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Abstract. Models for galaxy clusters abundance and their spatial distribution are sensitive to
cosmological parameters. Present and future surveys will provide high-redshift sample of clusters,
such as Dark Energy Survey (z � 1.3), making cluster number counts one of the most promising
cosmological probes. In the literature, some cosmological analyses are carried out using small
cluster catalogs (tens to hundreds), like in Sunyaev-Zel’dovich (SZ) surveys. However, it is not
guaranteed that maximum likelihood estimators of cosmological parameters are unbiased in this
scenario. In this work we study different estimators of the cold dark matter density parameter
Ωc , σ8 and the dark energy equation of state parameter w0 obtained from cluster abundance.
Using an unbinned likelihood for cluster number counts and the Monte Carlo approach, we
determine the presence of bias and how it varies with the size of the sample. Our fiducial models
are based on the South Pole Telescope (SPT). We show that the biases from SZ estimators do
not go away with increasing sample sizes and they may become the dominant source of error
for an all sky survey at the SPT sensitivity.
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1. Introduction
Galaxy cluster abundance and their spatial distribution as functions of redshift and

mass provide strong constraints on the matter density parameter Ωm and the amplitude
σ8 of the power spectrum. For high redshift surveys (z > 1.0), clusters are also powerful
tools to study dark energy (DE) since they depend on the linear growth of density
perturbations and the comoving volume (see Allen et al. 2011 and references therein).

Usually the cluster likelihood function is built taking into account the following error
sources: the uncertainties of the mass-observable relations and the photometric redshifts,
sample-variance and shot-noise. However, in general, it is assumed that the cosmological
parameter estimators themselves do not induce any extra uncertainty.

The Maximum Likelihood (ML) method is extensively used to estimate the values of
parameters given a data set. ML estimators are usually consistent, i.e., the expected
value of a parameter tends to its true value when the size of the data sample (n) is
sufficiently large, and asymptotically efficient, i.e., the variance of the estimator attains
the minimum variance bound as n → ∞. However, ML estimators are not necessarily
unbiased.
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In this work, we study some estimators of Ωc , σ8 and w0 in the context of SZ surveys,
specifically from the SPT. For the redshift and mass ranges of SPT catalogs, sample
variance is negligible. Therefore, we build the likelihood only for the cluster number
counts and do not include the spatial clustering.

2. Methodology
The likelihood for cluster number counts is

lnL({θj}, {ξi , zi}) =
n∑

i=1

ln
(

d2N(ξi , zi , {θj})
dzdξ

)
− N({θj}) − ln n!, (2.1)

where n is the total number of clusters, ξ is the detection significance (Vanderlinde et al.
2010 and Benson et al. 2013) and

d2N(ξi, zi , {θj})
dzdξ

=
∫

d ln M

∫
dζ

d2N(M, zi, {θj})
dzd ln M

P (ξi |ζ)P (ln ζ| ln M). (2.2)

The normalization factor N({θj}) is the expected number of clusters with 0.3 � z � 1.1
and ξmin � 5. We assume that the catalog is complete above this threshold and in the
entire redshift interval.

Estimators for a given set of parameters ({θ̂j}) are obtained by minimizing −2 lnL({θj},
{ξi, zi}) with respect to these parameters. The bias of θ̂j is defined as

bθ̂j
= 〈θ̂j 〉 − θ0

j , (2.3)

where 〈θ̂j 〉 is the expected value and θ0
j is the true value (fiducial). We cannot compute

〈θ̂j 〉 analytically. Therefore, we use the Monte Carlo (MC) method, i.e., we generate a
set of realizations of the input fiducial model and compute the best-fitting value of θ̂j for
each realization. Then we compute the expected value using as an estimate

〈θ̂j 〉 ≈ θ̂j ± σ
(
θ̂j

)
, θ̂j =

m∑
l=1

θ̂j l

m
, σ

(
θ̂j

)
=

σ(θ̂j )√
m

, (2.4)

where m is the number of realizations and θ̂j l is the best-fitting value for the l-th real-

ization. In cases where bθ̂j
�= 0, the significance of this bias is ensured computing σ(θ̂j ).

In particular for our purposes, it was necessary to generate 10,000 realizations for each
choice of the fiducial model.

To obtain a realization, we first randomly generate the number of objects n using
N({θ0

j }) as the mean of a Poisson distribution. Then, we apply the inverse transform
sampling (ITS): giving the probability distribution of finding a cluster with detection
significance greater than ξmin and in [z, z + dz], i.e.,

P(z)dz =
1

N({θj})

(
dN

dz

)
dz, (2.5)

we define the cumulative

f(z) =
∫ z

0
P(z′)dz′. (2.6)

Given that f(z) is a monotonically increasing function, whose image is [0, 1], and a
random variable with uniform distribution over [0, 1], we generate n random numbers
{ui} from a uniform distribution and invert Eq. 2.6 obtaining z(f) and, therefore,
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Figure 1. The expected values of the estimators (dots) are displayed with the error bars of the
estimators (a) and of their means (b) for different survey areas. This analysis was done in the
three-dimensional parametric space (Ωc , σ8 , w0 ), keeping all other parameters fixed.

{zi} = {z(ui)}. Analogously, we obtain a value ξi from the conditional distribution
of obtaining a cluster with detection significance in the range ξ and ξ + dξ given zi ,

P (ξ|zi) =
P (ξ, zi)
P(zi)

. (2.7)

Then, we apply the ITS method, given the cumulative f(ξ|zi), obtaining {ξi, zi}.

3. Results and Concluding Remarks
The fiducial model corresponds to the best-fit values obtained in Benson et al. (2013)

by combining cluster abundance, Hubble parameter and Big-Bang nucleosynthesis mea-
surements, assuming a ΛCDM model: Ωc = 0.244, Ωb = 0.0405, H0 = 73.9, ns = 0.966,
σ8 = 0.766, w0 = −1, ASZ = 5.31, BSZ = 1.39, CSZ = 0.9 and DSZ = 0.21. Giving this
fiducial model and varying only the angular survey area, we apply the MC approach and
compute Eqs. (2.3) and (2.4).

Fig. 1 shows that almost all estimators of Ω̂c , σ̂8 and ŵ0 are biased. Both bθ̂ and
the relative biases, Bθ̂j

≡ bθ̂j
/σ(θ̂j ), depend on the survey area (sample size). Bθ̂ for

ΔΩ = 10, 000 and 40, 000 deg2 are not negligible, namely, for the last, BΩ̂ c
= 52%,

Bσ̂8 = 51% and Bŵ 0 = 33%. These results in the full-sky limit evince that cluster
abundance estimators using SPT ξ-mass relation are not consistent.
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Besides the results presented, we performed a comprehensive study in Penna-Lima
et al. (2014), considering, for example, photometric redshift uncertainty and a combined
likelihood of clusters and the distance priors of the cosmic microwave background. To
perform this work, we developed fast, accurate, and adaptable codes for cluster counts
in the framework of the Numerical Cosmology library (www.nongnu.org/numcosmo).

References
Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARAA, 49, 409
Benson, B. A., de Haan, T., Dudley, J. P., Reichardt, C. L., Aird, K., et al. 2013, ApJ, 763, 147
Penna-Lima, M., Makler, M., & Wuensche, C. A. 2014, JCAP, 5, 39
Vanderlinde, K., Crawford, T. M., de Haan, T., Dudley, J., Shaw, L., et al. 2010, ApJ, 722, 1180

https://doi.org/10.1017/S1743921314011041 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314011041

