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Abstract

In the ambient space of a semidirect product R2 oA R, we consider a connected domain Ω ⊆ R2 oA {0}.
Given a function u : Ω→ R, its π-graph is graph(u) = {(x, y, u(x, y)) | (x, y, 0) ∈ Ω}. In this paper we study
the partial differential equation that u must satisfy so that graph(u) has prescribed mean curvature H.
Using techniques from quasilinear elliptic equations we prove that if a π-graph has a nonnegative mean
curvature function, then it satisfies some uniform height estimates that depend on Ω and on the supremum
the function attains on the boundary of Ω. When trace(A) > 0, we prove that the oscillation of a minimal
graph, assuming the same constant value n along the boundary, tends to zero when n→ +∞ and goes
to +∞ if n→ −∞. Furthermore, we use these estimates, allied with techniques from Killing graphs, to
prove the existence of minimal π-graphs assuming the value zero along a piecewise smooth curve γ with
endpoints p1, p2 and having as boundary γ ∪ ({p1} × [0, +∞)) ∪ ({p2} × [0, +∞)).
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1. Introduction

Let A ∈ M2(R) be a two-by-two matrix. The semidirect product R2 oA R is, as a set, the
Euclidean 3-space R3, but endowed with a group operation and with a left-invariant
metric that come from the exponential map z 7→ eAz. More details about its construction
are given in Section 2, below. Also, the work of Meeks III and Pérez [10] is a good
reference on the subject, and provides the basic aspects of the geometry in these spaces.

There are two main difficulties when dealing with minimal π-graphs in semidirect
products R2 oA R. The first is that vertical translations (x, y, z) 7→ (x, y, z + t) are not
isometries of the ambient space. In particular, this affects the mean curvature operator
so that the coefficients of its second-order terms depend on the solution, and the
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comparison principle (for example [5, Theorem 10.1] and its generalisations) does
not apply. The second is that, unless trace(A) = 0, constant functions do not provide
minimal graphs, so there is no maximum principle, in the sense that the supremum (or
infimum) of a solution to the minimal graph equation may be strict and attained in the
interior of the domain.

In this paper, we consider the convex domain Ω ⊆ R2 oA {0} with piecewise smooth
boundary and exhibit the partial differential equation (PDE) that a function u : Ω→ R
must satisfy for its π-graph

graph(u) = {(x, y, u(x, y)) ∈ R2 oA R | (x, y, 0) ∈ Ω}

to have prescribed mean curvature function. Such a PDE has different behaviours that
depend on the trace and on the determinant of A. For example, when trace(A) = 0,
if u is such that graph(u) has nonnegative mean curvature H ≥ 0 with respect to the
upwards orientation, then it satisfies the maximum principle

sup
∂Ω

u = sup
Ω

u. (1.1)

This property was first observed by Meeks III et al. in [9] (we state this result
as Lemma 3.1, below), and we remark that (1.1) does not hold when trace(A) > 0,
even in the stronger case H ≡ 0: a minimal graph that is constant along its boundary
necessarily assumes an interior maximum and it is not constant, as horizontal planes
(representing constant functions) are no longer minimal. It becomes a natural question
to ask if there is a maximal oscillation that these minimal graphs that are constant
along the boundary can attain, and this question is answered in this paper via height
estimates of PDEs.

Let us describe some of the main results of this paper. In Section 3, given
Ω ⊆ R2 oA {0} and a parameter α ∈ R, we obtain, in Theorem 3.2, a constant C(α) =

C(diam(Ω), α) such that if u : Ω→ R is a function where graph(u) has nonnegative
mean curvature, then

sup
∂Ω

u ≤ α⇒ sup
Ω

u ≤ sup
∂Ω

u + C(α). (1.2)

Still in Section 3, we prove that the dependence of α in (1.2) is essential
(Theorem 3.3) for the validity of the result, in the sense that it is not possible to obtain
some constant C = C(Ω) such that every u : Ω→ R, where graph(u) has nonnegative
mean curvature satisfies the uniform height estimate

sup
Ω

u ≤ sup
∂Ω

u + C.

We also use, in Theorem 3.5, the freedom of the parameter α to obtain that, when
trace(A) > 0, the oscillation of a family of solutions to the problem{

graph(u) is a minimal surface of R2 oA R
u|∂Ω = α ∈ R

converges to zero when α approaches +∞. Moreover, we prove it goes to +∞, if
α→ −∞.
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We finish the paper in Section 4, where we bring techniques from Killing graphs,
in addition to the estimates on the coefficients of the mean curvature operator obtained
on Section 3, to generalise an argument of Menezes [11] to any semidirect product
R2 oA R, and obtain the existence of minimal π-graphs which are similar to the
fundamental piece of the doubly periodic Scherk surface of R3, in Theorem 4.1.

2. Semidirect products R2
oA R

This section gives a brief review of semidirect products R2 oA R. We follow the
notation and construction of Meeks III and Pérez [10].

Let H, V to be two groups and let ϕ : V → Aut(H) be a group homomorphism
between V and the group of automorphisms of H. Then the semidirect product between
H and V with respect to ϕ, denoted by G = H oϕ V , is the Cartesian product H × V
endowed with the group operation ∗ : G ×G→ G given by

(h1, v1) ∗ (h2, v2) = (h1 · ϕv1 (h2), v1v2).

With this group operation, both H and V can be viewed as subgroups of G and
H C G is identified as a normal subgroup of G. This construction generalises the
notion of direct products of groups, where the operation on the Cartesian product
H × V would be the product operation (h1, v1) ∗ (h2, v2) = (h1h2, v1v2).

Even in the particular case of H = R2 and V = R being two abelian groups,
it is possible to obtain a great variety of groups via the semidirect product of
R2 and R, depending uniquely on the choice of the (now one-parameter) family
of automorphisms of R2. Precisely, with the exceptions of SU(2) (which is not
diffeomorphic to R3) and P̃S L(2, R) (which has no normal subgroup of dimension
two), it is possible to construct all three-dimensional simply connected Lie groups
using the following setting. Fix a matrix A ∈ M2(R),

A =

(
a b
c d

)
and consider ϕ the one-parameter subgroup of automorphisms of R2 generated by the
exponential map

ϕ : R → Aut(R2),
z 7→ eAz : R2 → R2.

Then R2 oA R = R2 oϕ R is the semidirect product between R2 and R with respect to
ϕ: that is, the set R3 = R2 × R endowed with the group operation ∗ defined via

(x1, y1, z1) ∗ (x2, y2, z2) =

((
x1
y1

)
+ eAz1

(
x2
y2

)
, z1 + z2

)
.

Using the notation of [10], denote the exponential map eAz by

eAz =

(
a11(z) a12(z)
a21(z) a22(z)

)
,

https://doi.org/10.1017/S1446788715000713 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000713


[4] The mean curvature equation on semidirect products R2 oA R 121

and observe that the vector fields defined by

E1(x, y, z) = a11(z)∂x + a21(z)∂y, E2(x, y, z) = a12(z)∂x + a22(z)∂y, E3 = ∂z

are left-invariant and extend the canonical basis {∂x(0), ∂y(0), ∂z(0)} at the origin of
R3. Moreover, if we let

F1 = ∂x, F2 = ∂y, F3(x, y, z) = (ax + by)∂x + (cx + dy)∂y + ∂z,

it follows that each Fi is a right-invariant vector field of R2 oA R, so they are Killing
fields with respect to any left-invariant metric of R2 oA R.

The metric to be considered on R2 oA R is the canonical left-invariant metric, that
is, the one given by stating that {E1, E2, E3} are unitary and orthogonal to each other
everywhere. In particular, since

∂x(x, y, z) = a11(−z)E1 + a21(−z)E2,

∂y(x, y, z) = a12(−z)E1 + a22(−z)E2,

we can express the metric of R2 oA R in coordinates as

ds2 = [a11(−z)2 + a21(−z)2] dx2 + [a12(−z)2 + a22(−z)2] dy2 + dz2

+ [a11(−z)a12(−z) + a21(−z)a22(−z)](dx ⊗ dy + dy ⊗ dx).

Note that, as e−Az = (eAz)−1 and det(eAz) = eztrace(A),(
a11(−z) a12(−z)
a21(−z) a22(−z)

)
= e−ztrace(A)

(
a22(z) −a12(z)
−a21(z) a11(z)

)
,

and we can introduce the notation

Q11(z) = 〈∂x, ∂x〉 = e−2ztrace(A)[a21(z)2 + a22(z)2],
Q22(z) = 〈∂y, ∂y〉 = e−2ztrace(A)[a11(z)2 + a12(z)2], (2.1)

Q12(z) = 〈∂x, ∂y〉 = −e−2ztrace(A)[a11(z)a21(z) + a12(z)a22(z)]

to obtain that the metric ds2 is expressed by

ds2 = Q11(z) dx2 + Q22(z) dy2 + dz2 + Q12(z)(dx ⊗ dy + dy ⊗ dx).

If A, B ∈ M2(R) are two congruent matrices, i.e., if there is some orthogonal matrix
P ∈ O(2) such that B = PAP−1, then the groups R2 oA R and R2 oB R, endowed with
their respective canonical left-invariant metrics, are isomorphic and isometric, and the
map that makes such identification is a simple rotation on horizontal planes induced
by P: that is,

ψ : R2 oA R → R2 oB R
(x, y, z) 7→ (P(x, y), z). (2.2)

The Lie brackets of R2 oA R are given by

[E1, E2] = 0, [E3, E1] = aE1 + cE2, [E3, E2] = bE1 + dE2,

https://doi.org/10.1017/S1446788715000713 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000713
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(b)(a)

Figure 1. On semidirect products R2 oA R, every vertical plane is a minimal surface. Horizontal planes
are flat, have constant mean curvature H = trace(A)/2 and the subgroup H = R2 oA {0} (highlighted in the
above right picture) is normal in R2 oA R. (a) A foliation of R2 oA R by vertical (minimal) planes. (b) The

foliation of R2 oA R by horizontal (constant mean curvature) planes.

so the Levi-Civita equation implies that the Riemannian connection of R2 oA R
satisfies

∇E1 E1 = aE3

∇E2 E1 =
b + c

2
E3

∇E3 E1 =
c − b

2
E2

∣∣∣∣∣∣∣∣∣∣∣∣∣
∇E1 E2 =

b + c
2

E3

∇E2 E2 = dE3

∇E3 E2 =
b − c

2
E1

∣∣∣∣∣∣∣∣∣∣∣∣∣
∇E1 E3 = −aE1 −

b + c
2

E2

∇E2 E3 = −
b + c

2
E1 − dE2

∇E3 E3 = 0.

(2.3)

We notice two important properties of planes in R2 oA R (see Figure 1). First, we
observe that the metric ds2 is invariant by rotations of angle π around the vertical
lines {(x0, y0, z) | z ∈ R}, and hence vertical planes are minimal surfaces of R2 oA R.
Moreover, horizontal planes {z = c} have E3 as a unitary normal vector field, so
they have constant mean curvature (with respect to the upward orientation) given by
H = trace(A)/2. In particular, horizontal planes of R2 oA R are minimal if and only if
trace(A) = 0.

However, the difference between the cases trace(A) = 0 and trace(A) , 0 goes
further than horizontal planes being minimal: concerning the classification of simply
connected Lie groups of dimension three, we notice that Meeks III and Pérez [10]
proved that any nonunimodular (a group G is said to be unimodular if det(Adg) = 1
for all g ∈G) Lie group of dimension three is isomorphic and isometric to a semidirect
product R2 oA R, endowed with its left-invariant metric, where A ∈ M2(R) is such that
trace(A) , 0 [10, Lemma 2.11]. Moreover, they also proved that, with the exceptions
of SU(2) and P̃S L(2, R), all other unimodular metric Lie groups are isomorphic and
isometric to a semidirect product R2 oA R, with trace(A) = 0 [10, Section 2.6 and
Theorem 2.15]. Herein, we refer to the cases trace(A) = 0 or trace(A) , 0, respectively,
as the unimodular and nonunimodular case.
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3. Mean curvature equation and height estimates

In this section, we consider a smooth open domain Ω ⊆ R2 oA {0} and a function
u : Ω→ R. The π-graph of u is

Σ = graph(u) = {(x, y, u(x, y)) ∈ R2 oA R | (x, y, 0) ∈ Ω}.

When oriented with respect to the upwards direction, the mean curvature of Σ is

H =
e2utrace(A)

2W3 [uxx(Q22(u) + u2
y) + uyy(Q11(u) + u2

x) − 2uxy(Q12(u) + uxuy)

+ G1(u)u2
x + G2(u)u2

y + G3(u)uxuy + (a + d)e−2utrace(A)], (3.1)

where Qi j : R→ R are the coefficients of the metric of R2 oA R, defined in (2.1),
Gi : R→ R are the functions given by

G1(z) = e−2ztrace(A)((2a + d)a11(z)2 + (a + 2d)a12(z)2 + (b + c)a11(z)a12(z)),
G2(z) = e−2ztrace(A)((2a + d)a21(z)2 + (a + 2d)a22(z)2 + (b + c)a21(z)a22(z)),
G3(z) = e−2ztrace(A)((4a + 2d)a11(z)a21(z) + (2a + 4d)a12(z)a22(z)

+ (b + c)(a11(z)a22(z) + a12(z)a21(z))),

and W is

W(z, p) =

√
1 + (a11(z)p1 + a21(z)p2)2 + (a12(z)p1 + a22(z)p2)2

=

√
1 + e2ztrace(A)(Q22(z)p2

1 − 2Q12(z)p1 p2 + Q11(z)p2
2).

Following the above notation, we define the mean curvature operator by

Q(u) = uxx(Q22(u) + u2
y) + uyy(Q11(u) + u2

x) + 2uxy(Q12(u) − uxuy)

+ G1(u)u2
x + G2(u)u2

y + G3(u)uxuy + (a + d)e−2utrace(A), (3.2)

so graph(u) is a minimal surface of R2 oA R if and only if u satisfies Q(u) = 0 in Ω.
Note that Q is a quasilinear elliptic operator, as the matrix

Q(z, p) =

(
Q22(z) + p2

2 Q12(z) − p1 p2
Q12(z) − p1 p2 Q11(z) + p2

1

)
is positive definite for every z ∈ R and p = (p1, p2) ∈ R2, which is easy to see using the
relation

Q11(z)Q22(z) − Q12(z)2 = e−2ztrace(A).

In the papers of Meeks III et al. [7–9], some work has been done in order to
understand constant mean curvature π-graphs: the fact that R2 oA R admits a foliation
by parallel horizontal planes of constant mean curvature H = trace(A)/2 determines
much of the structure of those graphs. For instance, using this property and the mean
curvature comparison principle, they are able to prove the following lemma.
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Lemma 3.1 [9, Assertion 15.5]. Let D ⊆ R2 oA {0} be a convex compact disc and let
C = ∂D be its boundary. Consider π(x, y, z) = (x, y, 0), the vertical projection. If
Γ ⊆ π−1(C) is a closed simple curve such that the projection π : Γ→ C monotonically
parametrises (this means that π(Γ) ⊂ ∂Ω and π−1({p}) ∩ Γ is either a single point
or a compact interval for every p ∈ ∂Ω) C and h : Γ→ R is the height function, let
c0 = infΓ h and c1 = supΓ h. If Σ is a compact minimal surface with ∂Σ = Γ, it follows
that:

(1) if trace(A) ≥ 0, then Σ ⊆ π−1(D) ∩ {z ≥ c0}; and
(2) if trace(A) ≤ 0, then Σ ⊆ π−1(D) ∩ {z ≤ c1}.

In the particular case of graphs, Lemma 3.1 implies that a minimal graph over some
smooth domain Ω ⊆ R2 oA {0}, which is compact and convex, satisfies the maximum
principle if trace(A) ≤ 0, satisfies the minimum principle if trace(A) ≥ 0 and satisfies
both in the unimodular case only. However, when trace(A) > 0 no uniform upper bound
is obtained, nor is a lower bound when trace(A) < 0. This motivates the search for
height estimates for minimal graphs, which is the next result. Perhaps, the proof of
Theorem 3.2 is as interesting as the result itself, as it gives some information about
the behaviour of the operator Q in the many possible settings for the matrix A. Such
properties will be used in the proof of Theorem 3.5, and also in Section 4 to obtain
the existence of minimal Killing graphs that converge to the Scherk-like fundamental
piece of Theorem 4.1.

Theorem 3.2. Let A ∈ M2(R) and let R2 oA R be a semidirect product endowed with its
canonical left-invariant metric. Let Ω ⊆ R2 oA {0} be a bounded, convex domain and
let α ∈ R be any given constant. Then there exists a constant C(α) = C(diam(Ω), α)
such that, for every u satisfying Q(u) ≥ 0 and sup∂Ω u ≤ α, it holds that

sup
Ω

u ≤ α + C(α).

In particular, there is a constant C depending on diam(Ω) and on sup∂Ω u such that
every u : Ω→ R whose graph has nonnegative mean curvature function with respect
to the upwards orientation satisfies

sup
Ω

u ≤ sup
∂Ω

u + C
(
sup
∂Ω

u
)
.

The proof of Theorem 3.2 uses techniques from quasilinear elliptic PDEs, mainly
the comparison principle. For instance, Theorem 10.1 of [5] gives us that if R is a
quasilinear elliptic operator of the form

R(w) =

2∑
i, j=1

ai j(x, grad(w))wxi x j + b(x,w, grad(w)), (3.3)

for C2 functions w : Ω→ R, where ai j and b are smooth functions and b is such that
for each x ∈ Ω and p ∈ R2 the function z 7→ b(x, z, p) is nonincreasing, then, given
u, v : Ω→ R such that R(u) ≥ R(v) in Ω and u ≤ v in ∂Ω, then u ≤ v in Ω.
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However, the operator Q given by (3.2) does not satisfy the hypothesis of such a
comparison principle (or of its generalisations), as the coefficients of the second-order
terms of Q(u) depend on u. This happens because translations (x, y, z) 7→ (x, y, z + t)
are not isometries of R2 oA R. Hence, we are not able to prove uniqueness of solutions
to the minimal graph equation and we also need to use a indirect approach to find the
height estimates of Theorem 3.2.

In order to prove Theorem 3.2, we define a quasilinear operator R related to
Q, for which the comparison principle holds. Then, we find an ad hoc positive
function v : Ω→ R, whose construction will depend only on Ω and on α such that
R(v + α) ≤ R(u). Then, as u ≤ α ≤ v + α along ∂Ω, it will follow that u ≤ v + α in Ω,
and we can let C(α,Ω) be given by C = supΩ v.

Proof of Theorem 3.2. First, we notice that, when trace(A) ≤ 0, the result is trivial
with C = 0 and without the need for an α, by Lemma 3.1. Thus we will suppose that
trace(A) > 0 and focus on the nonunimodular case. Without loss of generality, after a
homothety of the metric, we may assume that trace(A) = 2 and that A is written as

A =

(
1 + a b

c 1 − a

)
, (3.4)

for some a, b, c ∈ R. We divide the proof into two cases, starting when A is not a
diagonal matrix.

Case 1. Suppose that A is not a diagonal matrix.

We begin by proving the following key claim, which will also be used in Section 4.

Claim 1. Let the functions Qi j be the ones defined by (2.1) with respect to the matrix
A of (3.4), where either b , 0 or c , 0. Then, there is some λ > 0 such that at least one
of the following holds, for every z ∈ R:

(i) Q22(z)e2z > λ;
(ii) Q11(z)e2z > λ.

Moreover, if a2 + bc ≤ 0, both (i) and (ii) hold, and if a2 + bc > 0, then b , 0 is
equivalent to (i) and c , 0 is equivalent to (ii).

Proof of Claim 1. We prove Claim 1 in each of three possibilities to the exponential
of A. First, write A = I + A0, where I is the identity matrix and A0 is the traceless part
of A given by

A0 =

(
a b
c −a

)
.

Since I and A0 commute, eAz = eIz+A0z = eIzeA0z, thus

eAz = ez
(
a0

11(z) a0
12(z)

a0
21(z) a0

22(z)

)
,
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where we denote the coefficients of the exponential eA0z by a0
i j(z). Then ai j(z) =

eza0
i j(z), and it follows that

Q11(z)e2z = e−4z[a21(z)2 + a22(z)2]e2z = a0
21(z)2 + a0

22(z)2. (3.5)

Analogously,
Q22(z)e2z = a0

11(z)2 + a0
12(z)2. (3.6)

Note that the characteristic equation of A0 is 0 = det(A0 − tI) = t2 − (a2 + bc) so, if
we let d =

√
|a2 + bc|, the exponential of A0 is

eA0z =

cos(dz) +
a
d

sin(dz)
b
d

sin(dz)
c
d

sin(dz) cos(dz) −
a
d

sin(dz)

 when a2 + bc < 0, (3.7)

eA0z =

(
1 + az bz

cz 1 − az

)
when a2 + bc = 0, (3.8)

eA0z =

cosh(dz) +
a
d

sinh(dz)
b
d

sinh(dz)
c
d

sinh(dz) cosh(dz) −
a
d

sinh(dz)

 when a2 + bc > 0. (3.9)

We remark that the constant a2 + bc is linked with the Milnor D-invariant of R2 oA R,
which is defined by D = det(A) = 1 − (a2 + bc). So each case a2 + bc > 0, a2 + bc = 0
and a2 + bc < 0 is in correspondence with D < 1, D = 1 and D > 1, respectively.

Let f (z) = a0
11(z)2 + a0

12(z)2 and g(z) = a0
21(z)2 + a0

22(z)2. We will prove that there is
some λ > 0 such that either f (z) > λ or g(z) > λ, and this proves the claim, by (3.5)
and (3.6).

Note that both f and g are always positive, since the existence of some z0 ∈ R
such that f (z0) = 0 or g(z0) = 0 would imply that det(eA0z0 ) = 0, which is an absurdity.
Hence, we just need to check the asymptotic behaviour of f and g.

If a2 + bc < 0, the existence of λ, as claimed, follows directly from the fact that both
f and g are periodic and positive, by (3.7). If a2 + bc = 0, then f and g are respectively

f (z) = (1 + az)2 + (bz)2 = (a2 + b2)z2 + 2az + 1,
g(z) = (1 − az)2 + (cz)2 = (a2 + c2)z2 − 2az + 1,

which are both strictly positive at infinity for any choice of a, b, c, so we also have the
existence of λ in this case. Finally, if a2 + bc > 0, then f and g are given by

f (z) =

(
cosh(dz) +

a
d

sinh(dz)
)2

+

(b
d

sinh(dz)
)2
,

g(z) =

(
cosh(dz) −

a
d

sinh(dz)
)2

+

( c
d

sinh(dz)
)2
.

If (i) was not true, either limz→−∞ f (z) = 0 or limz→+∞ f (z) = 0, and hence b = 0.
Also, if limz→−∞ g(z) = 0 or limz→+∞ g(z) = 0, we would have c = 0. This shows that
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if b , 0, then (i) holds and, if c , 0, then (ii) holds. As A is not a diagonal matrix, at
least one of (i) and (ii) is true, which finishes the proof of the claim. �

To proceed with the proof of the first case of Theorem 3.2, we prove the existence
of Λ > 0 such that G1(z) ≤ ΛQ22(z) and G2(z) ≤ ΛQ11(z). By definition,

G1(z)
Q22(z)

=
e−4z[(3 + a)a11(z)2 + (3 − a)a12(z)2 + (b + c)a11(z)a12(z)]

e−4z[a11(z)2 + a12(z)2]

= 3 + a
a11(z)2 − a12(z)2

a11(z)2 + a12(z)2 + (b + c)
a11(z)a12(z)

a11(z)2 + a12(z)2

≤ 3 + |a| +
|b + c|

2
= Λ, (3.10)

and, mutatis mutandis, the same estimate holds for the quotient G2(z)/Q11(z).
Next, using the existence of λ and Λ, as before, we prove the first case of the

theorem. Fix any constant α ∈ R and let u be any function that satisfies Q(u) ≥ 0 and
sup∂Ω u ≤ α.

First, assume that (i) holds and let R be the quasilinear elliptic operator defined as

R(w) = wxx

(Q22(u) + w2
y

Q22(u)

)
+ wyy

(Q11(u) + w2
x

Q22(u)

)
+ 2wxy

(Q12(u) − wxwy

Q22(u)

)
+

G1(u)
Q22(u)

w2
x +

G2(u)
Q22(u)

w2
y +

G3(u)
Q22(u)

wxwy + 2
e−2u

Q22(u)
e−2w.

Note that R is defined in order to have two features. First, when w = u, we
have R(u) = Q(u)/Q22(u) ≥ 0. Second, using the notation of (3.3), we have that the
coefficients ai j of R do not depend on w, only on the space variable and on the
derivatives of w. Also, the function z 7→ b(x, z, p) is nonincreasing for every x and
p fixed, and thus R satisfies the hypothesis of the comparison principle (although, as
noticed before, Q does not).

In order to finish the proof of Case 1 (when (i) holds), we will build a nonnegative
function v : Ω→ R that will depend uniquely on Ω and on α such that R(v + α) ≤
0 ≤ R(u). As u ≤ α ≤ α + v on ∂Ω, it will follow, from the comparison principle, that
u ≤ v + α in Ω, and this will finish the proof.

As Ω is a bounded domain, after a horizontal translation (which is an isometry of
the ambient space) we may assume, without loss of generality, that it is contained in a
strip

Ω ⊆ {(x, y, 0) ∈ R2 oA R | 1 < x < M},

for some M > 1. Let v(x, y) = ln(lx)/L, where l, L > 0 are constants yet to be defined.
By the definition of R and v and by the existence of λ and Λ as before,

R(v + α) = vxx +
G1(u)
Q22(u)

v2
x + 2

e−2u

Q22(u)
e−2(v+α)

< vxx + Λv2
x +

2
λ

e−2(v+α).
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Then, using that ev = (lx)1/L, vx = 1/Lx and vxx = −1/Lx2, we obtain

R(v + α) < −
1

Lx2 + Λ
1

L2x2 +
2

λe2α (lx)−2/L

=
1

Lx2

[
−1 +

Λ

L
+

2L
λe2αl2/L

x(2L−2)/L
]
. (3.11)

Take L = 1 + Λ. As 1 < x < M, it follows that

R(v + α) <
1

(1 + Λ)x2

[
−

1
1 + Λ

+ 2
1 + Λ

λe2αl2/(1+Λ) M2Λ/(1+Λ)
]
, (3.12)

and we can choose l big enough (in particular, we may assume l ≥ 1, so that v > 0 in
Ω) such that

−
1

1 + Λ
+ 2

1 + Λ

λe2αl2/(1+Λ) M2Λ/(1+Λ) < 0, (3.13)

so R(v + α) < 0. We remark that the choice of l and L depends uniquely on λ,Λ, α and
M, so it does not depend on u.

As R satisfies the hypothesis of the comparison principle and v + α ≥ u on ∂Ω, it
follows that supΩ u ≤ supΩ v + α. Finally, we set C = supΩ v, and the theorem follows
when A is not diagonal and (i) holds.

Still in Case 1, with A not being a diagonal matrix, if (i) was not true, then b = 0
and c , 0 so then (ii) would hold. In this case, let

R(w) = wxx

(Q22(u) + w2
y

Q11(u)

)
+ wyy

(Q11(u) + w2
x

Q11(u)

)
+ 2wxy

(Q12(u) − wxwy

Q11(u)

)
+

G1(u)
Q11(u)

w2
x +

G2(u)
Q11(u)

w2
y +

G3(u)
Q11(u)

wxwy + 2
e−2u

Q11(u)
e−2w.

From here, just proceed as before, but using v(x, y) = ln(ly)/L and making
appropriate choices for l and L, to finish the proof of Case 1.

Case 2. Assume that A is a diagonal matrix

A =

(
1 + a 0

0 1 − a

)
.

In this case, a11(z) = e(1+a)z, a22(z) = e(1−a)z and a12(z) = a21(z) = 0. It follows that
the operator Q is given by

Q(u) = uxx(e−2(1−a)u + u2
y) + uyy(e−2(1+a)u + u2

x) − 2uxy(uxuy)

+ (3 + a)e−2(1−a)uu2
x + (3 − a)e−2(1+a)uu2

y + 2e−4u.

If a ≥ 0, we define R as the operator

R(w) = wxx(1 + e2(1−a)uw2
y) + wyy(e−4au + e2(1−a)uw2

x) − 2wxy(e2(1−a)uwxwy)

+ (3 + a)w2
x + (3 − a)e−4auw2

y + 2e−2(1+a)w
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and, if a < 0, R will be defined as

R(w) = wxx(e4au + e2(1+a)uw2
y) + wyy(1 + e2(1+a)uw2

x) − 2wxy(e2(1+a)uwxwy)

+ (3 + a)e4auw2
x + (3 − a)w2

y + 2e−2(1−a)w.

Now, we just set v to again be v(x, y) = ln(lx)/L when a ≥ 0, and v(x, y) = ln(ly)/L
when a < 0. The proof will follow, as in the previous case, using Λ = 3 + |a| and
λ = 1. �

Next, we prove that the dependence of α on the constant C of Theorem 3.2 cannot
be removed. Precisely, we prove the following theorem.

Theorem 3.3. Let A be a matrix as in (3.4) and let X = R2 oA R be a nonunimodular
semidirect product endowed with its canonical left-invariant metric. Let Ω ⊆ R2 oA {0}
be a bounded, convex domain. Then, for every constant C > 0, there exists some
function u : Ω→ R satisfying Q(u) = 0 and also

sup
Ω

u > sup
∂Ω

u + C. (3.14)

The proof of Theorem 3.3 above is by contradiction and consists of using the
vertical translation that arises from the group structure to translate a family of solutions
tending to −∞, all to height zero. We prove that if Theorem 3.3 was false, such a
family would be uniformly bounded, and this would generate a contradiction with the
following theorem, due to Meeks III et al. [9].

Theorem 3.4 [9, Theorem 15.4]. Let X be a nonunimodular metric Lie group which is
isomorphic and isometric to a semidirect product R2 oA R, A ∈ M2(R). Suppose that
Γ(n) ⊆ R2 oA {0} is a sequence of C2 simple closed convex curves with e = (0, 0, 0) ∈
Γ(n) such that the geodesic curvatures of Γ(n) converge uniformly to zero and the
curves Γ(n) converge in compact subsets to a line L with e ∈ L as n→ ∞. Then,
for any sequence M(n) of compact branched minimal discs with ∂M(n) = Γ(n), the
surfaces M(n) converge C2 in compact subsets, as n→∞, to the vertical half-plane
π−1(L) ∩ [R2 oA [0, ∞)].

Proof of Theorem 3.3. We begin by proving the following claim.

Claim 2. Let S1 = {(x, y) ∈ R2 | x2 + y2 = 1} be the unit circle centred on the origin
of R2. Let A ∈ M2(R) be a matrix with trace(A) = 2, as in (3.4), and let eAz be
its exponential map. Then, there is a point p ∈ S1 and an increasing sequence
(zn)n∈N ∈ (0, +∞) such that the curves Γn = eAzn (S1 − p), defined by the homothety
by eAzn of the translated circle S1 − p, satisfy the hypothesis of Theorem 3.4 at the
origin: that is, the geodesic curvature of Γn at zero converges to zero and Γn converges
to a line L in compacts, with 0 ∈ L.

Proof of Claim 2. Denote the traceless part of A by A0 and observe that eAz = ezeA0z.
Then eAzS1 = ez(eA0zS1) is a homothety by ez of the curve eA0zS1. Let d =

√
|a2 + bc|

and divide the proof of the three aforementioned cases given in (3.7)–(3.9).
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If a2 + bc < 0, we let p ∈ S1 be any point and define zn = (2nπ)/d. Then eA0zn = Id,
so eAznS1 is a circle of radius e2zn centred at the origin, and Γn = eAzn (S1 − p) is a circle
through the origin with radius e2zn . As zn →∞, Γn will converge to a line L through
zero, and the claim is proved, in this case.

If a2 + bc = 0, then eA0z is given by (3.8) and eA0zS1 is an ellipse. The homotheties
of an ellipse by en admit a point where its geodesic curvature converges to zero and,
after a translation, it converges to a line in compacts, which proves the claim in this
second case.

Finally, if a2 + bc > 0, eA0z is given by (3.9). If bc , 0, then d , |a| and, if z is big
enough, cosh(dz) ' edz/2 and sinh(dz) ' edz/2, so

eA0z '
edz

2d

(
d + a b

c d − a

)
,

and eAzS1 is asymptotic to a homothety of e(d+2)z of an ellipse, which has the desired
properties. The last case to be treated is when d2 = a2 + bc = a2 > 0. Then

eA0z =

 edz b
d

sinh(dz)
c
d

sinh(dz) e−dz

 ' edz

d

(
d b
c de−2dz

)

and, for z large enough, it follows that eA0zS1 is asymptotic to a line segment, with
multiplicity two. Now the convergence of eAzS1 depends on the two possible cases,
0 < d ≤ 1 or d > 1. If d ≤ 1, then the homothety of ez on eA0z will open the segment
and make it asymptotic to an ellipse, which again admits a point p, as claimed. If
d > 1, then the action of ez still makes eAzS1 converge to a line in compacts, so the
claim is proved. �

Now we prove Theorem 3.3, arguing by contradiction. Suppose that there is C > 0
such that, for every solution of Q(u) = 0 in Ω,

sup
Ω

u ≤ sup
∂Ω

u + C. (3.15)

In particular, the same estimate holds for any bounded, smooth domain contained
in Ω. Let r > 0 be such that a Euclidean ball Br with radius r is contained in Ω, let
S1(r) = ∂Br be the circle that bounds Br and let p ∈ S1(r) and (zn)n∈N be the ones given
by Claim 2. Consider, for each n ∈ N, the problem{

Q(u) = 0 in Br,
u = −zn on ∂Br.

(3.16)

The existence result, due to Meeks III et al. [9, Theorem 15.1], implies that (3.16)
admits a solution un : Br → R, and, from (3.15), it follows that, for every n ∈ N, un

satisfies
sup

Br

un ≤ sup
∂Ω

un + C = −zn + C.
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We translate the functions un vertically to height zero, using the left translation of
the group L(0,0,zn) to obtain a contradiction. If Σn = graph(un), then

L(0,0,zn)Σn = {L(0,0,zn)(x, y, un(x, y)) | (x, y) ∈ Br}

=

{(
eAzn

(
x
y

)
, un(x, y) + zn

)
, (x, y) ∈ Br

}
=

{(
x̃, ỹ, un

(
e−Azn

(
x̃
ỹ

))
+ zn

)
, (x̃, ỹ) ∈ eAzn Br

}
.

Hence, if we let vn : eAzn Br → R be the function defined by

vn(x, y) = un

(
e−Azn

(
x
y

))
+ zn,

it follows that the graph of vn is a left-translate of the graph of un and, in particular,
its graph Σ̃n = L(0,0,zn)Σn is a minimal surface of R2 oA R. Moreover, these graphs Σ̃n

satisfy the hypothesis of Theorem 3.4, and thus they should converge, in compact sets,
to a vertical half-plane. However, it holds that

sup
eAzn Br

vn = sup
Br

un + zn ≤ C,

so the sequence vn is uniformly bounded, which generates a contradiction that proves
Theorem 3.3. �

Note that the last proof shows more than the existence of a function u as on
(3.14) for a fixed constant C. We actually proved that any sequence of functions
with values along the boundary converging to −∞ should have unbounded oscillation.
In particular, using the notation of Theorem 3.2, it follows that, when α→ −∞, it
is necessary that C(α)→ +∞. It is also possible to prove that C(α) may be chosen
more carefully to satisfy C(α)→ 0 when α→ +∞ (when trace(A) > 0). We make this
analysis in the next result and in Corollary 3.6.

Theorem 3.5. Let A ∈ M2(R) and let R2 oA R be a semidirect product endowed with
its canonical left-invariant metric. Let Ω ⊆ R2 oA {0} be some open bounded smooth
domain, let k ∈ Z be given and let uk be a solution to the problem{

Q(u) = 0 in Ω,
u = k on ∂Ω.

(3.17)

Then, if oscΩ(u) = supΩ(u) − infΩ(u) denotes the oscillation of a function u in Ω,
the following hold.

(1) If trace(A) = 0, then uk ≡ k is the constant function.
(2) If trace(A) > 0, then uk > k in Ω. Moreover,

lim
k→−∞

oscΩ(uk) = +∞ and lim
k→+∞

oscΩ(uk) = 0.
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(3) If trace(A) < 0, then uk < k in Ω. Moreover,

lim
k→−∞

oscΩ(uk) = 0 and lim
k→+∞

oscΩ(uk) = +∞.

Proof. If trace(A) = 0, it is clear that uk ≡ k is the unique solution to (3.17), by
Lemma 3.1, which proves (1). Also, as the change A→ −A gives rise to an isometry,
(x, y, z) ∈ R2 oA R 7→ (−x,−y,−z) ∈ R2 o−A R, (3) follows from (2), so we can simply
prove the case of trace(A) > 0 and, as previously, it is without loss of generality that
we assume that trace(A) = 2, so A is written as in (3.4).

From Lemma 3.1, it follows that uk ≥ k in Ω and, if at an interior point x ∈ Ω

the function uk attains its minimum uk(x) = k, then the mean curvature comparison
principle, applied to Σk = graph(uk) and to the plane {z = k}, will imply that the mean
curvature of Σk is at least as big as that of the plane, which is 1 > 0. This is a
contradiction that proves that uk > k in Ω.

The second part of (2) follows similarly to the proof of Theorem 3.3. If the
oscillation of uk was not going to +∞ when k → −∞, then we could translate all
the minimal surfaces Σk = graph(uk) to height zero and obtain a contradiction with
Theorem 3.4.

It remains to prove that the oscillation of uk goes to zero when k approaches +∞.
In order to do so, it suffices to prove that the constant C(α) can be chosen to go to zero
when α→∞.

Recall the proof of Theorem 3.2: C = C(α) was chosen depending on many
parameters l, L, λ,Λ, M and α. The constants λ and Λ depend only on the ambient
space, as they come from estimates of the coefficients of the operator Q. The constant
M depends uniquely on the diameter of Ω, so it is also fixed. In the proof of
Theorem 3.2, the free parameters we could work with were l and L, which depend
on the previous ones and on the a priori constant α. Using an appropriate choice of l
and L, we obtained the expression for C given by

C =
ln(lM)

L
.

The key steps for choosing l and L were between (3.11)–(3.13). However, these
steps were carried out by considering the worst case, where the number α was a
negatively large number, so we began by choosing L and then arrived at the definition
of a big enough l, in order to compensate e2α, which was thought to be close to zero.
Now, we are taking αk = k to be positively large, so we follow a different approach.

Using the notation of the proof of Theorem 3.2, let L = Λ + j, where j ∈ N is yet to
be chosen, and take l = 1, to obtain, similarly to (3.12), the inequality

R(v + k) <
1

(Λ + j)x2

[
−

j
Λ + j

+ 2
Λ + j
λe2k M2−2/(Λ+ j)

]
. (3.18)

Then we proceed as before, and try to find some j ∈ N such that the right-hand side
of (3.18) becomes negative. Such j exists if and only if it satisfies

(Λ + j)2

jM2/(Λ+ j) <
λ

2M2 e2k. (3.19)
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There is k0 ∈ N big enough such that, for every k ≥ k0, it is possible to find j ∈ N
satisfying (3.19). For k ≥ k0, denote by j(k) the largest j ∈ N such that (3.19) holds (as
the left-hand side is unbounded with j this is well defined). By taking L = Λ + j(k),
we use (3.18) to obtain, as in Theorem 3.2, that there exists a constant C(k) = C(Ω, k)
given by

C(k) =
ln(M)

Λ + j(k)

such that every u : Ω→ R, where{
Q(u) ≥ 0 in Ω,
u ≤ k on ∂Ω,

satisfies
sup

Ω

(u) ≤ k +
ln(M)

Λ + j(k)
.

Note this is the same result as in Theorem 3.2 but for a different constant C, and
only for α = k ≥ k0. In particular, the functions uk satisfy, for k large enough, that

sup
Ω

uk ≤ k +
ln(M)

Λ + j(k)
,

and hence
oscΩ(uk) = sup

Ω

uk − k ≤
ln(M)

Λ + j(k)
.

Finally, as the right-hand side of (3.19) is unbounded with respect to k, it follows
that limk→∞ j(k) = +∞, so

lim
k→+∞

ln(M)
Λ + j(k)

= 0,

and the oscillation of uk also tends to zero when k→ +∞. This finishes the proof of
(2) and of the theorem. �

This proof has the next result as a consequence.

Corollary 3.6. Let R2 oA R be a nonunimodular semidirect product with trace(A) > 0
and let C(α) be the constant given by Theorems 3.2 and by the proof of Theorem 3.5.
Then

lim
α→−∞

C(α) = +∞, lim
α→+∞

C(α) = 0.

In particular, if uL : Ω→ R is a function satisfyingQ(u) ≥ 0 in Ω,
sup
∂Ω

u = L ∈ R,

then
lim

L→−∞

(
sup

Ω

uL − L
)

= +∞, lim
L→+∞

(
sup

Ω

uL − L
)

= 0.
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134 Á. K. Ramos [17]

4. Scherk-like fundamental pieces

In this section, we use the tools developed in the study of the mean curvature
operator, together with Killing graph techniques, to obtain an existence result of
Scherk-like fundamental pieces, which are minimal π-graphs on R2 oA R that assume
the value zero along a piecewise smooth curve γ ⊂ R2 oA {0} and have γ ∪ ({p1} ×

[0, ∞)) ∪ ({p2} × [0, ∞)) as boundary, where p1 and p2 are the endpoints of γ.
In the ambient space of an unimodular group R2 oA R, Menezes [11] proved the

existence of complete (without boundary) minimal surfaces, similar to the singly and
to the doubly periodic Scherk minimal surfaces of R3. We would like to take a moment
to give the main steps of the proof of Menezes for the existence of a doubly periodic
example.

Sketch of the proof of Theorem 2 of [11]. Let ∆ ⊆ R2 oA {0} be a triangle with
vertices

o = (0, 0, 0), p1 = (a, 0, 0), p2 = (0, a, 0),

for some a > 0. Let Pc be the polygon given by the union of segments

Pc = op1 ∪ p1 p1(c) ∪ p1(c)p2(c) ∪ p2(c)p2 ∪ p2o, (4.1)

where p1(c) = (a, 0, c) and p2(c) = (0, a, c). Reference [9, Theorem 15.1] implies the
existence of a minimal π-graph Σc with ∂Σc = Pc.

Then one key property was observed: any Σ with such boundary is a Killing graph
over the vertical domain Ωc = {(t, a − t, s) | 0 ≤ t ≤ a, 0 ≤ s ≤ c} with respect to the
horizontal Killing field ∂x + ∂y, and thus Σc is the unique minimal surface with Γc as
boundary.

This implies that Σc is stable and that the variation c 7→ Σc is continuous. By making
c→∞, and using curvature estimates due to Rosenberg et al. [13] for stable surfaces in
homogeneous manifolds, it is possible to show the convergence of Σc to some surface
Σ∞, which is nowhere vertical and has boundary

∂Σ∞ = P∞ = op1 ∪ ({p1} × [0, ∞)) ∪ op2 ∪ ({p2} × [0, ∞)).

Finally, use the ambient isometries to rotate Σ∞ along the two segments op1 and op2
to obtain a complete minimal π-graph on R2 oA R, which can be extended periodically
by horizontal translations. �

On this subject, our contribution is an extension of the above result to any semidirect
product R2 oA R. Although, in the general case, our method does not produce
examples without boundary, in the setting of unimodular groups, our proof, which
differs from the one of Menezes, re-obtains the same result explained above. We state
our result as follows.

Theorem 4.1. Let R2 oA R be a semidirect product, where A ∈ M2(R) is any matrix
with trace(A) ≥ 0. There exists L0 = L0(trace(A), det(A)) > 0 (and L0 = ∞ when
trace(A) = 0) such that if p1, p2 ∈ R

2 oA {0} satisfy d(p1, p2) ≤ L0, then, for any
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piecewise smooth curve γ ⊆ R2 oA {0} with endpoints p1, p2 which is a convex graph
over the segment α = p1 p2 and meets α on angles less than π/2, there exists a minimal
surface Σ which is a π-graph with boundary

∂Σ = γ ∪ ({p1} × [0, +∞)) ∪ ({p2} × [0, +∞)).

Moreover, Σ is nowhere vertical, it is the unique minimal surface on R2 oA R with such
boundary and it is a Killing graph over the vertical domain Ω∞ = α × [0, +∞).

Remark. Our construction works in some well-studied spaces, for example in the
product space H2 × R, which is isometric and isomorphic to the semidirect product
R2 oA R, when we choose

A =

(
1 0
0 0

)
.

InH2 × R, Scherk-like graphs have been studied already, and even more general results
have been obtained (for example, in the work of Nelli and Rosenberg [12] and in the
work of Hauswirth et al. [6]). However, the isometry between R2 oA R and H2 × R
maps R2 oA {0} not to H2 × {0}, as would appear at first sight, but to a horocylinder
(that is, the product of a horocycle of H2 with R), so the orientation of our graphs is
not that usually studied in this space.

The proof of Theorem 4.1 is given in Section 4.2. If trace(A) > 0, when considering
polygons Pc as in (4.1), there is a minimal π-graph Σc with boundary Pc. However, as
the maximum principle does not hold, there is no reason for Σc be a Killing graph over
Ωc and we do not have curvature estimates. Furthermore, we do not have the tools
to ensure the continuity of the family Σc, which makes it impossible to use geometric
barriers. It becomes clear that, when trace(A) , 0, another sequence of surfaces Σc

should be constructed, or other tools (such as stability of minimal π-graphs – a question
that remains open) should be developed.

Our approach will be as follows. Instead of considering minimal π-graphs over
a domain on R2 oA {0}, we will look to the problem horizontally, and consider an
exhaustion of the half-strip Ω∞ = α × [0, +∞) by subdomains Ωc, on which is possible
to find a family of minimal Killing graphs with prescribed boundary. Then we use
techniques from Killing graphs and elliptic PDEs to obtain the convergence of such a
family to another minimal Killing graph Σ∞. Then we go back to the problem vertically
(as the intermediate Killing graphs will also be π-graphs, by a result of Meeks III, Mira,
Pérez and Ros), and we apply the geometric barriers used by Menezes to see that the
surface Σ∞ is, as claimed, a π-graph, nowhere vertical.

4.1. A good exhaustion of Ω∞. The next proposition is crucial to the construction
described above, as it gives the exhaustion of Ω∞ by domains Ωc, where it is possible
to find minimal Killing graphs with the prescribed boundary (see Figure 2).

Proposition 4.2. Let R2 oA R be a semidirect product where trace(A) ≥ 0. Then there
exists a constant L0 = L0(A) that depends uniquely on A such that, for every two points
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(b)(a)

Figure 2. (a) The horizontal domain ∆ and the exhaustion of Ω∞ by subdomains Ωc whose Killing
cylinder (b) has mean curvature vector pointing inwards.

p1, p2 ∈ R
2 oA {0}, if α = p1 p2 is the segment joining p1 and p2, Ω∞ is the vertical

domain
Ω∞ = α × [0, +∞),

and if L = length(α) < L0, then Ω∞ admits a continuous exhaustion {Ωc}c>0 by domains
Ωc with boundary given by α, a graph over α (called αc) and the two vertical segments
joining the endpoints of α and αc.

Moreover, such an exhaustion is such that the Killing cylinder over ∂Ωc with respect
to the horizontal Killing field Yθ = sin(θ)∂x + cos(θ)∂y has mean curvature vector
pointing inwards, where θ is such that Yθ is normal to Ω∞ at z = 0.

Proof. Let p1, p2 ∈ R
2 oA {0} be any two points and, after a rotation on A as in (2.2)

and a horizontal translation of R2 oA R, we may assume, without loss of generality,
that p1 = (0, 0, 0) and p2 = (L, 0, 0) for some L > 0. We are going to show that if L is
sufficiently small, then we can find the exhaustion, as claimed.

In this setting, α is the segment α = {(x, 0, 0) | 0 ≤ x ≤ L} and Ω∞ is the half-strip

Ω∞ = {(x, 0, z) ∈ R2 oA R | 0 ≤ x ≤ L, z ≥ 0},

transversal to the Killing field Y = ∂y. Such assumptions will be kept until the end of
the paper.

If trace(A) = 0, then the result is trivial (and without the need for an upper bound
L0), by taking αc to be the translate of α to height c given by αc = {(x, 0, c) | 0 ≤ x ≤ L},
as horizontal planes are minimal. Then, until the end of the proof, we will treat the
nonunimodular case and again we assume, without loss of generality, that trace(A) = 2,
so A is a matrix as in (3.4). We will exhibit the curves αc explicitly, and then we will
prove that they have the desired properties.

First, we treat the case where A is not diagonal and either a2 + bc ≤ 0 or b , 0. Let
λ, Λ be the constants related to the matrix A via (i) of Claim 1 and (3.10). Let

L0 =

√
λ

2Λ

π

2
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and, for L ≤ L0, we let f : [0, L]→ R be

f (x) =
1
Λ

ln
( cos

(√
2Λ
λ

x
)

cos
(√

2Λ
λ

L
) ). (4.2)

Note that f is well defined, as 0 ≤ x ≤ L < L0 implies that

cos
(√2Λ

λ
x
)
≥ cos

(√2Λ

λ
L
)
> 0,

so the quotient in (4.2) is larger than (or equal to) one. In particular f ≥ 0, with
f (x) = 0 ⇐⇒ x = L, and, for c > 0, we define fc = f + c and let αc = graph( fc) ⊆ Ω∞.
Using such fc, we define

Ωc = {(x, 0, z) ∈ R2 oA R | 0 ≤ x ≤ L, 0 ≤ z ≤ fc(x)},

and it follows that {Ωc}c>0 is a continuous exhaustion of Ω∞. Next, we show that the
Killing cylinder of the boundary of Ωc with respect to ∂y is mean convex, i.e., has
mean curvature vector pointing inwards.

The ∂y-Killing cylinder of ∂Ωc has four smooth components (see Figure 2(b)): one
is a subdomain of a horizontal plane, so it has mean curvature one pointing upwards,
while two are contained on vertical planes and thus are minimal. The last component is
the one corresponding to αc, and it is a π-graph of the function uc(x, y) = fc(x). Hence
(3.1) implies that its mean curvature, when oriented upwards, is

H =
e4 fc

2W3 [Q22( fc) f ′′c + G1( fc)( f ′c )2 + 2e−4 fc ].

From the proof of Theorem 3.2, we obtain that G1/Q22 ≤ Λ. Moreover, Claim 1
implies that Q22(z) > λe−2z, and hence

H ≤
e4 fc

2W3 Q22( fc)
[

f ′′ + Λ( f ′)2 + 2
e−2 fc

λ

]
,

whenever A is not diagonal and satisfies either b , 0 or a2 + bc ≤ 0. In particular, as
fc ≥ 0,

H ≤
e4 fc

2W3 Q22( fc)
[

f ′′ + Λ( f ′)2 +
2
λ

]
. (4.3)

Note that f was chosen in such a way that it satisfies the ordinary differential
equation

f ′′ + Λ( f ′)2 +
2
λ

= 0, (4.4)

so, from (4.4) and (4.3), we obtain that H ≤ 0, with respect to the upward orientation,
and hence the mean curvature vector of the Killing cylinder around αc points
downwards, as desired.
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(b)(a)

Figure 3. The surface Σc (b) is both a π-graph over ∆ and a ∂y-Killing graph over Ωc, with ∂Σ = Γc (a).

This finishes the proof when A is not diagonal and either a2 + bc ≤ 0 or b , 0. Now,
we treat the simpler case of A being given by

A =

(
1 + a 0

c 1 − a

)
.

It follows, from (3.9), that Q22(z) = e2(a−1)z and G1(z) = (3 + a)e2(a−1)z. Thus, the mean
curvature of the π-graph of u(x, y) = f (x) is

H =
e2(a+1) f

2W3 [ f ′′ + (3 + a)( f ′)2 + 2e−2(1+a) f ],

and we can finish the proof similarly to the previous case. �

4.2. Existence of Scherk-like graphs – proof of Theorem 4.1. This section proves
Theorem 4.1 via a standard argument of convergence. However, sometimes we look at
the graphs vertically (as π-graphs), with geometrically defined barriers, and sometimes
horizontally (as ∂y-Killing graphs), so that we can use techniques of Killing graphs and
elliptic PDEs.

Proof of Theorem 4.1. Let A ∈ M2(R) be any matrix with trace(A) ≥ 0 and let L0 > 0
be the one given by Proposition 4.2. Let p1, p2 ∈ R

2 oA {0} be such that d(p1, p2) =

L < L0 and, without loss of generality, assume that p1 = (0, 0, 0) and p2 = (L, 0, 0).
Let α = {(x,0,0) | 0 ≤ x ≤ L} be the segment joining p1 and p2 and let g : [0, L]→ R

be a convex, piecewise smooth function, with g(0) = g(L) = 0 and meeting α on angles
smaller than π/2 at zero and L, that defines a piecewise smooth curve γ ⊆ R2 oA {0},
given by

γ = {(x, g(x), 0) ∈ R2 oA {0} | 0 ≤ x ≤ L},

with endpoints p1, p2 such that α ∪ γ bounds a convex domain ∆ ⊆ R2 oA {0} (as in
Figure 3(a)).

Let Ω∞ = α × [0, +∞) and, following the notation of Proposition 4.2, let, for each
c ≥ 0,

Ωc = {(x, 0, z) ∈ R2 oA R | 0 ≤ x ≤ L, 0 ≤ z ≤ fc(x)}.
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Let αc = {(x, 0, fc(x)) | 0 ≤ x ≤ L} be the graph of fc, in such a way that its ∂y-Killing
cylinder

Cyl∂y
(αc) = {(x, y, fc(x)) | 0 ≤ x ≤ L, y ∈ R}

has mean curvature vector pointing downwards. We denote by

p1(c) = (0, 0, fc(0)), p2(c) = (L, 0, fc(L))

the endpoints of αc and, for c ≥ 0, we let Γc be the simple closed curve in R2 oA R
given by (see Figure 3(a))

Γc = γ ∪ p1 p1(c) ∪ αc ∪ p2 p2(c).

Claim 3. The curve Γc, as above, bounds a unique minimal π-graph Σc over ∆, which
is also a ∂y-Killing graph over Ωc.

Proof of Claim 3. First, we notice that Γc monotonically parametrises ∂∆, and then
we can use [9, Theorem 15.1] to obtain a minimal π-graph Σc with boundary ∂Σc = Γc.

Next, we show that Σc is a ∂y-Killing graph, in the sense that there is a function
gc : Ωc → R, smooth up to the boundary, such that R(gc) = 0, where R will stand for
the elliptic operator of the mean curvature of minimal ∂y-Killing graphs and

Σc = Gr∂y (gc) = {(x, gc(x, z), z) | (x, 0, z) ∈ Ωc}. (4.5)

Note that, as Σc is a π-graph, there is a function uc : ∆→ R such that

Σc = graph(uc) = {(x, y, uc(x, y)) | (x, y, 0) ∈ ∆}. (4.6)

We claim that Σc is contained in the ∂y-Killing cylinder over Ωc, so 0 ≤ uc(x, y) ≤ fc(x).
Indeed, it follows directly from the mean curvature comparison principle that u > 0 in
the interior of ∆, so we show that uc(x, y) ≤ fc(x) for every (x, y, 0) ∈ ∆. Arguing by
contradiction, if there was an interior point (x0, y0, 0) ∈ ∆ such that uc(x0, y0) > fc(x0),
then we could consider the family Cyl∂y

(αt), for t > c, and obtain a last contact point,
interior for both Σc and Cyl∂y

(αt), so the mean curvature of Cyl∂y
(αt) would point

upwards. This would contradict Proposition 4.2 so it proves that uc(x, y) ≤ fc(x) for
every (x, y, 0) ∈ ∆.

Let q = (x, 0, z) ∈ Ωc be an interior point and consider O(q) = {(x, y, z) | y ∈ R}, the
orbit of q with respect to the flux ϕt of the Killing field ∂y. Note that O(q) ∩ Σc is never
empty for q ∈ Ωc, otherwise Σc would not be simply connected. Hence it would not be
a π-graph over ∆.

Moreover, the intersection O(q) ∩ Σc cannot contain more than one point: if there
were two points qi = ϕti (q) ∈ Σc, with t1 < t2, then, for t0 = t2 − t1 > 0, ϕt0 (Σc) ∩ Σc , ∅.
Now, as ϕt(∂Σc) ∩ Σc = ∅ for all t , 0, by construction, we could consider the last
contact point between ϕt(Σc) ∩ Σc, and it would be interior for both Σc and ϕt(Σc).
This would contradict the maximum principle.

This defines a function gc : Ωc → R, which satisfies the relation (x, gc(x, z), z) =

Σc ∩ O(x, 0, z) and thus Σc can be written as in (4.5). However, we still do not have the
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regularity of gc. In order to prove that gc is smooth, we begin by proving that the norm
of grad(gc) is bounded in Ωc.

Let q ∈ Ωc be any interior point and consider a small open ball B = BΩc (q, r) ⊆ Ωc

such that Cyl∂y
(∂B) has mean curvature vector pointing inwards. Consider the problem

over B given by {
R(w) = 0 in B,
w|∂B = gc|∂B,

(4.7)

where R is the mean curvature operator for ∂y-Killing graphs. In other words, we are
looking for a minimal ∂y-Killing graph over a small ball on Ωc that coincides with Σc

on its boundary.
If Φ := gc|∂B was of class C2, α, we could simply use the existence result due to

Dajczer and de Lira [3, Theorem 1]1 to obtain a solution to (4.7). However, at this
point we can only guarantee that Φ is of class C0, so we need to use an approximation
argument. Let (Φ±n )n∈N ⊆ C2, α(∂B) be two sequences of C2, α functions, converging to
Φ and such that

Φ−n ≤ Φ−n+1 ≤ Φ ≤ Φ+
n+1 ≤ Φ+

n , (4.8)

for every n ∈ N. By [3, Theorem 1], there are functions w±n ∈ C2, α(B) with minimal
∂y-Killing graphs and such that w±n |∂B = Φ±n . From (4.8) we obtain that the sequences
(w±n )n∈N are also monotone, (w−n )n∈N is nondecreasing, (w+

n )n∈N is nonincreasing and
both are uniformly bounded. To obtain the convergence of the sequences w±n to a
solution of (4.7), we use some recent gradient estimates for Killing graphs obtained by
Casteras and Ripoll in [1].

Theorem 4.3 [1, Theorem 4]. Let M be a Riemannian manifold and let Y be a Killing
field. Let Ω be a Killing domain in M and let o ∈ Ω and r > 0 such that the open
geodesic ball BΩ(o, r) is contained in Ω. Let u ∈ C3(BΩ(o, r)) be a negative function
whose Y-Killing graph has constant mean curvature H. Then there is a constant L
depending only on u(o), r, |Y | and H such that ‖grad(u)(o)‖ ≤ L.

All functions w±n have uniform bounds on their C0 norm, and thus Theorem 4.3
above implies that there are uniform gradient estimates on compact subsets of B.
This implies that both sequences will converge on the C2 norm to a function w ∈
C2(B) ∩ C0(B), which is a solution of (4.7). Now, just use the flux of ∂y and the
same translation argument as before to obtain that w coincides with gc in B. Hence the
gradient of gc is bounded on interior points of Ωc, as claimed.

Next, we use the relation (x, gc(x, z), z) = (x, y, uc(x, y)) to prove that gc is actually
smooth up to the boundary, with the unique exceptions of p1, p2, p1(c), p2(c) (where
∂Ωc is not smooth), and the finite number of points where g is not differentiable.
Note that uc is smooth up to the boundary (except on the points where ∂∆ is not
differentiable) and that the gradient of uc is never horizontal on ∂∆, by the boundary

1We notice that the hypothesis on the Ricci curvature on [3] is used uniquely to obtain an a priori
estimate for the height of the graph, which is satisfied in our setting by the maximum principle.
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Figure 4. Ω∞ ⊆ P viewed horizontally: on each compact set K ⊆ Ω∞ there are uniform gradient estimates.

maximum principle. Moreover, it follows from the last argument that grad(uc) never
vanishes on interior points of ∆, so gc is also smooth up to the boundary, with the
exceptions given above.

This proves that any minimal π-graph S with ∂S = Γc is a Killing graph. It follows
easily that Σc is unique, proving Claim 3. �

We proceed with the proof of Theorem 4.1, by noticing that that the uniqueness of
Σc, given by Claim 3, implies that the correspondence c 7→ gc is continuous. Moreover,
by its construction, we have that each gc satisfies, on the boundary of Ωc,

gc(0, z) = gc(L, z) = 0, gc|αc = 0, gc(x, 0) = g(x).

Again, as Σc is a π-graph over ∆, it is contained on the π-cylinder over ∆, and this
can be translated to the horizontal setting as the inequality

0 ≤ gc(x, z) ≤ g(x), (4.9)

for every (x, 0, z) ∈ Ωc. Moreover, the usual argument using the flux of ∂y shows that
the sequence gc is monotonically increasing with c. In particular, as it is bounded,
the sequence will converge pointwise for some function g∞ : Ω∞ → R, such that
0 ≤ g∞ ≤ g. The next claim shows that the convergence is actually on the C2 norm, so
Gr∂y (g∞) = Σ∞ is a minimal surface of R2 oA R.

Claim 4. When c→∞, the functions gc converge on the C2 norm to g∞ : Ω∞ → R.

Proof of Claim 4. To prove this claim, we use the same argument as that of Claim 3,
via gradient and height estimates for Killing graphs. Let K ⊆ Ω∞ be a compact set in
Ω∞ with C2, α boundary, as in Figure 4. As it holds that gc(x, z) ≤ g(x), it follows that
the height of gc is uniformly bounded on K, so we can use Theorem 4.3 to obtain an
uniform bound for the norm of the gradient of gc on interior points of K.

Note that (4.9), together with the assumption that the angle γ makes with α at p1
and p2 is less than π/2, implies that every gc satisfies a uniform gradient estimate also
along the boundary of K. As gc|K ∈ C2, α(K) is smooth up to the boundary, this implies
a uniform estimate for the gradient of gc on K.
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Now, by taking an exhaustion of Ω∞ by compact sets and, by using a standard
argument, we obtain that a subsequence of (gc) converges to g∞ on the C2 norm. In
particular, as the sequence is monotone and converges pointwise, it follows that the
convergence is smooth on the whole Ω∞. �

From this claim we obtain that Σ∞ is a minimal surface of R2 oA R and that its
boundary is

∂Σ∞ = Γ∞ = γ ∪ ({p1} × [0, ∞)) ∪ ({p2} × [0, ∞)).

In order to finish the proof of Theorem 4.1, it remains to show that Σ∞ is nowhere
vertical and that it is unique. The uniqueness comes directly from the fact that it was
built as a Killing graph, and that every other surface with such boundary is contained
on the ∂y-Killing cylinder over Ω∞.

To show that Σ∞ is nowhere vertical, we go back to analyse the problem using π-
graphs. First, if there was an interior point p ∈ Σ∞ such that TpΣ∞ was vertical, Σ∞
and TpΣ∞ would be two minimal surfaces of R2 oA R tangential to each other at p.
Then, there would be at least two curves, meeting transversely at p on the intersection
TpΣ∞ ∩ Σ∞, so Σ∞ cannot be a π-graph on a neighbourhood of p. Hence, it is a π-
cylinder over some line segment1 β contained in ∂∆. Second, if the point p ∈ ∂Σ∞
was a boundary point where TpΣ∞ was vertical, then the boundary maximum principle
would reach the same conclusion. The next claim shows that Σ∞ meets π−1(γ) uniquely
on γ, so Σ∞ ⊇ (β × [0, ∞)) is a contradiction.

Claim 5. Σ∞ ∩ π
−1(γ) = γ.

Proof of Claim 5. To prove this, we use the same barrier technique of Menezes [11].
Let γi be a smooth component of γ and let p ∈ γi be any point. Consider L, the vertical
plane of R2 oA R containing the tangent line to γi at p (this is well defined even for
p ∈ ∂γi, since γi is smooth). As γ is convex, this implies that ∆ is contained in the
same connected component of R2 oA R defined by L, and so is Σ∞.

For c ≥ 0, let uc : ∆→ R be as in (4.6) and let c0 = sup∆ u0. For c2 > c1 > c0,
consider a rectangle R ⊆ L, with boundary ∂R = r1 ∪ r2 ∪ s1 ∪ s2 given by two parallel
horizontal segments r1 and r2 and two vertical segments s1 and s2, such that s1 ⊆ {z =

c1} and s2 ⊆ {z = c2}, that projects into R2 oA {0} in a compact segment r 3 p with
endpoints q1 = π(s1) and q2 = π(s2), contained on the same half-space determined by
{y = 0} (the vertical plane containing α) and with q2 outside ∆ (see Figure 5).

Let q3 ∈ π(R) be a point interior to the projection of R that is not in ∆. Then,
q̃3 = π−1(q3) ∩ r2 divides r2 into two compact segments r3 ∪ r4, with r3 projecting
entirely outside ∆ and with p ∈ π(r4).

1If β ⊆ R2 oA {0} is a smooth curve, the π-cylinder β × [0, ∞) is minimal if and only if β is a
line segment: to see this, just use the foliation of R2 oA R by vertical planes which are parallel to
the vertical plane generated by the endpoints of β. It also follows from the more general formula
H(x, y, z) = kg(x, y)e−ztrace(A), where kg(x, y) denotes the geodesic curvature of β on the point (x, y, 0).
The proof of this formula is a simple computation.
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Figure 5. The construction of the barrier R̃, by deforming ∂R over r3.

As L it is transversal to a (horizontal) Killing field, it is stable. In particular, it
follows from the useful criteria due to Fischer-Colbrie and Schoen [4, Theorem 1]
(also proved in Proposition 1.32 of the book by Colding and Minicozzi II [2]) that R
is strictly stable, and thus small perturbations of ∂R give rise to minimal surfaces with
the perturbed boundary.

Change r2 by making a parallel translation of r3 (whose projection still does not
intersect ∆) in the direction of the half-space that contains Σ∞, joined by two small
segments. Denote such a curve by r̃3, where r3 ∪ r̃3 bounds a small rectangle in
the horizontal plane {z = c2}. We assume that this perturbation is small and that its
projection does not intersect ∆. Let R̃ be a minimal surface of R2 oA Rwhose boundary
is the perturbed rectangle r1 ∪ r̃3 ∪ r4 ∪ s1 ∪ s2. Such a surface is nowhere vertical and
is contained in the convex hull of its boundary. In particular, it is contained in {z ≥ c1}

and in the same half space as Σ∞ with respect to L.
It is easy to see that π(R̃) ∩ ∆ , ∅, otherwise R̃ ∩ R would have a interior contact

point. Moreover, R̃ is above u0 on π(R̃) ∩ ∆, by the construction of R̃. Then, if
Σ∞ ∩ π

−1(γi) , γi, we would have that Σ∞ ∩ R̃ , ∅, and thus, for some ` > 0 there
would be a first contact point between Σ` and R̃. As ∂Σ` does not intersect the
convex hull of ∂R̃, it does not intersect R̃. Moreover, ∂R̃ cannot intersect Σ`, as this
would imply that such a point would be in the plane L, so Σ` would have a vertical
tangent plane. Such a contact point would be interior for both. Therefore we reach a
contradiction that proves the claim. �

From Claim 5 and from the previous argument, we obtain that Σ∞ is a π-graph,
nowhere vertical, which finishes the proof of Theorem 4.1. �

https://doi.org/10.1017/S1446788715000713 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788715000713
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