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Abstract

Introduction: Rigor and reproducibility are two important cornerstones of medical and scientific
advancement. Clinical and translational research (CTR) contains four phases (T1-T4), involving
the translation of basic research to humans, then to clinical settings, practice, and the population,
with the ultimate goal of improving public health. Here we provide a framework for rigorous and
reproducible CTR. Methods: In this paper we define CTR, provide general and phase-specific rec-
ommendations for improving quality and reproducibility of CTR with emphases on study design,
data collection and management, analyses and reporting. We present and discuss aspects of rigor
and reproducibility following published examples of CTR from the literature, including one
example that shows the development path of different treatments that address anaplastic lym-
phoma kinase-positive (ALK+) non-small cell lung cancer (NSCLC). Results: It is particularly
important to consider robust and unbiased experimental design and methodology for analysis
and interpretation for clinical translation studies to ensure reproducibility before taking the next
translational step. There are both commonality and differences along the clinical translation
research phases in terms of research focuses and considerations regarding study design, imple-
mentation, and data analysis approaches. Conclusions: Sound scientific practices, starting with
rigorous study design, transparency, and team efforts can greatly enhance CTR. Investigators
from multidisciplinary teams should work along the spectrum of CTR phases, and identify opti-
mal practices for study design, data collection, data analysis, and results reporting to allow timely
advances in the relevant field of research.

Introduction

Clinical and translational research (CTR) has been experiencing a resurgence since the
mid-2000s along with an embracing of team science within the CTR community [1-4].
Around this same time, articles questioning or discussing the validity of published research
results began to emerge in academic as well as nonacademic publications [5-7]. This perceived
lack of trust in research has had an impact on investment and scalability [8] and has led to the
formation of guidelines for how research studies should be reported, and a focus on scientific
rigor and reproducibility by funding agencies, internal review boards, and editors alike [9,10].

Experience at our institution indicates that many investigators show interest in conducting
CTR in their early research career. Our institution is currently funded with an Institutional
Developmental Award Program Infrastructure for Clinical and Translational Research
(IDeA-CTR). In the past 4 years, 68.4% (130 out of 190) of applicants for scholar program
and pilot project awards were at assistant professor or lower rank. This high percentage of junior
investigators applying for CTR funding indicates the need for education on rigor and reproduc-
ibility in CTR. Early career investigators and investigators new to the field of CTR alike, may
have questions regarding the definition of the phases of CTR, how their research fits into the
CTR spectrum, how to move their research from one phase to the next, and how to ensure rigor
and reproducibility of their research.

While the definition of rigor is largely agreed upon, the definition of reproducibility is not
[5,6,11]. Rigor means the study design, materials, conditions, data cleaning, analyses, inter-
pretations, and reporting of results that are developed and documented in such a way as to
produce unbiased results [12]. In contrast to rigor, reproducibility tends to have discipline-
specific definitions ranging from an independent analyst getting the exact same result using
the original data and code, to quantifying reproducibility with a measure such as the standard
deviation of results [13-15]. As biostatisticians, we view reproducibility as the ability to obtain
a consistent result when independent researchers utilize the same inclusion/exclusion criteria,
study protocol, data cleaning rules, and analysis plan. Here consistency refers to parameter
estimates being in the same direction and of similar magnitude with overlapping confidence
intervals (CI). For example, if an original study estimated the effect of a 1 year increase in age
on systolic blood pressure to be 2.3 (95% CI = (1.3, 3.3)) mmHg and the study repeated by an
outside group under the same conditions obtained an estimated effect of a 1 year increase in
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Table 1. Clinical and translational research classification definitions

Wichman et al.

Goal

Examples

TO

Defining mechanisms of health or disease, animal or human

Basic research

-Preclinical or animal studies

-Association studies using large pre-existing datasets

-Genome Wide Association Studies

T1

Applying understanding of mechanism to health of humans

Translation to humans

-Preclinical development

-Proof of concept

-Biomarker study

-Therapeutic targets identification

-Drug discovery

T2

Developing evidence-based practice guidelines
Translation to patients

-Phase | clinical trials®

-Phase Il clinical trials

-Phase IlI clinical trials

-Phase IV clinical trials*

T3

Comparing to widely accepted health practice
Translation to practice

-Comparative effectiveness*

-Pragmatic studies

-Health services research*

-Behavior modification

T4

Improving population or community health by
Translation to communities

optimizing interventions

-Population epidemiology

-Policy or environmental change

-Prevention studies

-Cost effectiveness research

-Patient preference/quality of Life

* Studies with disagreement in the literature as to their classification

age of 1.6 (95% CI = (0.4, 2.8)) mmHg on systolic blood pressure,
the results of the two studies would be judged as consistent.

In this paper, we define CTR, and provide general and phase-
specific recommendations for improving rigor and reproducibility
of CTR with emphases on study design, data collection and manage-
ment, analysis, and reporting. To guide the discussion and demon-
strate the flow between translational research phases, we follow the
development path of different treatments that address anaplastic
lymphoma kinase-positive (ALK+) non-small cell lung cancer
(NSCLC), as well as studies that demonstrate specific CTR
challenges.

Defining Clinical and Translational Research

One definition of CTR is moving research from bench to bedside to
communities and back again. This definition seems clear enough,
but categorizing any particular study into the CTR spectrum is
challenging for new and established investigators alike. Broadly,
TO is defined as basic research, T1 as translating basic research
to humans, T2 as translating findings to patients, T3 as translating
research to general practice care, and T4 as translating research to
populations or communities (Table 1). There is some disagreement
where various study types should fall along the CTR spectrum. Fort
et al describe the evolution of CTR definitions in the literature
based on a clustering algorithm and gives a summary of the emerg-
ing consensus [16]. Surkis et al used a machine learning approach
to classify studies based on a series of questions [17]. Main sources
of disagreement for definition of studies along the CTR spectrum
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in the literature are whether Phase I clinical trials should be con-
sidered T1 or T2, if Phase IV clinical trials should be T2 or T3, if
comparative effectiveness research should be T2, T3, or T4, and if
health services research should be classified as T2 or T3. We cre-
ated a compromise definition based on the goal of the research,
defining all clinical trials as T2, and comparative effectiveness
and health services research as T3, noting that there is disagree-
ment about their classification (Table 1). Our suggestion is to clas-
sify a particular study into one of the CTR phases based on the
goals of that study.

Figure 1 is an example of how small-molecule targeted
cancer therapies are developed using ALK+ NSCLC as the target.
Each circle represents a different phase of CTR and the black
interconnecting lines indicate that the research path may be
sequential, in parallel, or a hybrid of the two. The parallel aspect
is demonstrated in Shaw et al which spans T0 and T1 [18]. The
sequential aspect is demonstrated in the T2 phase with
NCT01449461 [19], ASCEND-5 [20], NCT00932893 [21], ALEX
[22], and ALTA-1L [23]. Finally, the T3 and T4 phases are repre-
sented by a comparative effectiveness [24] and a cost effectiveness
study [25], respectively.

Study Design

The first step in designing a study requires defining study objec-
tives and hypotheses. Usually when moving research along the
CTR spectrum there is an overarching objective, such as improving
progression-free survival (PFS) in metastatic lung cancer patients.
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Table 2. Study design considerations

Topics Description T1 T2 T3 T4

Study objectives and Idea or statement that provides a tentative explanation about certain facts or observations. X X X X

scientific hypotheses

Sample Size Required number of biological replicates to complete the study goals. X X X X

Power Design parameter which specifies the probability of detecting a true intervention effect if one in fact X X X X
exists. Typically power is set to be 80% or higher.

Stopping rule Rules that are set in clinical trials to stop a study early for efficacy, futility or safety. X X

Randomization Process of assigning subjects to intervention groups based on chance alone. This minimizes X X X
differences across intervention groups and eliminates bias.

Blinding The subject, investigators, or both do not know the intervention assignment. X X X

Biologic Variables Subject level variables that can play an important part in the disease process, such as age or gender. X X X X

Eligibility criteria Definition of the population of interest. Generalization of the study results apply to this population. X X X X

Length of study Duration of study. X X X X

Cost Effectiveness of
EML4-ALK Fusion Testing2!

Comparative Effectiveness
brigatinib vs. ceritinib
and alectinib®®

NCT01449461'
ASCEND-5%¢
NCT00932893"
ALEX

ALTA-1L1 Translation

to Patients

Fig. 1. Phases of clinical translational research.

From this overarching objective, each phase of CTR will have “sub-
objectives” and testable hypotheses. As research moves along the
CTR spectrum, each new study’s rationale is supported by results
from the earlier phase studies or pilot studies. Hypotheses
formed for CTR are built on the knowledge obtained from earlier
phases (Table 2).

The objectives and hypotheses should be matched with primary
and secondary outcomes that are selected in advance. The study is
designed around the primary question, and a clear question pro-
motes good study design. To move to the next phase of the
CTR spectrum, feasibility data or pilot information should be col-
lected as secondary outcomes for planning purposes. In a T0/T1
research study, the primary objective is to build the knowledge base
around the disease of interest, including basic science studies with
animal models of human disease, or proof of concept studies. One
example, from the TO/T1 phase, is a study by Soda et al which iden-
tifies novel transforming genes in NSCLC that can be used as thera-
peutic targets [18]. To meet their objective, researchers formulated
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Basic Mouse Study!*

Research

Detection of EML4-ALK
Translation in clinical specimens®

to Humans

a series of testable hypotheses using cell lines and mouse models to
meet their goals. They identified a subset of NSCLC patients that
express a transforming fusion kinase who have the EML4-ALK
gene as a potential therapeutic target or a diagnostic molecular
marker. In the continuation of these findings, a T2 research study
was conducted to determine if crizotinib is superior to standard
therapy in ALK-positive lung cancer (those that have the
EML4-ALK gene) in an open label study, with the primary out-
come of PFS [20].

Defining the study population is an important component of
study design. The generalizability of the results relies on the eli-
gibility criteria, which defines the population of interest. Early
phase CTR (T1/T2) tend to have narrow eligibly criteria in order
to reduce variability in the outcomes measured. This reduced
variability is translated into differences that are more easily
detected when testing hypotheses; however, these results are
not widely generalizable. When moving further along the CTR
spectrum (T3/T4), eligibility criteria are relaxed, thus allowing
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Technical replicates
(n=1)

Fig. 2. Comparison of Technical vs. Biological Replicates.

for more heterogeneity in the population. Subsequent results are
more generalizable; however, with the increased variability, larger
sample sizes are needed to detect the same or similar differences.
In the T2 study comparing crizotinib to standard therapy, sub-
jects were eligible if they had locally advanced or metastatic
NSCLC that was positive for ALK rearrangements, with addi-
tional criteria regarding age and performance status [21].
Eligibility criteria should be clearly defined regardless as to
whether they are strict or not. In order for a study to be repro-
ducible (external validity), the population in which the original
study was conducted must be known.

Regardless of where the research is on the CTR spectrum, good
study design requires consideration of sample size and power of the
study. Sample size justification in CTR serves a number of pur-
poses. The primary purpose is to ensure there is adequate power
to detect a clinically important difference specified by the scientific
hypotheses. An underpowered study is nonreproducible. In an
underpowered study, a statistically significant difference will
appear by chance alone, which is not reproducible, or nonsignifi-
cant results with large p-values in an underpowered study may
have been significant in a fully powered study. An important
secondary purpose is in prespecifying a primary outcome variable.
By prespecifying the primary outcome, this determines the analyti-
cal plan, and thus works to avoid reporting bias later in the study
(the temptation of changing the primary outcome variable after the
study has ended).

After the primary outcome is selected, the most important con-
sideration for sample size is not statistical but scientific in nature,
that of a clinically important difference (or effect) in the primary
outcome. This difference would be meaningful for the scientific
community and would be considered an important result. An esti-
mate of a clinically important difference can come from expert opin-
ion, scientific literature, and/or pilot data. An example of a clinically
important difference can be found in the study comparing crizotinib
vs. chemotherapy in ALK+ NSCLC [21]. Researchers determined
that a 56% improvement in PFS, corresponding to a 2.5 month dif-
ference, with crizotinib (median PFS of 7.0 months) is a clinically
important difference when compared to chemotherapy (median
PES of 4.5 months), requiring a sample size of 347. This is opposed
to a statistically significant difference which is focused on obtaining a
p-value less than 0.05. Any difference can be made to be statistically
significant with a large enough sample size. If the crizotinib study
had 10,000 subjects per group, they could detect a difference of
0.23 months between treatment arms, which would be considered
a small nonimportant difference between groups.

https://doi.org/10.1017/cts.2020.523 Published online by Cambridge University Press

Wichman et al.

Once the clinically important difference is defined, then type I
error (alpha), power, and the study design (number of groups, type
of study such as noninferiority or longitudinal) can be used to cal-
culate a sample size for the study. Consideration should be given
for variability, multiple comparison correction, and within subject
correlation, as required.

It is also important to consider the use of technical replicates vs.
biological replicates, especially for TO and T1 studies. Technical
replicates are repeated measurements of the same sample, at
roughly the same time, that measure variability of the process or
experiment [26]. Biological replicates are measurements on inde-
pendent biological samples that measure biologic variability [26].
Figure 2 shows an example of three technical vs. three biological
replicates, notice how the technical replicates are all taken from
the same mouse, whereas the biological replicates all come from
separate mice (this is also applicable to human studies). Note that
technical replicates cannot replace biological replicates in a study.
Hypotheses are generally related to biological processes and vari-
ability at the biological level is needed for statistical comparisons.
The use of technical replicates, in addition to biological replicates,
will allow estimates of how reproducible the measurement equip-
ment and protocols are for the experiment. Large technical vari-
ability can be attributed to numerous sources, including
different lots of reagents, different equipment, or the samples were
run on different days, or measurements were taken by different
individuals. The reasons can be numerous and show the impor-
tance of good documentation of procedures. Once you have estab-
lished that the technical variability is small, the analyses stage can
be simplified by averaging over the technical replicates, giving one
observation for each biological replicate for use in statistical mod-
els. The advantage of averaging over technical replicates is the
analysis is greatly simplified, however a more complex analysis
which includes the technical replicates in a mixed model allows
us to better account for the nested structure of the data and multi-
ple levels of variability.

During the T2 phase, particularly for clinical trials, sample size
calculations and study designs often allow early stopping for effi-
cacy, futility, or safety and should be approached in a rigorous
manner. Early stopping at an interim analysis for safety or efficacy
is necessary for ethical reasons, if one of the treatments is unsafe or
superior to the other, it would not be ethical to continue to enroll
subjects on either the unsafe or clearly inferior treatment.
Additionally, stopping for futility is an important way to save
patient and other resources for other more promising studies. In
a randomized synbiotic trial to prevent sepsis in infants located

Biological replicates
(n=3)
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in rural India, the study was stopped early for efficacy [27]. This
study followed best practices for rigorous interim analyses, avoid-
ing bias and maintaining operating characteristics of the study
design by utilizing a Data Safety Monitoring Board so investigators
remained blinded and multiple comparison adjustment deter-
mined by an a priori O’Brien-Fleming rule for stopping early.

Later phase studies in the CTR spectrum, T3 and T4, may utilize
special designs, such as cluster randomization. As the name sug-
gests, these studies randomize clusters, such as communities,
schools, or hospitals. Some of the benefits of cluster randomized
designs is that they can be logistically more feasible, they avoid
within cluster contamination of the intervention groups, and they
allow more people to be randomized in large public health trials.
However, they require expertise in cluster sampling methods and
analysis. These studies require that the correlation of individuals
within a cluster be taken into account, inflating the sample size
needs. Depending on the within cluster correlation, measured as
the intraclass correlation, sample sizes may need to be inflated
by a factor of 1.2 to 6.3 [28]. Regardless of the study design selected,
care needs to be taken to design the study in a rigorous manner,
utilizing best practices for the design chosen.

Randomization and blinding can apply to studies along the
entire CTR spectrum in order to eliminate bias. At the TO0/T1
phase, randomization and blinding can be applied to animal stud-
ies or doing assessments for biomarker studies. Animals should be
randomly assigned to treatment groups, with sex as a stratification
factor, meaning that female and male animals should be random-
ized separately. Randomization should be performed using a com-
puter program or random digit table. Ideally, animals should have
their own cages; this is because animals housed in the same cage are
correlated with one another producing a “cage effect.” The cage
effect is due to the animals interacting with each other and sharing
food, water, and other resources. Researchers doing the assess-
ments should be blinded, if possible, to the treatment assignment
in order to produce an unbiased result.

Stratified randomization and block randomization can be used to
minimize unbalance and to ensure that treatment groups are equally
represented across strata and are balanced over time (blocking).
Stratification is often used for smaller clinical trials in order to pre-
vent imbalance in important prognostic factors at baseline. Study
site is often used as a stratification factor in multicenter studies,
along with gender, age, or disease stage as applicable. One limitation
in using stratified randomization is that as the number of variables
or factors increases the number of strata becomes large. In Shaw et al
randomization was stratified by Eastern Cooperative Oncology
Group performance status (0-1 vs. 2), presence of brain metastases
(yes vs. no), and prior therapy with epidermal growth factor receptor
kinase inhibitors (yes vs. no) [21], giving 6 strata. If researchers also
wanted to stratify by age group (<65 vs. >65) and gender (male vs.
female), then the number of strata goes up to 24. Depending on the
total sample size, some of the strata could include a very small num-
ber of subject if any. Therefore, the number of stratification variables
should be limited to those that are most important to keep the num-
ber of strata to a minimum.

Biologic variables, such as age and sex, should be considered both
at the study design phase and at the analysis phase, as well as other
important prognostic variables to prevent bias and obtain valid
results. In TO/T1 studies, sex is an important biologic variable to
consider for animal studies. Important differences by sex can be
missed if only males or females are studied. Biologic variables should
be planned for when calculating sample sizes and during the ran-
domization process as stratification variables. If researchers want
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to be sure to capture treatment differences in each sex, the sample
sizes are effectively doubled. If differences in treatment effects
between sexes are not anticipated, then males and females can be
combined for sample size calculation, but plans should include test-
ing for sex differences in outcome. In later phase studies (T2-T4),
biologic variables such as age, body mass index (BMI), race, gender,
socioeconomic status, or underlying health conditions should also
be considered at the design phase (eligibility criteria and stratifica-
tion) and at the analysis phase in terms of reporting and model
adjustment. One benefit of including stratification during randomi-
zation and analysis is that it can increase the power of the study by
reducing variability in group comparisons [29].

Considerations made during the design phase of the study,
including objectives, hypotheses, sample size considerations, ran-
domization, stratification and biologic variables, as described
above, should be laid out in a detailed protocol or manual of pro-
cedures to ensure scientific rigor and replicability/reproducibility.
In early phase studies, this could be a document describing all the
laboratory procedures that need to be followed, how records
should be kept, and a log where protocol deviations can be listed.
In clinical trials, a protocol is necessary. This document will
describe the study in detail, giving the background, design, study
schema, eligibility criteria, definitions of outcomes and adverse
events, hypotheses, statistical considerations, and stopping criteria,
among others. This document should be kept up to date, with any
changes as amendments. Protocol deviations should be docu-
mented and reported, and the protocol should be available for
review. For example, the protocol for the Shaw et al study of cri-
zotinib in ALK-positive patients is available at NEJM.org [21]. The
protocol corresponding to this clinical trial gives the background of
the study science; gives the primary objective to demonstrate
PF-02341066 (crizotinib) that is superior to standard of care in
advanced NSCLC with an event involving the ALK gene locus;
and multiple secondary objectives. It also provides the sample size
estimation, statistical methods for addressing both primary and
secondary objectives, procedures and adverse event reporting.
This 96 page protocol document describes the study in much
greater detail than the primary outcome paper could, allowing
for other researchers to replicate this study in a separate patient
population. It also allows for a critical assessment of their study
methods and reporting, reviewers can determine whether the
planned methods, analysis, and reporting match what is described
in the primary outcome paper.

Data Collection and Management

The research question, hypotheses, study design, and analysis plan
will dictate the data to be collected for each subject. Typically, the
amount and complexity of data collected increases as the transla-
tional research phase increases. Regardless of the amount or com-
plexity of the data and/or translational phase, there are some tenets
for good data collection:

each row represents a single observation;

each column represents a variable of interest;

each biological replicate should have a unique identifier;

each technical replicate should be tied to its parent biological

replicate;

5. collect data to the highest degree of fidelity possible; categories
can be created during analysis if needed;

6. each piece of information should be stored separately (e.g.,

follow-up date and status should be in separate columns);

Ll o e
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7. maintain a data dictionary that spells out all definitions and
abbreviations.

Common pitfalls in data collection are the mixing of data scales
(e.g., recording temperature in degrees, Fahrenheit for some obser-
vation, and Celsius in others); inconsistent documentation for
missing values; and analytical results being recorded using differ-
ent criteria (e.g., pathology: one analyst records actual observed
count; another analyst records categories of observed counts, such
as <10,000). These pitfalls can be avoided or minimized by ensur-
ing that all research staff who will be recording data are trained on
the specific requirements as outlined in the research protocol and/
or programming the database interface or spread sheet to only
allow certain entries to be made. For example, in Excel®, one could
use drop down menus to restrict entries, or in a database form, the
interface can be programmed to accept only certain entries
(e.g., using drop down menus or forcing the date to be recorded
using a particular format). Or, if using a data base manager such
as REDCap, data entry can be limited via data type restrictions
embedded in the frontend worksheets when users populate in
REDCap. One advantage of using a program such as REDCap is
the audit trail created each time when data is entered or exported.

Note, if more than one person or site will be collecting data, the
use of a spreadsheet is dangerous, since it is difficult to maintain an
audit trail, data quality checks are not readily performed and the
most recent version from each site/data entry person is extremely
difficult to track.

In the basic research phase and small scale, single-center studies
(T0, T1, and early T2), a simple spreadsheet is often sufficient to
store the data. This is especially true if the data are going to be man-
ually transcribed from a primary source (e.g., lab notebook or
direct reading from an instrument) to the data collection instru-
ment by a single person. For example, in Soda et al the nude mouse
portion of the study would only require a simple spreadsheet with
columns for mouse identifier (ID), group, and presence of tumor if
the only goal were to determine which of the expression plasmids
resulted in tumor formation [18]. However, because the study also
incorporated an immunoblot analysis, some mechanism of tying
the immunoblot with the appropriate mouse was needed. This
could be as simple as using the mouse ID as part of the image file
name. However, a more sophisticated approach would be to store
the full file pathway for each image and subject in separate columns
in a spreadsheet or in an image table within a database.

Some TO, T1, and T2 studies may benefit from more complex
data storage strategies. Specifically, in genetic and -omics studies.
These studies typically generate vast amounts of raw, transformed,
and processed data. In addition, the meta-data encompassing dem-
ographic data, outcome data, processing dates, and processing soft-
ware should be captured and stored. The data management issues
that characterize these types of studies are beyond the scope of this
article and interested readers are encouraged to review outside
references [30].

In cases where multiple types or sources of data are required
(e.g., demographic, clinical assessment, labs, etc. - typically mid-
to-late T2, T3, and T4) a database approach is the best option
to reduce errors and to store data efficiently. Databases store data
in individual tables or forms based on the nature of the data. Each
table or form must share, at a minimum, a unique subject ID so
that data from different tables or forms can be “pulled” together
for analysis. In addition, the use of electronic data capture
(EDC) software may be useful. An EDC allows users to set up elec-
tronic forms, similar to hard copy worksheets. Whether directly
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inputting data into a database or utilizing front-end forms from
an EDC, it is recommended to have a project data coordinator
(PDC) on the research team. The PDC is responsible for construct-
ing and maintaining the hard copy or EDC forms and the user
interface for the database where research personnel enter the data
as necessary.

For multicenter studies, the center (or study site) from which
the observation originated must also be collected. In a spreadsheet,
this is accomplished by adding a column for center and making the
appropriate annotation for each observation. In a database, the
center must be recorded on each table or form. With the observa-
tion or subject ID (and center ID - if required) in each table or
form, a single data set representing the entire study can be con-
structed. For example, in the ASCEND-5 [21], ALEX [22], and
ALTA-1L [23] studies, subjects were recruited from multiple cen-
ters and countries. Because the center is nested within its country, a
separate data column for country is not necessarily needed.

In T4 studies, researchers are often utilizing national level or
large aggregated databases. These datasets can be plagued with
their own set of problems, such as: missing data; the collected data
not being suitable for answering the research question posed; data
coordinators and managers changing overtime and thus the
organization of the data and the data collected over time may
change; clinical or diagnostic definitions change over time; etc.
From a data management perspective, both researchers and pro-
grammers must be aware of these limitations. One example of a
database that changes over time is the United States Renal Data
System which collects data on chronic kidney disease and end stage
renal disease [31]. When purchasing access to this database, the
most recent Researchers Guide along with the “What’s New” files
(WNF) for each year from 2000 to the last completed year will be
provided. The WNF are text files that delineate the changes made
to the database structure, such as location of variables, new varia-
bles added, variables deleted for the year, and renaming of varia-
bles. Building a crosswalk between years and a table of data in
common across years prior to querying the data is necessary to
ensure as accurate a picture of the data as possible.

Researchers designing studies that utilize multiple forms and
tables or receive data from multiple locations should consider
employing a data team to include a project manager, data entry
personnel, a data coordinator, a data monitor, and maybe an infor-
mation technology (IT) specialist. The project manager is respon-
sible for understanding the requirements of the protocol and
ensuring all sites/researchers are adhering to the protocol and
the appropriate data is being collected at the appropriate times.
The data coordinator designs and maintains the forms and tables
and ensures the appropriate versions are being utilized. Data entry
personnel are trained on the protocol requirements and how to
transcribe data that is not automatically populated into the data-
base. The data monitor conducts data audits to ensure data quality
(correctness and completeness). The data monitor also looks for
potential data collection bottlenecks or issues with data collection
and relays this to the project manager so that corrective action can
be taken. Depending on the research teams” hardware and software
privileges, an IT specialist may also be necessary to navigate the
intricacies of storing data electronically.

Data Analysis

The rigor and reproducibility of CTR requires appropriateness of
statistical methods for data analysis. The selection of the analytical
methods for CTR of all phases should match the study intent,


https://doi.org/10.1017/cts.2020.523

Journal of Clinical and Translational Science

Table 3. Data collection and analysis considerations.

Topics Description

T1 T2 T3 T4

Data Collection and Management

Data collection tool

(subjective measurements)  and observation.

Instruments used to collect data. These can take the form of surveys, interviews and focus groups, X X X

Data management Process by which data is acquired, stored, processed, and protected. X X X X
Data Quality Refers to the state of the data, including completeness, cleanliness, and accuracy. X X X X
Data Analysis

Statistical analytical method Techniques to clean, transform, and model data to address research questions. X X X X
Model diagnostics Statistical assumptions are checked to ensure they are met. X X X X
Intent to treat vs per protocol Analysis technique defining the sample and analysis groups. Intent to treat analyzes all randomized X X

subjects according to randomized groups providing unbiased estimates. Per protocol analyzes
subsets of subjects according to the treatment received.

Model validation

Verify validity of model(s) on independent data.

Missing data

Pieces of data that are not present for an observation, either because of nonresponse, attrition or X X X X

because it wasn’t collected. The form of missingness can impact the validity of the study

conclusions.

research design, and the type of data being collected for analyses. In
this section, we will highlight several important aspects (Table 3)
that should be considered when identifying statistical analysis
methods.

It is important to understand whether the study intent is explor-
atory or confirmatory. Exploratory research, often pilot studies,
will be conducted when there is little theory or knowledge about
the research questions. The goal of the exploratory research will
be to generate hypotheses or refine existing hypotheses. The
exploratory research may involve multiple outcomes and small
sample sizes. In a Phase I/II trial, 137 ALK-rearranged NSCLC
patients were recruited to assess the toxicity and efficacy of brig-
atinib [19]. Hence, the analyses are mostly descriptive and do
not involve hypothesis testing. Contrarily, confirmatory research
focuses on identifying reasons that explain the observed pheno-
types or phenomenon and involve single or multiple hypothesis
tests. When hypotheses involve comparisons among groups, dif-
ferent analytical methods will be used depending on whether
the research focus is on equivalence, inferiority or superiority,
or differences between groups.

The selection of analysis method also depends on whether the
study is experimental or observational. Early phase CTR research,
including T0/T1, T2, and some T3 research, may more easily apply
experimental design to the study, given they have narrower eligibil-
ity criteria and may be conducted in a lab or other more controlled
setting. Observational studies, on the other hand, are more likely to
be used for later phase CTR, including comparative effectiveness
studies in the T3 phase and policy impact assessment studies in
the T4 phase. Observational studies tend to involve populations
that are more general and assess the research questions in an
empirical setting, in which it is not feasible to conduct a controlled
experiment. In comparison to the controlled experiment, the
observational study may not be able to collect some relevant infor-
mation due to limited resources or lack of knowledge of when data
was collected. Therefore, the covariates from groups under com-
parisons will not be balanced. Multiple regression or propensity
score methodology will be useful to account for the imbalances
among these covariates. For treatment studies when treatment
assignment cannot be randomized due to ethnic reasons, causal

https://doi.org/10.1017/cts.2020.523 Published online by Cambridge University Press

inference techniques or propensity score matching or adjustment
are particularly useful for analyses, as seen in the comparative
effectiveness study to assess treatment effects of brigatinib vs.
ceritinib and alectinib in crizotinib-refractory ALK+ NSCLC
patients [20].

For all phases of CTR, the choice of the analytical method for
studies will depend on the data under study, including the type and
distribution of outcome variables, and inclusion of hierarchy or
repeated measures. All analytical methods have their own assump-
tions and model diagnostics can be used to assess whether the
chosen model is appropriate of an alternative that should be
selected. Sensitivity analyses can be conducted to assess the change
in the analytical results and inference when different models are
applied.

Preparation is key, and investigators should be alert to issues
related to study conduct and data collection when planning data
analyses, including protocol violation, failure to recruit partici-
pants, and missing data. Protocol violations occur when some par-
ticipants do not conform to the study protocol often in the context
of in clinical trials from T2 and T3 CTR. Some examples of pro-
tocol violations are: failure to receive the assigned intervention,
inappropriately receive another intervention under assessment,
receive a prohibited concomitant intervention, or lack assessment
of outcome due to loss of follow-up or other reasons [32]. Intent to
treat analyses and per-protocol analyses have been developed to
account for protocol violation issues. An intent to treat analysis
should be considered the primary analysis and includes all partic-
ipants randomized, according to randomized group, whereas a
per-protocol analyses will include only those participants who
complied with the study protocol. Intent to treat analyses will
ensure unbiased estimation of intervention effect. Per-protocol
analyses are most often conducted as part of a sensitivity analysis
and can help assess the effects of intervention without influence of
protocol violation or nonadherence. For example, in pragmatic
clinical trials from T3 CTR, the participants are heterogeneous
and may not adhere to the treatment protocol. The intent to treat
analysis is recommended to maintain randomization and mini-
mize the possible confounding when evaluating the intervention
effects [33]. In addition, it is also important to assess how many
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participants are compliant to the study protocol and the exposure
level of intervention for the participants in the intervention group.
When participants of the trial received different levels of interven-
tion, an evaluation of the treatment effects based on the actual
exposure to intervention like dose-response or treatment on the
treated will increase the reproducibility of the study, and provide
better advice about the benefit of the evaluated intervention [34].

The data analyses also need to account for the possibility of
unexpectedly high failure in participant recruitment or excessive
withdrawals during study conduct. Failure in participant recruit-
ment or excessive withdrawals results in smaller sample size, which
could lead to underpowered study. To overcome this underpower
challenge, several steps in the analysis can be made to address this.
One possibility is that the analyses can be adjusted to use continu-
ous outcomes vs. categorical outcomes, when appropriate. Another
is when a comparative study involving multiple groups is under
investigation, groups with similar influence in magnitude or direc-
tions can be combined to maximize the group size, decrease the
number of tests, and optimize the study power. Additionally, exact
tests may be preferred over asymptotic tests in small sample
situations.

Early drop-out leads to an important missing data issue that
adds complexity to the data analyses, especially for later phase
CTR. In studies with a large number of subjects, missing data will
frequently occur due to various reasons. For example, participants
may have nonresponse for questions related to income, adminis-
tration of medication, or other sensitive questions. In another sce-
nario, the participants may become too fatigued to complete the
assessment, or have severe side effects that prevent them to contin-
uing in the study. Analytical methods for handling missing data
depend on the type of missing data mechanism that governs the
missingness: 1) missing at random when the propensity of missing
is not related to observed data or missing data, 2) missing com-
pletely at random when the propensity of missing is related to
observed data, but not related to missing data, and 3) missing
not at random. A popularly used method for handling missing data
is complete case analysis, which excludes subjects with missing
data. The complete case analysis is especially useful when the study
involves a small proportion of missing data. Other commonly con-
sidered methods include maximum likelihood, multiple imputa-
tion, and full Bayesian methods [35,36].

When the goal of the study is prediction, statistical model val-
idation is crucial for assessing the accuracy of the identified stat-
istical models for predicting outcomes [37]. Model validation
can be conducted internally or externally depending on the avail-
ability of external data. In internal validation, the data can be split
into a training dataset for developing the prediction model and a
validation dataset to validate the prediction performance of the
preidentified model. External validation is also very important,
though it is not always possible if external data is unavailable.
The use of external data that is similar to the testing data will help
assess the reproducibility of the prediction model; however, if the
external data is quite different to the testing data, the external
validation will be useful for assessing the model generalizability.

Development of a statistical analysis plan prior to initiation of
the CTR study will help investigators avoid HARKing (hypothesiz-
ing after the results are known), and will improve reproducibility
and transparency of the study [38]. HARKing can occur under dif-
ferent scenarios. For example, the investigator may change their a
priori hypotheses to different hypotheses with significant results in
order to improve their chance of publication. The original study
design may fail to collect and/or adjust for important biologic
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variables, or could conduct many subgroup analyses, or try differ-
ent choices of cut-points based on data in hand to categorize con-
tinuous data, and only report analyses associated with significant
results. These practices may lead to irreproducibility issues due to
their vulnerability to the small sample sizes or high dependence on
individual data. The statistical analysis plan includes key compo-
nents, such as study objectives, hypotheses to be tested, outcomes
and variables that will be collected during the study, and the stat-
istical methods, which contains enough detail to allow other
researchers to independently replicate the results.

Developing an analysis plan before data collection will facilitate
peer review and maintain continuity of the research team to ensure
appropriateness of the analytical method in addressing the research
question. The predeveloped analysis plan also helps to prevent con-
firmation bias (deciding how to handle outliers or missing data, or in
meta-analyses which study to include or exclude based on whether
the results were in the direction expected or desired by researcher).
The predeveloped analysis plan will also allow the researchers to dif-
ferentiate theory-driven hypotheses instead of data-driven hypoth-
eses. Any adjustment to the statistical analysis plan after data has
been collected should be justified and the results from those new
analyses should be used cautiously as they were developed post
hoc, and may be driven by the collected data.

Results Reporting

A rigorous report of the study can facilitate the study reproducibil-
ity and increase study impact. To ensure the rigor of the study
report, sufficient detail about the study objectives, design, methods,
and materials should be included. When discrepancies occurred
between the original study design and the study conduct, it is
important to include justification and detailed discussion regard-
ing those discrepancies. Examples include reporting protocol vio-
lations, changes in procedures over time, and changes in planned
sample size vs. actual sample size. The study report should also
include an accurate report of study results and make appropriate
study inferences and conclusions without extrapolating the study
findings.

A number of guidelines have been developed for different
types of CTR studies to improve reporting completeness, transpar-
ency, and scientific rigor. The clinical and translational researchers
can follow those guidelines based on the CTR study type, or
adapt these protocols when reporting their studies. Specifically,
the investigators can refer to the Consolidated Standards of
Reporting Trials (CONSORT) [10] for clinical trials, the
Strengthen the Reporting of Observational Study in
Epidemiology (STROBE) [39], the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [40], the
Standards for Reporting of Diagnostic Accuracy Studies (STARD)
[41], and the Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis of Diagnosis (TRIPOD) [42]. In
addition, Prager et al (2019) defined general reporting criteria
for the use of academic publishing [43].

Many CTR studies start as pilot studies with institution support
to assess the study feasibility and obtain preliminary data in
support of grant preparation and developing future large-scale
studies [44]. Regardless of whether the studies yield positive or
negative results, the results from such pilot studies can provide
valuable information for refining study processes and hypotheses
and guiding future research with respect to design, instruments,
and methods. Therefore, the investigators should be encouraged
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to be transparent regarding their study purpose and publish their
study findings even when the study results are negative.

Discussion

It is important to utilize a rigorous and reproducible approach to
advance CTR along the spectrum. In this paper, we focused on how
to conduct high quality CTR, and provided general and phase-
specific guidelines regarding study design, data collection and
management, data analyses, and result reporting. There are many
challenges in progressing research along CTR spectrum; and by
utilizing best practices in scientific methods, these challenges
can be minimized.

Utilizing a team science approach, clinical and translational
researchers should involve investigators and translational collabo-
rators from different disciplines from the study’s initiation, and
integrate the interdisciplinary expertise and knowledge for forming
study concepts, design, and methodology. For example, a team
with basic scientists, clinicians, and public health experts will
aid in moving the research along CTR spectrum, leading from
T0/T1 through T4. It is also important to involve community part-
ners to incorporate their experience in practice, especially for
patient-centered outcome research, and facilitate the dissemina-
tion of the findings to communities.

There is existing work conducted by Lapchak et al on rigor and
reproducibility of stroke translational research. Lapchak focused
more on T1 laboratory animal studies to T2 human trials for drug
development. They discussed rigor applied to study design. In this
paper, we emphasized rigor and reproducibility of clinical transla-
tion research under different areas. We considered CTR of all
phases, and provided recommendations related to not only study
design but also data management and analyses.

To meet the goal of rigorous, reproducible/replicable science,
there is a need for transparency [45]. Transparency allows for clear
understanding of design, methods, and analysis. Without transpar-
ency, science may be rigorous, but will not be reproducible or rep-
licable. One way to encourage transparency is through the open
science initiative [46]. Through this initiative, researchers are
encouraged to preregister studies and to share data and analysis
code. With this information available, the scientific community
can compare the planned study to the final product. The researcher
will be extra careful in all steps of the study because they know the
scientific community will have access to the prestudy plan, the actual
data, and the analysis code. By preregistering studies or protocols,
researchers will be less inclined to “fish” for significant results (also
known as p-hacking), hoping for some positive result to publish.
Often researchers do not want to make data publicly available with
hopes of publishing more themselves. Besides transparency, another
argument for publishing deidentified data is that researchers
attempting to replicate your study, either through a formal replica-
tion process [47] or as part of a meta-analysis, will lead to many
more citations of the original work, increasing its visibility.

To avoid publication bias, all study results, whether positive or
negative, should be published. The scientific community is recog-
nizing the importance of publishing studies with negative results, if
only to avoid duplication of research efforts and possibly show
more promising directions of research. There are now journals
devoted to publishing negative results, such as a PLoS ONE collec-
tion, called Missing Pieces [48], which presents inconclusive, neg-
ative findings, or failed replications. The Journal of Negative Results
in BioMedicine [49] ceased publication in 2017 because many
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journals followed their lead in publishing negative studies that they
no longer saw a need for this specialized journal.

The majority of research efforts have been made on the early
phase CTR. Surkis et al [17] assessed PubMed ID (PMIDS) of
all publications indexed in PubMed to past or present Clinical
Translational Science Award (CTSA) grant number for five partici-
pating CTSA institutions, and randomly selected 40 papers per
institution. Two institutions were invited to manually classify these
200 studies into phases along the CTR spectrum using agreed cri-
teria. Out of 185 papers with clear classification, 106(57.3%) papers
belonged to T0 basic science category, while 18(9.7%) papers were
classified as T1/2 CTR, and 44(23.8%) were classified as T3/T4
CTR. This evidence implied that there may be a good proportion
of TO research that fail to advance to later phase CTR, or more
resources should be allocated to promote CTR research
advancement.

The advancement of CTR is not necessarily sequential across
spectrums. As shown in Figure 1, the scientific learning from dif-
ferent parts of the spectrum of CTR can feed into each other at any
level and promote the CTR research of lower and higher stages. For
example, the recent breakout of COVID-19 infection has moti-
vated CTR of different phases to be undertaken in parallel to
understand the mechanism of the virus, identify strategies for
infection prevention, and treatment of COVID-19. A TO CTR
by Lu et al (2020) studied the phylogenetic sequencing of the coro-
navirus to understand the similarity and difference between
COVID-19 and other coronaviruses, like MERS and SARS, as well
as the outbreaks’ origins [50]. Simultaneously, a multi-institutional
phase 2 trial is underway [51] to assess the efficacy of Remdsivir in
treating COVID-19 infections. Remdsivir, developed by Gilead
Sciences, was selected due to its effects in treating other coronavi-
ruses in animal models. Wu et al (2020) did a T4 epidemiologic
study to estimate the domestic and global public health risks of
coronavirus infection epidemics. Their study indicated the impor-
tance of developing a large scale public health COVID-19 interven-
tion to avoid independent self-sustaining outbreaks in major cities
globally [52].

In summary, sound scientific practices, starting with rigorous
study design, transparency, and team efforts can greatly enhance
CTR. Investigators new to CTR should familiarize themselves with
best practices for study design, data collection, data analysis, and
results reporting to allow timely advances in their field of research.
Research teams that incorporate investigators along the spectrum
of CTR phases, biostatisticians, and, depending on phase, commu-
nity partners can lead to successful CTR research.
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