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Abstract

Let S, « exp{-///}, T, — exp(-tK), be C0-semigroups on a Banach space %. For appropriate/one
can define subordinate semigroups S{ = exp{-tf(H)}, Tf — exp{-tf(K)}, on % and examine order
properties of the pairs S, T, and Sf, Tf. If % - LP(X; dv) we define 5, > T, > 0 if S, - T, and 7",
map non-negative functions into non-negative functions. Then for p fixed in the range 1 < p < oo
we characterize the functions for which S, > T, > 0 implies S{> T{>Q for each L'(X; <*•) and the
converse is true for all L'(X; dv). Further we give irreducibility criteria for the strict ordering of
holomorphic semigroups. This extends earlier results for Z.—spaces.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 47 D 05; secondary 46 E 30,
43 A 32.

0. Introduction

In two previous papers (Bratteli, Kishimoto and Robinson (1980); Kishimoto
and Robinson (1980)), which we refer to as I and II, we analyzed order
properties of self-adjoint contraction semigroups on Hilbert space. In this paper
we extend our results to holomorphic contraction semigroups on //-spaces. The
principal new method used in this generalization is a construction by Phillips
(Phillips (1952)) of subordinate semigroups on Banach space.

First recall that a function / on (0, oo) is called completely monotone if
/ £ C°°(0, oo)and

(-l)Yn)(x) > 0, x e (0, oo), n = 0, 1, 2, . . . .

Next we denote by 9R,, the class of non-negative functions on [0, oo) which are
continuous from the right at zero, differentiable on (0, oo), and such that / ' is
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60 Akitaka Kishimoto and D. W. Robinson [2 ]

completely monotone on (0, oo). Further we denote by <DJt the class of non-
negative monotone increasing functions on [0, oo) which are differentiate on
(0, oo) and such that / ' is completely monotone on (0, oo). Thus if / £ "D1L one
has 0 < /(0) < /(0+).

In I we characterized 911 as the class of functions which respect the order
properties of all pairs of self-adjoint contraction semigroups. The more restricted
class IJllfl had previously been examined by Bochner (Bochner (1955)) and
Phillips (Phillips (1952)) in the context of semigroups on Banach space.

If S, = exp{-tH} is a C0-semigroup on a Banach space % and/ e <0\i0 one
can construct an operator/(//) by standard methods of functional analysis for
generators, (see Hille and Phillips (1957) Chapters XV and XXIII; Nelson
(1958)). It then follows that / generates a C0-semigroup Sf. In fact Phillips
(Phillips (1952)) constructed the semigroup S-̂ by an ansatz of the form

where ĵ f is a family of positive measures and proved that the generator of Sf

extends f(H). Nelson (Nelson (1958)) subsequently proved that/(/J) generates
S'.

The relation (*) is the key to the generalization of our previous L? analysis to
//-spaces. The semigroups Sf constructed in this fashion had been previously
studied in a more special context by Bochner (Bochner (1955)) who refers to
them as subordinate semigroups. We begin with a brief survey of the construc-
tion and characterization of these semigroups.

1. Completely monotone maps

The functions / e <dt0 are central to Phillips construction of subordinate
semigroups and they are closely related to the completely monotone maps of
Bochner (Bochner (1955)). A continuous mapping/; x e (0, oo) ->f(x) G (0, oo)
is called a completely monotone map if for every completely monotone function
g on (0, oo) the composite function g ° f is completely monotone. (Such map-
pings have more recently been called Bernstein functions (Berg and Forst
(1975)).)

The following characterization of completely monotone maps is a synthesis of
results of Bochner (Bochner (1955)), Schoenberg (Schoenberg (1938)) and Phil-
lips (Phillips (1952)).

PROPOSITION 1. Let f be a positive function on (0, oo). The following conditions
are equivalent.

I. x £ (0, oo) —»/(x) £ (0, oo) is a completely monotone map.
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2 . / G C°°(0, oo) andf is a completely monotone function.
3./(0+) exists and f has a representation

f{x) = f(0+) + afx +

61

where cy > 0 and fy is a positive measure such that

/*' d^(t)t < +oo, f°° d[i^t) < +oo.
•/o+ J\

4 . / G C°°(0, oo) and exp{-f/} is a completely monotone function for all t > 0.
5. e\p{~tf} has a representation

-»/y' « a continuous family of positive measures satisfying
a. M / + ' ( T ) = /5 ju;(r - a) dtf{o),
b. /s0

 ^ ' ( T ) < i,
c. lim^0+ / - dtfir) = 0, r0 > 0.

The equivalence of Conditions 1, 2, 3, and 4 is established in Chapter 4 of
Bochner's book (Bochner (1955)). The equivalence of Conditions 1 and 5 was
established by Phillips (Phillips (1952)) through adaptation of the proof of the
Levy-Khinchine formula.

In fact the equivalence of 1, 2, and 4 is an easy consequence of Leibniz's
formula and an inductive argument. The equivalence of 2 and 3 is an integrated
version of Bernstein's theorem on completely monotone functions (see Berg and
Forst (1975)) and the equivalence of Conditions 4 and 5 is also an easy
consequence of the same theorem. (This observation simplifies considerably the
proof of Phillips.) For example if Condition 5 is valid

Conversely if 4 is valid Bernstein's theorem establishes the existence of a family
\Lj of positive measures such that

= f °° dii}{r)e-TX.
Jo

Substituting this representation into the relation

e-*K.x)e-'Ax) _ e-{s+t)f(x)
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and using the uniqueness of the Laplace transform one finds 5a. Condition 5b
follows by monotone convergence because

1 > e-'fM = J°° 4y'(T)e-
T*.

(More precisely one has

Finally

^ > f °° rf/x/(T)(l - e-T'T°)
•'o

> C ^ ' ( T ) ( 1 - e-^o)
TO

l T > 0

and 5c follows immediately.
Proposition 1 shows that the class (tMi) consists of the continuous extensions of

the completely monotone maps to [0, oo).
Note that if / , and f2 are completely monotone maps then it follows by

definition that / , ° /2 is also a completely monotone map.

REMARK. There is also a resolvent characterization of completely monotone
maps. By Leibniz's formula and Conditions 2 and 4 of Proposition 1 one readily
establishes that / is a completely monotone map if, and only if, (X + f)~l is a
completely monotone function for all X > 0. But by Laplace transformation of
Condition 5 of Proposition 1 this is the case if, and only if (X + / ) " ' has a
representation

j
where the positive measures v* now satisfy resolvent equations,

f "> -

2. Subordinate semigroups

If S, = exp{-tH) is a C0-semigroup of contractions on a Banach space %
and / e 9H we wish to define the subordinate semigroup S* with generator
f(H). F o r / S 91^ this construction has been made by Phillips for quite general
C0-semigroups.

https://doi.org/10.1017/S1446788700018486 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700018486


[5] Subordinate semigroups 63

PROPOSITION 2. Let S, = exp{-/ / /} be a C0-semigroiq> of contractions on a
Banach space % and take f G <Dl0. Define f(H) on D(H), the domain of H, by
the strong integral

C
Jo+

If<Xf=£O thenf{H) is closed and generates a C0-semigroup of contractions S*.
Ifotf=0 thenf(H) is closable and its closure f(H) generates a C0-semigroup of

contractions S*.
In both cases one has

f(H) = /(0+)l + afH + C dj^T)(l - ST).
Jo+

S{ = jf

This proposition is essentially a combination of results of Phillips (Phillips
(1952)) and (Nelson (1958)). Note that if A G D(H) one has

(1 - S.)A = f'ds HSSAJo

and the strong integral

I(H)A = j"°° dHf(t)(l - S,)A

is well defined. In fact

\\I(H)A\\<[ dn,(t)t\\HA\\+2f

that is /( / /) is //-bounded with relative bound 0. Thus the first statement
follows by perturbation theory. The remainder of the proof is in Nelson (1958).

REMARK. Suppose in Proposition 2 that S is a holomorphic semigroup. It is
natural to try to characterize the/for which S* is also holomorphic. For this it is
relevant to note that/maps each cone {z; z = re'e, \9\ < a < IT/2} into itself.

Next consider the extension of Proposition 2 to the larger class of functions
9IL.

Each/ G 911 has a decomposition/ = f0 + / „ where

/,(0) = 0 /,(*) = /(0+) - f(0), x>0,

and /0 = / — /, G "DUfl. Thus it is first necessary to give an appropriate defini-
tion of fi(H). In many cases this can be achieved by limiting procedures.

If S, = exp{-///} is a self-adjoint semigroup of contractions on a Hilbert
space % the usual functional analysis of operators gives
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where P is the unique self-adjoint projection onto the subspace of % invariant
under S. For more general semigroups no such unique projection exists. (Even
in the Hilbert space case P is not unique unless one requires self-adjointness.) If,
however, S and % are such that the mean ergodic theorem is valid this can be
used to define fy(H). If, for example, the limits

PA = Mm 4; {* ds S,A
r->oo / Jo

exist for all A e % one can define fx(H) by

MH)A = (/(0+) -/(0)) lim \{Tdt(\ - S,)A.
r->oo l JQ

Of course weaker forms of the mean ergodic theorem could be used but each
such form expresses////) as a limit of convex combinations of 1 - S,, that is as
limits of bounded operators of the type covered by Proposition 2.

If % is uniformly convex the mean ergodic theorem is valid in the above
form. In particular, this is the case if % = Lp(X;dv) with 1 <p < oo.

DEFINITION 3. Let S be a C0-semigroup of contractions on a uniformly convex
Banach space % and let f e 9IL. For each T > 0 define fT G 91^ by

f dtft)(l - e~'x)

f
The subordinate semigroup S^ is then defined by

Sf= lim S{T

T—*ao

where S^T is defined by Proposition 2 and the strong limit exists by the mean
ergodic theorem.

The Phillips representation

S{ " C

given in Proposition 2 is particularly useful for the analysis of the stability of
order properties. For example if % is any strongly closed convex cone in 9C
which is invariant under S then it is automatically invariant under Sf. Instead of
attempting to partially analyze these stability propertis for general 9C we next
give a full analysis for 9C = Lp(X\dv) with 1 <p < oo. The discussion could be
extended to Lao(X; dv) but this is simplified by the fact that every C0-semigroup
of positivity preserving transformations on L°°(X;dv) is uniformly continuous
(see Appendix).
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3. //-Spaces

Let % = Lp(X;dv) with 1 <p < oo. The dual %* of 9C is L\X,dv) with
9 ~' + p ~' = 1. We denote by 9C+ and %X the (p-almost everywhere) non-
negative functions in % and in % * and write / > 0 if / G 9C+ etc. If S is a
semigroup and S, leaves 9C+ invariant, that is if S,%+ C 9C+ we use the
notation of I and write S, > 0. Thus St > 0 if, and only if,

for all a? e %*,f e 9C+. Similarly we define S, > 0 if, and only if,

0

for all non-zero w G 9C^ and/ G 9C+. Thus we can introduce an order relation
between pairs of semigroups S, T, on 9C by setting S, > T, if

for all « G 9C.J, / G %+. We can similarly define the strict order S, > Tt.

PROPOSITION 4. Let S, T, be C0-semigroups of contractions on % = V(X; dv)
where 1 <p < oo and let f G 9H (or for p = 1 let f G 91^).

/ / 5, > 0/or all t> 0 //ien 5/ > 0/or all t > 0 and if S, > T, for all t > 0
5/ > T{ for all t > 0.

PROOF. Suppose/O G 9R,, and w G 9C*, g G 9C+, then

* 0.

Similarly

/ ^ 5T - rT)g) > 0.

This proves the result for/0.
Now a general / G <DH can be uniquely decomposed as / = f0 + / , where

/„ G ^lto and/,(0) = 0,/,(x) = /(0+) - /(0) for x > 0. By Definition 3 one has
5/ = sf°Sf< and

S'1 = lim S&
r-»oo

where

and c = /(0+) - /(0). Therefore S, > 0 implies that SfT> e~al and hence

5/ = lim S1/"^ > e-c'5/° > 0.
X*—>oo
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Subsequently we will strengthen Proposition 4 to a result concerning the strict
ordering but first we examine a converse in the spirit of I.

Consider the family %p
n n = 1, 2, 3, . . . , of finite-dimensional Lp- spaces

with p fixed and 1 < p < oo. (The index n denotes the dimension.) Each
C0-semigroup on 9C£ is of the form S, = exp{-tH] where H is an n X n matrix.
The semigroup is real symmetric whenever H is real symmetric. For such a
semigroup to be contractive it is clearly necessary that H > 0 and then Beurling
and Deny, (Beurling and Deny (1958)), have shown that it is sufficient that

HtJ < 0, / *j; Y.Hu>0.
J-i

Now for each such contraction semigroup S and each non-negative function/
on [0, oo) one can define S* by the usual matrix calculus. Explicitly if £,.,
/ = 1, 2, . . . , k, denote the spectral projectors of H and \ the corresponding
eigenvalues one has

Hence by Proposition 1, part 5,

i - l •'O J

that is the spectral definition of S* and the abstract definition of Section 2
coincide.

The following result can now be deduced by combining Proposition 4 with the
matrix calculations in I.

THEOREM 5. Let f be a non-negative function on [0, oo) and suppose 1 < p <
oo.

The following conditions are equivalent
1. e-'H > e~'K >0, t > 0,

implies

for all pairs of real symmetric contraction semigroups exp{-tH), exp{-tK] on the
spaces 9C£, n = 1, 2, 3, . . . .

2 . / G 9lt.

PROOF. 2 => 1 by Proposition 4 and 1 => 2 by Theorem 7 of I. (Note that the
proof of this Theorem 7 relies upon the special choice of matrices H', K'
constructed from H and K. These matrices depend upon a parameter 6 and for 0
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sufficiently small and positive one has H' > 0, K' > 0, and the Beurling-Deny
criterion for contractivity of the semigroups St = e\p{-tH'}, Tt = exp{-tK'},
are satisfied. Thus the conclusion of Theorem 7 of I is valid under the present
more restrictive hypothesis.)

Next we examine the strict ordering relation. We begin with an analogue of
Proposition 4.

PROPOSITION 6. Let S, T, be C0-semigroups of contractions on % = LP(X; dv)
where 1 <p < oo and let f e 9H (or p = 1 and f £ 91^). Assume that f is not
constant on some non-empty sub-interval of (0, oo).

/ / S, > Ofor allt>0 then Sf > 0/or all t > 0 and if S,> Tt> Ofor all t > 0
then S{> T{> Ofor all t > 0.

PROOF. Again consider the decomposition/ = f0 + / , where/„ G 91^ and/j is
constant on (0, oo). Since / is not constant on this interval one must have f0 not
constant. Consequently there exists a measurable subset A c (0, oo) such that

> 0. Thus if S, > 0 for all / > 0 one must have

for non-zero w e 9C*, g G %+, that is 5/° > 0. Similarly S, > Tt for all t > 0
implies 5/° >- T{°. This proves the proposition for/0 e <dKv.

Next remark that

e*Sl*s, - exsl*r, = xj
x d\eXx^'trS4jTds(Ss ~ T,)\eil-x>xrt*T* >0

for all x > 0. Here we use Ss > Ts and Ts > 0. But then

Sf> = lim e-<±SZ+<\-sj

> lim e-'y/f*^-7"') = T{*> e~ct\
T-><x>

where c = /(0+) - /(0). Thus Sf' > T{> > e~c'l.
Combining these results gives

Sf = Sf°Sf> > Sf°Tf> > Tf°Tf> = Tf.

Under more restrictive conditions one can obtain a converse to Proposition 5
and for this it is useful to generalize the irreducibility criteria for strict ordering
given in II. The simplest connection of this type is the following. (Note that
L°°(X;di>) is interpreted as a family of bounded multiplication operators on
L"(X;dr).)
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LEMMA 7. Let S and T be a C0-semigroup on % = LP(X; dv) where 1 < p <

oo.
IfS, > Ofor some t > 0 then S, u L°°(X; dv) is irreducible.
If S, >• T,for some t > 0 then {St - T,} u L°°(X;dv) is irreducible.

PROOF. Assume TJ = S, u L°°(X;dv) is not irreducible and choose a subspace
^ C % invariant under ij. Next choose non-zero w e 9C*, such that w|% = 0
| g\ = ^g , |co| = fwu> one has

= 0.

This is a contradiction.
The second statement is proved similarly.

To proceed we need to assume some analyticity.

LEMMA 8. Let S be a holomorphic semigroup on % = LP(X; dv) where 1 < p <
oo and suppose S, > Ofor all t > 0.

/ / w £ 9 C * , g e 9 C + , //ie« e/tfier w(S,g) > Ofor all t > 0 or w^g) = 0/or a//

PROOF. Choose a sequence tn > 0 which converges to zero and is such that

||* - M < 2~".
Then for w < n define gmn by

( A S,kg).

It follows that

Hence
n - l

||5 ~ Sm,n|| < \\g - 8m.m\\ + 2
k — m

n-\

< 2~m + 2 2'*+1

Now let gm = lim^^, gmn. One has 0 < gm < g and || g - gm\\ < 2~m+\
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Now suppose that «(S,og) = 0 for some t0 > 0. Since gm < gmn < S, g,
n > m, and S, > 0 one has

0 < u(S,gm) < co(S, + 1, g), n > m.

Consequently u(Stgm) = 0 for t = l0 — tn > 0 with n > m. Thus f0 is an accu-
mulation point of zero points of the holomorphic function t -* u^S^). Hence
"(S/Sm) = ° f o r all / > 0 and by limiting u(S,g) = 0 for all t > 0.

This last lemma allows us to complete the characterization of strictly positive
holomorphic semigroups.

THEOREM 9. Let S be a holomorphic semigroup on % = Lp{X;dv) where
1 < p < oo and suppose S, > Ofor all t > 0.

The following four conditions are equivalent
1. (1'.) S, > Ofor allt>0 (for one t > 0).

2. (2'.) { S , } , > 0 U Lx(X;dv) is irreducible (S, U L^Xidv) is irreducible for

some t > 0).

PROOF. Clearly 1 => 1' and 2' => 2. Now 1' =s> 2' by Proposition 6 and hence it
remains to prove that 2 => 1.

Assume 1 is false; then there exist non-zero w G 9C.J, g G %+ and a f o > 0
such that u(Slog) = 0. Hence w(5,g) = 0 for all t > 0 by Lemma 8. Next let <%
be the closed linear span of

{fS,g;t>0,f(EL°°(X;dr)}.

Now if S,6^ C ̂  and o>\^ = 0 then ty is a non-trivial closed subspace of %
invariant under {5,},> 0 U LM(X;dv). But these properties can be deduced by
straightforward repetition of the argument given in II in the proof of Theorem 1.

REMARK. Theorem 1 of II contains other criteria which involve the resolvent
of the generator of Sr These criteria are also valid in the present context by
similar arguments.

Next we derive an analogue of Theorem 4 of II which gives criteria for the
strict ordering of two semigroups.

THEOREM 10. Let S and T be holomorphic semigroups on % — Lp(X;dfi) where
1 < p < oo and suppose that S,> T,> Ofor all t > 0.

The following four conditions are equivalent
1. (1') S, > TJor allt>0 (for one t > 0).
2. (2') {S, - T,}l>0 U L°°(X;dr) is irreducible ((S, - T,) u Lx(X;dv) is irre-

ducible for one t > 0).
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PROOF. Clearly 1 => V and 2' => 2. But 1' => 2' by Lemma 7. Thus it remains to
prove that 2 => 1.

Suppose 1 is false then there is a t0 > 0, and non-zero w G %£, g G %+, such
that

But if S, = exp{-tf/} and Tt = exp{-fA"} the operators HS, and AT, are
bounded for all t > 0. Therefore we introduce the two parameter family of
bounded operators

A(s, t) = SSKT, - HSsTr s,t>0,

and remark that

A(s, t) = Ahm+ A->{(5, - Ss_h)T, - S,(T, - T,_h)}

= lim A - ' S , . ^ -
h—*0 +

Moreover the Duhamel formula gives

0 = u((S,o - T,)g) = Urn / ' "

and hence one must have

<*{A{\t0, (1 - X)to)g) = 0, 0 < X < 1.

Now for t j < A/o one has

«04(Afo, (1 - \)to)g) = W(5,A)

where A = A(kl0 - tx, (1 - X)to)g > 0. Thus by Lemma 8

w(A(t,(l-\)to)g) = O

for all t > 0 and 0 < X < 1. Hence by analyticity

io(A(s, t)g) = 0

for all s, t > 0.
Next let <?) be the closed linear span of

{fA(s, t)g;f e L~{X;dv), s, t > 0}

Clearly £oo(A';dj')'?l C ̂  and we next argue, as in II, that ^ is also invariant
under S and T. For example if

X= i

with/ real then
n

± x < 2 IWIL f̂o. 0*
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and hence

\s,x\ < 2 IWMfo + '. tig-
i - i

Thus 5 , x G i . But if x G *̂ then |x| e ^ because the subspace is invariant
under Lco(X;dv). Hence the positive and negative parts x± = (Ixl — X)/2 are
also in ^ and

0 < TtX± < S,X±.

The invariance of % under L^Xidv) immediately implies that T,x± e *% •
Thus Tt% C ̂ .

This establishes that % is invariant under {S, - Tt)l>0 u L°°(X;dv) and
Condition 2 is false unless ^ = {0} or %. But ^ = ^ 9 0 because w|% = 0 and
<c ¥= 0. Thus it remains to discuss the case ty = {0} and this discussion is a word
for word repetition of that in II.

One introduces the closed linear span ^ of

{fT,g;feL'"(X;dv),t>0}

and argues from the assumption % = {0} that ^ is invariant under TJ =
{S, - T,)t>0 u Lx(X;dv) and S,U = T,\^. Thus TJ|^ = L°°(X;dv)\^ and condi-
tion 2 is again false.

Since this proof is essentially identical to the proof contained in II one has
similar corollaries and one can also derive irreducibility criteria involving the
resolvent.

COROLLARY 11. Let S, T, be two holomorphic semigroups on % = Lp(X\dv),
where 1 < p < oo, and assume St> Tt> Ofor all t > 0.

If ty C % is invariant under {S,}t>0 U Lx{X;dv) then it is invariant under
{T,)l>ou L°°(X;dv).

If S, > Ofor some t > 0 then S, > T, for all t > 0 or S, = T, for all t > 0.

Theorem 10 also allows us to prove a converse of Proposition 6.

COROLLARY 12. Let S, T, be two holomorphic semigroups of contractions on
% = Lp{X;dv) where 1 <p < oo and assume S, >0, Tt> 0, for all t > 0.
Further let f G 911 be a function which is not constant on some non-empty
sub-interval of (0, oo).

The following four conditions are equivalent
1. (1') S, > Ofor allt>0 {for some t > 0).
2. (2') Sf > Ofor all t > 0 (for some t > 0).
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Moreover if S, > T,for all t > 0 the following four conditions are equivalent
1. (1') S, > T, for allt>0 (for some t > 0).
2. (2 ' ) S{ > T{ for all t>0 (for some t > 0) .

PROOF. Consider the first four conditions. One has 1 <=> 1' and 2<=>2' by
Theorem 9 and 1 => 2 by Proposition 6. But 2 is equivalent to irreducibility of
t]f = {S/}t>0 u LX(X; dv) by Theorem 9 and 1 is equivalent to irreducibility of
T) = {S ,} ( > 0 U LX(X; dv). But from Definition 3

S{ = lim S* - lim f°

and hence every subspace invariant under ij is automatically invariant under TJA
Thus if TĴ  is irreducible TJ is irreducible and 2 =* 1.

The proof of the second statement is similar but relies upon Proposition 6 and
Theorem 10. Alternatively one can argue that 2 => 1 by Corollary 11. Explicitly
S{ > 0 implies S, > 0 by the above and hence S{ > T{ > 0 implies S, > T, > 0
or S, = T, by Corollary 11. But if S, = T, for all t > 0 then S/ = 7 / which is a
contradiction.

REMARK. Corollary 12 is also valid for/? = 1 a n d / G 911^.

4. Conclusion

The foregoing results can be extended in a variety of ways. If one only
examines functions/ e CDIRO one can analyze order properties on general Banach
spaces or on function spaces other than the Lp-spaces. It is also possible to
obtain most of our results for C£-semigroups. Recall that if the Banach space %
is the dual of a Banach space %+ and S is a C0-semigroup on 9C^ then its dual
S* on % is defined to be a CQ -semigroup and the dual semigroup S* is defined
to be a holomorphic semigroup if the functions t —* u(S*g), where « G 9C, and
g e %, have the appropriate analyticity properties. This type of semigroup is
much more appropriate to the discussion of L°°.

Finally one can use the definition of Sf and Tf given in Section 2 to
demonstrate stability properties of the domination relation discussed by Hess,
Schrader, Uhlenbrock (Hess, Schrader, Uhlenbrock (1977)) and Simon (Simon
(1979)). For example if % is a function space then S is said to dominate T if

S,\g\>\T,g\

for all t > 0. But then

S{\g\ = / d,xJ(T)Sr\g\ > j dtf(r)\ TTg\ > | T{g\

for / G GM^) and by limiting for / e CDIL, where appropriate.
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Appendix

In this appendix we derive two results which are relevant to the foregoing
analysis. The first concerns continuity properties of semigroups acting on
Lco(X;dv) and the second extends the monotone convergence theorems estab-
lished in II for L\X;dv) to V{X\dv) where 1 < p < oo.

PROPOSITION A l . Let (9n) be a sequence of positivity preserving continuous

linear maps on the Banach space L°°{x;dv). If \\0n(4>) — ^\\aa ~*0 as n —> oo for

every $ 6 L°°, then \\0n - 1|| - • 0 as n -> oo.

PROOF. Suppose that ||0n - 11| -«• 0. Then by taking a subsequence if necessary
we may assume that for some e > 0

| | 0 n - l | | > e , , 2 = 1 , 2 , . . . .

Hence there is a sequence of vectors î n in L°° such that

0 < +n(x) < 1, a.a. x e X, ||6»n(^n) - ^ ^ > e/4.

By replacing $„ by 1 — \j/n if necessary we may assume that

ess.sup{^(*) - Ontn(x)} > e / 5

for large n (such that || 1 - 9n\ W^ < e/20). Let

Xn = {x £ X-^n(x) - 9n+n(x) > e/5).

We assert that there are a subsequence (nk) of («) and non-null measurable
sets ilk such that Bt c X and (Slk) are mutually disjoint. For <pk =
x e Qk we have

Because 0 is positivity-preserving and <pk, ^ are equal on Qk, \\tpk —

e/5.
The rest of the proof now follows from the lemma of Elliott (Elliott (1972))

which is a rephrasing of a well-known lemma of Phillips' (Phillips (1940)).
It remains to prove the existence of the fin.
First assume that

lim Xk = I") U Xk
" k>n

is non-null. Then v\\ixa Xk is completely non-atomic, since, by strong conver-
gence of 9n, any atom is eventually not contained in Xn for large n. Hence we
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can find an infinite family ( Yk) of mutally disjoint non-null subsets such that

oo

k-\

We define inductively nk for each k such that nk > nk_t and v(Yk n X%) > 0
(let n0 = 0). Setting £lk = Yk n X^, we have the assertion.

If Ilm Xk is null, let

Qk = Xk \ U Xn.
n>k

Clearly (Q,k) are mutually disjoint and there are infinitely many non-null ilk.
This establishes the assertion.

COROLLARY A2. Each C0-semigroup of positivity preserving maps on L°°(X;dv)
is uniformly continuous.

REMARK. It is possible that Corollary A2 is valid without the positivity-pre-
serving assumptions. We do not know of any examples of C0-semigroups on
Lco(X;df) which are not uniformly continuous.

Now we turn to the examination of monotone convergence properties of
positivity preserving operators. These can be deduced from monotone conver-
gence results for weakly complete Banach spaces which have been studied by
various authors (see, for example, Krasnoselski (1964), Karlin (1959)). To
summarize these results we first need some general terminology concerning
ordered Banach spaces.

Let % be a real Banach space. A cone DC in % is a subset such that
% + % c %, \% C % for all A > 0, and % n -% = {0}. Each such cone
defines a partial order o n 9 C b y ^ > 0 i f ^ e 5 C and A >B>0UA-B,
B G %. The cone % is said to generate 9Cif9C = 5 C - 9 C a n d D C i s said to be
normal if there is a constant y > 0 such that \\A + B\\ > y max {\\A\\, \\B\\) for
all A,B e %.

PROPOSITION A3. Let % be a closed cone in a Banach space % and assume the
unit ball %t of % is sequentially weakly complete.

The following conditions are equivalent
1. % is normal.
2. Each monotonically increasing order-bounded sequence in % is norm-conver-

gent.
3. Each monotonically increasing norm-bounded sequence in % is norm conver-

gent.
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The proof of 3<=>2=> 1 is given by Krasnoselski (Krasnoselski (1964)). A
proof of 1 => 2 was given by Karlin (Karlin (1959)).

Next we define a bounded operator S on % to be 5C-positivity preserving if
S% C % and we set S > 0. Similarly we write S>T>0ifS- T and T are
9C-positivity preserving, that is S > T > 0 if, and only if, SA > TA > 0 for all
A G %. One can now deduce the following result from Proposition A3.

PROPOSITION A4. Let % be a closed normal cone which generates the Banach
space % and assume that the unit ball %l of % is sequentially weakly complete.
Further let Sn be a norm-bounded, or order bounded, sequence of %-positivity
preserving operators which is monotonically increasing with respect to the partial
order > .

It follows that Sn converges strongly to a %-positivity preserving operator S and
Sn<S.

REMARKS. 1. The conclusions of both propositions extend from sequences to
nets if 9C, is weakly complete.

2. If 9C is reflexive then 9C, is weakly complete. In particular this is the case
for % = L"(X;dv) with 1 <p < oo.

3. The unit ball of L\X;dv) is sequentially weakly complete but in general it
is not weakly complete.

4. In % = L°°(R, dx) the characteristic functions Xn of the interval [-«, n]
form a positive monotonically increasing sequence which is norm-bounded but
not norm-convergent. Thus monotone convergence theorems are not generally
valid for L°°-spaces.

5. Analogues of both propositions can be proved for monotonically decreasing
sequences.
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