the cell could not be stably estimated. Although
the sinking speed (v,) could be estimated even with the fluctuat-
ing data, precise analysis was impossible for ODO with the cen-
troid analysis.
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Figure 2a shows the trajectory of five individuals of NIT. On
average, NIT took about 240 s to sink through the observation
field. As can be seen from NIT-1, -2, and -4, there was a tendency
for the sinking to occur, while there was significant movement in
the x-axis direction. From the graph of the two-point analysis, it
was found that they sank with almost no change in posture and
without rotation.

Figure 2b shows the trajectories of five individuals of PHE. On
average, PHE took about 130s to sink the observation field.
Regarding PHE-1 (1 means the cell number), the movement in
the x-axis direction was large at the beginning, but the movement
in the x-axis direction almost disappeared from the middle, and it
settled perpendicular to the ground surface. For PHE-2 and
PHE-3, these individuals had a small x-axis movement from the
beginning. For PHE-4 and PHE-5, these individuals were moving
across the x-axis field of view over the entire observation time.
From the two-point analysis, PHE-4 in particular was settling
while rotating continuously.

Figure 2c shows the trajectory of five individuals of NAV. On
average, NAV took about 90s to sink the observation field.
Compared to NIT and PHE, NAV sank in all five individuals
without much movement in the x-axis direction. From the two-
point analysis, it should be noted that NAV-3 and -4 settled
while rotating continuously.

Figure 2d shows the trajectory of five individuals with ODO.
The ODO took about 30s to sick, on average. As shown in
Table 1, ODO was a diatom with a particularly fast settlement
rate compared to NIT, PHE, and NAV. It should be noted that
the orbit of the ODO obtained by the centroid method changed
significantly. Due to the large size of the ODO, it was not possible
to estimate the cell centroid coordinates in a stable manner. The
settlement velocity (vy) could be estimated from the fluctuation
data, but for ODO, the center of gravity analysis could not be
used for accurate analysis. From the two-point analysis, it was
found that ODO, like NIT, sank with almost no change in attitude
until it disappeared from the observation field of view.

Rotation analysis of cells was available by the two-point
method. In many cells, major axes of cell bodies were not exactly
lateral, but stably sank without rotating. It suggests that the dia-
tom cells do not indiscreetly rotate when perturbation of the cul-
ture medium is negligible. On the other hand, several cells always
rotated during crossing the observation area. For example, the
fourth cell of PHE (PHE-4), the third cell of NAV (NAV-3),
and the fourth cell of NAV (NAV-4) in Figure 2 were rotating
continuously. Figure 3 shows the time-lapse results of the angles
of the three cells.
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Fig. 2. Orbital analysis of five individual diatom cells of four species. The time intervals for automatic center of gravity analysis and manual two-point analysis are

every 1s and every 0.03 s, respectively. (a) NIT, (b) PHE, (c) NAV, and (d) ODO.

Figures 3b-3d are enlarged graphs of Figure 2b for PHE-4 and
2¢ for NAV-3 and NAV-4, respectively. The angle 6 with respect
to the x-axis was calculated based on the definition in Figure 3a.
The angular velocity @ was calculated by dividing the difference
between the i + first angle and the ith angle by the measurement
interval time (1 s). In Figure 3, ®-@ and @-@ in (b), @-@,
-0, and @-® in (c), and ®-00 in (d) were a place to pay
attention to the change in angle. As you can see in the table
that summarizes the numerical values of the angle and the angu-
lar velocity, the magnitude of the change in the angle corresponds
to the magnitude of the angular velocity. From Figure 3, it can be
said that the angle of the diatom and the time change of the angle,
which can be visually confirmed in the graph, are consistent with
the table summarizing the numerical values obtained based on
the coordinates.

To investigate whether the rotation method differs depending
on the cell type, the average angular velocity was calculated for
PHE-4, NAV-3, and NAV-4. The average angular velocities of
PHE-4, NAV-3, and NAV-4 were —0.016 + 0.22, —0.0090 + 0.15,
and 0.0044 + 0.20 rad/s, respectively. There is no significant dif-
ference in the mean rotation angular velocity, which suggests
that there may be no difference in diatom species in the way
they rotate.

To understand the sinking phenomenon, which were experi-
mentally observed by our unique microscopy methods, we dem-
onstrated the following simulation analysis. For simplicity, the
volume of diatom cells when approximated to a cylinder was
estimated using dimensions obtained from microscopic images.
Volumes of cells were 0.36, 0.20, 1.6, and 4.1 fm’ for NIZ,
PHE, NAV, and ODO, respectively. First, we simulated using
the traditional Stokes’ law [equation (1)]. This equation requires
the assumption that the particle shape is a sphere. Therefore, the
particle size (Dp) was calculated as a sphere with the same volume
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as the volume of the obtained diatom (see Supplementary
Table 1). The calculated sinking speeds (Us) of NIT, PHE,
NAV, and ODO were 31, 21, 85, and 156 um/s, respectively (see
Table 1). Next, we simulated with the modified Stokes’ law [equa-
tion (2)]. This formula requires the assumption that the shape of
the diatom is a cylinder. The radius r of the cylinder was deter-
mined based on the length of the diatom obtained by DHM
(see Supplementary Table 1). The calculated sinking speeds Uy
of NIT, PHE, NAV, and ODO were 1.7, 1.8, 6.1, and 7.2 um/s,
respectively (see Table 1).

The experimental results were compared with the sinking
speeds simulated from the obtained traditional/modified Stokes’
law. There were two points to note when comparing the simula-
tion results and the experimental results. The first was the magni-
tude of the sinking speeds, and the second was the relationship
between the volume of diatoms and the sinking speeds.

In the case of the magnitude of the velocity value, comparing
the results of the traditional Stokes’ law Ug with the experimental
results (vy), the simulation results were calculated to be more than
10 times larger than the experimental results for all four species of
diatoms. On the other hand, when comparing the results of the
modified Stokes’ law (Uy) with the experimental results, they
were in agreement with the experimental values (v,) within the
margin of error.

In the case of the relationship between the volume of diatoms
and the sinking speeds, in the experimental results, the volume
was larger in the order of PHE < NIT < NAV <ODO, and the
sinking speeds (vy) was faster in the order of NIT <PHE<
NAV <ODO. As a whole, the larger the volume, the faster the
sinking speeds tended to be. The exception was that NIT had a
slower settling velocity despite having a larger volume than
PHE. In other words, the focus was on whether the simulation
results could reproduce this NIT and PHE exception. The
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Fig. 3. Detailed analysis of diatom cell rotation phenomenon. (a) Definition of (x,y)
coordinate. Magnified view of rotation and numerical analysis of diatom cells (b)

(b) PHE-4:36~48s
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PHE-4, (c) NAV-3, and (d) NAV-4.

simulation result by traditional Stokes’ law (Us) is PHE < NIT <
NAV < ODO, which could not explain the experimental result
that NIT has a slower sinking speed than PHE. On the other
hand, the simulation result (Uy;) by the modified Stokes” law is
NIT < PHE < NAV < ODO, which agrees with the experimental
result.

The modified Stokes’ law, a model that separates frustule and
cytoplasmic densities to reflect that the effect of cytoplasmic den-
sity is more dominant than frustule in proportion to the volume
of diatoms, could well explain the results of this experiment. It
was found that the sinking rate of diatoms largely depends on
the shape and size of cells.

Conclusion

We observed and analyzed sinking phenomenon of four species of
diatom cells using a “tumbled” light microscope, which was devel-
oped by our group. The use of microchamber was effective to
minimize the effects of convection currents on diatom sinking;
therefore, the obtained results could be discussed with simulations
based on fluid dynamics. Direct observation of movements of
individual cells will realize the better understanding of the photo-
synthetic efficiency of diatom cells circulating in water.

Supplementary Material. To view supplementary material for this article,
please visit https:/doi.org/10.1017/S1431927621012150.
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