Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-07T18:09:17.512Z Has data issue: false hasContentIssue false

Enhancement of X-ray Shielding Properties of PVDF/BaSO4 Nanocomposites Filled with Graphene Oxide

Published online by Cambridge University Press:  02 January 2019

Liliane A. Silva
Affiliation:
Depto. Engenharia Nuclear – UFMG, Av. Antônio Carlos, 6627, CEP 31270-970, Belo Horizonte, MG, Brazil
Adriana M. S. Batista
Affiliation:
Depto. Anatomia e Imagem, Faculdade de Medicina – UFMG, Av. Prof. Alfredo Balena, 190, CEP 30130-100, Belo Horizonte, MG, Brazil
Tiago Serodre
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP 31270-901, Belo Horizonte-MG, Brazil
Annibal T. B. Neto
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP 31270-901, Belo Horizonte-MG, Brazil
Clascidia A. Furtado
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP 31270-901, Belo Horizonte-MG, Brazil
Luiz O. Faria*
Affiliation:
Centro de Desenvolvimento da Tecnologia Nuclear, Av. Antonio Carlos 6627, CEP 31270-901, Belo Horizonte-MG, Brazil
*
*(Email: farialo@cdtn.br)
Get access

Abstract

In this work, we report evidences of the improvement of X-ray attenuation efficiency by the addition of a very small amount of Graphene Oxide (GO) in polymer-based nanocomposite. Poly(vinylidene fluoride) (PVDF) homopolymer and barium sulfate (BaSO4) nanoparticles were mixed. PVDF/BaSO4 nanocomposite was found to attenuate 9.14% of a 20 kV X-ray beam. The addition of only 4.0 wt % of GO nanosheets to the nanocomposite improved this X-Ray attenuation efficiency to 24.56%. The respective linear attenuation coefficients (μ) were 39.9 cm-1 and 54.4 cm-1, respectively. The X-ray attenuation gradually decreases until 6.71% and 17.62%, respectively, for the X-ray beam with higher energy (100 kV). Fourier transform infrared data revealed that, due to the lack of the bending vibration modes of CF2 molecule at 656 cm-1, 688 cm-1, 723 cm-1, 776 cm-1and 796 cm-1, characteristics of the γ-crystalline phase of PVDF, the nanocomposites casted from solution are mostly in the β-ferroelectric phase of PVDF, besides the γ-paraelectric phase. SEM micrographs were used to evaluate the dispersion state of graphene sheets and the BaSO4 nanoparticles into the polymeric matrix. UV-Vis spectrometry and Differential Scanning Calorimetry (DSC) were also performed in order to complement the structural analysis. The results confirm that the addition of graphene sheets in PVDF polymer-based nanocomposites enhances the X-ray shielding efficiency. The phenomenon is discussed in terms of the reported anomalous negative thermal expansion coefficient of graphene sheets

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Miller, D. L., Balter, S., Cole, E. P., Lu, T. H.; Schueler, B. A., Geisinger, M., Berenstein, A., Albert, R., Georgia, J. G., Noonan, P. T., Cardella, J.F., George, J.S., Russell, E.J., Malisch, T.W., Vogelzang, R.L., Miller, G. L. III, Anderson, J., J. Vasc. Interv. Radiology, 14, 711 (2003).CrossRefGoogle Scholar
Brambilla, M., Marano, G., Dominietto, M., Cotroneo, A. R., Carriero, A., Radiol. Med., 2107, 408 (2004).Google Scholar
Fujimore, T, Tsuruoka, S., Fugetsu, B., Maruyama, S., Tanioka, A., Terrores, M., Dresselhaus, M. S., Endo, M., Kaneko, K., Mat. Express, 1, 273 (2011).CrossRefGoogle Scholar
Viegas, J., Silva, L. S., Batista, A. M. S., Furtado, C. A., Nascimento, J. P., Faria, L. O., Ind. & Eng. Chem. Research, 56 (41), 1178211791 (2017).CrossRefGoogle Scholar
Fontainha, C. C. P., Baptista Neto, A. T., Santos, A. P., Faria, L. O., Materials Research, 19, 91 (2016).CrossRefGoogle Scholar
Fontainha, C. C. P., Baptista Neto, A. T., Faria, L. O., Research & Reviews: Journal of Material Science, 4, 16 (2016).Google Scholar
Hubbel, J. H., Seltzer, M., NIST Standard Database 126, (National Institute of Standards and Technology, Gaithersburg, MD, 2004).Google Scholar
Yoon, D., Son, Y-W, Cheong, H., Nano Lett., 11 (8), 32273231 (2011).CrossRefGoogle Scholar