Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T08:47:44.491Z Has data issue: false hasContentIssue false

Consolidation of commercial-size UO2 fuel pellets using spark plasma sintering and microstructure/microchemical analysis

Published online by Cambridge University Press:  09 July 2018

Bowen Gong
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Tiankai Yao
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Cai Lu
Affiliation:
Westinghouse Electrical Company, Hopkins, SC 29061, USA
Peng Xu
Affiliation:
Westinghouse Electrical Company, Hopkins, SC 29061, USA
Edward Lahoda
Affiliation:
Westinghouse Electrical Company, Hopkins, SC 29061, USA
Jie Lian*
Affiliation:
Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
*
Address all correspondence to Jie Lian at lianj@rpi.edu
Get access

Abstract

The development of advanced fuel fabrication technologies is important for developing accident-tolerant fuels and engineering fuels for safer and more effective nuclear energy systems. In this work, commercial-size uranium dioxide (UO2) fuel pellets with a theoretical density of 95% were consolidated by spark plasma sintering (SPS) at 1600°C for 5 min. Systematic investigations suggest uniform densification and stoichiometric UO2 with an ideal fluorite structure across the commercial-size fuel pellet, but with a distributed grain structure because of non-uniform distribution of temperature during sintering. This work demonstrates a great potential of using SPS for fabricating nuclear fuels at a cost-effective manner.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.IAEA: Current trends in nuclear fuel for power reactors. (2007) Available at: https://www.iaea.org/About/Policy/GC/GC51/GC51InfDocuments/English/gc51inf-3-att5_en.pdf (accessed June 17, 2018).Google Scholar
2.IAEA: Accident tolerant fuel concepts for light water reactors. (2014) Available at: https://www.iaea.org/publications/10972/accident-tolerant-fuel-concepts-for-light-water-reactors (accessed June 17, 2018).Google Scholar
3.Wolfe, R.A. and Kaufman, S.F.: Mechanical properties of oxide fuels. (1967) Available at: https://www.osti.gov/servlets/purl/4511674 (accessed June 17, 2018).Google Scholar
4.Amato, I., Colombo, R.L., and Balzari, A.M.P.: Hot-pressing of uranium dioxide. J. Nucl. Mater. 20, 210 (1966).Google Scholar
5.Williams, J., Barnes, E., Scott, R., and Hall, A.: Sintering of uranium oxides of composition UO2 to U3O8 in various atmospheres. J. Nucl. Mater. 1, 28 (1959).Google Scholar
6.Carrea, A.J.: Sintering of uranium dioxide in an atmosphere of controlled hydrogen content. J. Nucl. Mater. 8, 275 (1963).Google Scholar
7.Kutty, T.R.G., Chandrasekharan, K.N., Panakkal, J.P., and Ghosh, J.K.: Fracture-toughness and fracture surface-energy of sintered uranium-dioxide fuel pellets. J. Mater. Sci. Lett. 6, 260 (1987).Google Scholar
8.Novikov, V.V., Sivov, R.B., Mikheev, E.N., and Fedotov, A.V.: Fracture toughness of vver and pwr uranium-dioxide fuel pellets with different grain size. At. Energy 118, 117 (2015).Google Scholar
9.Yamada, K., Kurosaki, K., Uno, M., and Yamanaka, S.: Evaluation of thermal properties of uranium dioxide by molecular dynamics. J. Alloys Compd. 307, 10 (2000).Google Scholar
10.Arima, T., Yamasaki, S., Inagaki, Y., and Idemitsu, K.: Evaluation of thermal properties of UO2 and PuO2 by equilibrium molecular dynamics simulations from 300 to 2000 K. J. Alloys Compd. 400, 43 (2005).Google Scholar
11.Harding, J.H. and Martin, D.G.: A recommendation for the thermal-conductivity of UO2. J. Nucl. Mater. 166, 223 (1989).Google Scholar
12.Watanabe, T., Sinnott, S.B., Tulenko, J.S., Grimes, R.W., Schelling, P.K., and Phillpot, S.R.: Thermal transport properties of uranium dioxide by molecular dynamics simulations. J. Nucl. Mater. 375, 388 (2008).Google Scholar
13.Wei, S., Zhang, Z.H., Shen, X.B., Wang, F.C., Sun, M.Y., Yang, R., and Lee, S.K.: Simulation of temperature and stress distributions in functionally graded materials synthesized by a spark plasma sintering process. Comput. Mater. Sci. 60, 168 (2012).Google Scholar
14.Ge, L.H., Subhash, G., Baney, R.H., Tulenko, J.S., and McKenna, E.: Densification of uranium dioxide fuel pellets prepared by spark plasma sintering (SPS). J. Nucl. Mater. 435, 1 (2013).Google Scholar
15.Tyrpekl, V., Naji, M., Holzhauser, M., Freis, D., Prieur, D., Martin, P., Cremer, B., Murray-Farthing, M., and Cologna, M.: On the role of the electrical field in spark plasma sintering of UO2+x. Sci. Rep. 7, 46625 (2017).Google Scholar
16.Yao, T.K., Scott, S.M., Xin, G.Q., Gong, B.W., and Lian, J.: Dense nanocrystalline UO2+x fuel pellets synthesized by high pressure spark plasma sintering. J. Am. Ceram. Soc. 101, 1105 (2018).Google Scholar
17.Yao, T.K., Mo, K., Yun, D., Nanda, S., Yacout, A.M., and Lian, J.: Grain growth and pore coarsening in dense nano-crystalline UO2+x fuel pellets. J. Am. Ceram. Soc. 100, 2651 (2017).Google Scholar
18.Sopicka-lizer, M.: Introduction to mechanochemical processing. (Woodhead Publishing, Cambridge, England, 2010), p. 1.Google Scholar
19.Wank, A. and Wielage, B.: High energy ball milling – a promising route for production of tailored thermal spray consumables. (Conference on Modern wear and corrosion resistant coatings obtained by thermal spraying, Warsaw, Poland, 2003).Google Scholar
20.Teske, K., Ullmann, H., and Rettig, D.: Investigation of the oxygen activity of oxide fuels and fuel-fission product systems by solid electrolyte techniques. Part I: qualification and limitations of the method. J. Nucl. Mater. 116, 260 (1983).Google Scholar
21.Ge, L.H., Subhash, G., Baney, R.H., and Tulenko, J.S.: Influence of processing parameters on thermal conductivity of uranium dioxide pellets prepared by spark plasma sintering. J. Eur. Ceram. Soc. 34, 1791 (2014).Google Scholar
22.Gossé, S., Guéneau, C., Alpettaz, T., Chatain, S., Chatillon, C., and Le Guyadec, F.: Kinetic study of the UO2/C interaction by high-temperature mass spectrometry. Nucl. Eng. Des. 238, 2866 (2008).Google Scholar
23.Gossé, S., Guéneau, C., Chatillon, C., and Chatain, S.: Critical review of carbon monoxide pressure measurements in the uranium–carbon–oxygen ternary system. J. Nucl. Mater. 352, 13 (2006).Google Scholar
24.Burke, J.E. and Turnbull, D.: Recrystallization and grain growth. Prog. Met. Phys. 3, 220 (1952).Google Scholar
25.Kingery, W.D. and Francois, B.: Grain growth in porous compacts. J. Am. Ceram. Soc. 48, 546 (1965).Google Scholar
26.Nichols, F.A.: Theory of grain growth in porous compacts. J. Appl. Phys. 37, 4599 (1966).Google Scholar
27.Diatta, J., Antou, G., Pradeilles, N., and Maître, A.: Numerical modeling of spark plasma sintering—discussion on densification mechanism identification and generated porosity gradients. J. Eur. Ceram. Soc. 37, 4849 (2017).Google Scholar
28.Mondalek, P., Silva, L., and Bellet, M.: A numerical model for powder densification by sps technique. Adv. Eng. Mater. 13, 587 (2011).Google Scholar
29.Wang, C., Zhao, Z., and Cheng, L.F.: Finite element modeling of temperature distribution in spark plasma sintering. Key Eng. Mater. 434–435, 808 (2010).Google Scholar
30.Graves, P.R.: Raman microprobe spectroscopy of uranium-dioxide single-crystals and ion-implanted polycrystals. Appl. Spectrosc. 44, 1665 (1990).Google Scholar
31.White, W.B.: Application of infrared spectroscopy to order-disorder problems in simple ionic solids. Mater. Res. Bull. 2, 381 (1967).Google Scholar
32.Razdan, M. and Shoesmith, D.W.: Influence of trivalent-dopants on the structural and electrochemical properties of uranium dioxide (UO2). J. Electrochem. Soc. 161, H105 (2014).Google Scholar
33.Razdan, M. and Shoesmith, D.W.: The electrochemical reactivity of 6.0 wt% gd-doped UO2 in aqueous carbonate/bicarbonate solutions. J. Electrochem. Soc. 161, H225 (2014).Google Scholar
34.Allen, G.C., Butler, I.S., and Tuan, N.A.: Characterization of uranium-oxides by micro-Raman spectroscopy. J. Nucl. Mater. 144, 17 (1987).Google Scholar
35.Palacios, M.L. and Taylor, S.H.: Characterization of uranium oxides using in situ micro-Raman spectroscopy. Appl. Spectrosc. 54, 1372 (2000).Google Scholar
36.Manara, D. and Renker, B.: Raman spectra of stoichiometric and hyperstoichiometric uranium dioxide. J. Nucl. Mater. 321, 233 (2003).Google Scholar
37.Naji, M., Colle, J.Y., Benes, O., Sierig, M., Rautio, J., Lajarge, P., and Manara, D.: An original approach for Raman spectroscopy analysis of radioactive materials and its application to americium-containing samples. J. Raman Spectrosc. 46, 750 (2015).Google Scholar
38.Chollet, M., Prieur, D., Bohler, R., Belin, R., and Manara, D.: The melting behaviour of uranium/neptunium mixed oxides. J. Chem. Thermodyn. 89, 27 (2015).Google Scholar
39.Livneh, T. and Sterer, E.: Effect of pressure on the resonant multiphonon Raman scattering in UO2. Phys. Rev. B 73, 085118 (2006).Google Scholar
40.Desgranges, L., Guimbretiere, G., Simon, P., Jegou, C., and Caraballo, R.: A possible new mechanism for defect formation in irradiated UO2. Nucl. Instrum. Methods. B 315, 169 (2013).Google Scholar
41.Desgranges, L., Baldinozzi, G., Simon, P., Guimbretière, G., and Canizares, A.: Raman spectrum of U4O9: a new interpretation of damage lines in UO2. J. Raman Spectrosc. 43, 455 (2012).Google Scholar
42.Razdan, M.a.S. and David, W: The electrochemical reactivity of 6.0 wt% Gd-doped UO2 in aqueous carbonate/bicarbonate solutions. J. Electrochem. Soc. 161, H225 (2014).Google Scholar
43.He, H. and Shoesmith, D.: Raman spectroscopic studies of defect structures and phase transition in hyper-stoichiometric UO(2+x). Phys. Chem. Chem. Phys. 12, 8108 (2010).Google Scholar
44.Ho Mer Lin, D., Manara, D., Lindqvist-Reis, P., Fanghänel, T., and Mayer, K.: The use of different dispersive Raman spectrometers for the analysis of uranium compounds. Vib. Spectrosc. 73, 102 (2014).Google Scholar
45.Pointurier, F. and Marie, O.: Identification of the chemical forms of uranium compounds in micrometer-size particles by means of micro-Raman spectrometry and scanning electron microscope. Spectrochim. Acta Part B 65, 797 (2010).Google Scholar
46.Schoenes, J.: Recent spectroscopic studies of UO2. J. Chem. Soc. Faraday Trans. 2 83, 1205 (1987).Google Scholar