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Abstract
Evaluation of neural activity during natural behaviours is essential for understanding how the brain works.
Here we show that neuron-specific self-evoked firing patterns are modulated by an object’s presence, at the
electrosensory lobe neurons of tethered-moving Gymnotus omarorum. This novel preparation shows that
electrosensory signals in these pulse-type weakly electric fish are not only encoded in the number of spikes
per electric organ discharge (EOD), as is the case in wave-type electric fish, but also in the spike timing
pattern after each EOD, as found in pulse-type Mormyroidea. Present data suggest that pulsant electrogen-
esis and spike timing coding of electrosensory signals developed concomitantly in the same species, and
evolved convergently in African and American electric fish.
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Introduction

Electric fish explore their surroundings with an electric field characterized by either pulsating patterns
or continuous sine-waves generated by the discharge of an electric organ (EOD). “Electric images”
generated by the presence of objects are differently encoded by primary afferents (pulse evoked bursts
in pulse-emitting and pseudorandom trains in wave-emitting fish). This draws clear distinctions
between pulse and wave electroreception strategies (Caputi & Aguilera, 2020). In the electrosensory
lobe (ESL) of wave Gymnotiformes, the spike rate of individual neurons and synchrony within
neuronal subpopulations encode the modulation of local signals (reviewed in Clarke et al., 2015;
Krahe & Maler 2014). The ESL of pulse Gymnotiformes appears to show different signal processing
rules since each pulse reclutes the network with neuron-specific post-EOD phase preferent patterns
(Pereira et al., 2014) and evokes local field potential which patterns are modulated by changes in the
electrosensory environment (Pereira et al., 2005).

Objectives

This raises the question of whether spike timing of different unit types of the ESL of pulse Gymnotiform
fish carry information regarding nearby objects in natural conditions. To start answering this question,
we used a tethered technique (in the absence of a wireless option, as in Cohen et al., 2019; Fotowat et al.,
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2019) to record unitary activity from electrodes positioned at the polymorphic layer of the ESL
(as indicated by their typical field potentials Pereira et al., 2014). This allowed us to explore peri-
EOD spiking patterns and their modulation bymetal and plastic, cubic or tubular, and static or moving
objects.

Methods

Data were obtained from 4Gymnotus omarorum (12-15 cm length, undetermined sex). All potentially-
painful procedures were performed in fish non-responsive to noxious stimuli (IIBCE’s animal care
committee, protocol 001/003/2011; protocols.io). Fish were scalped under systemic and local anesthe-
sia. A small skull opening wasmade to introduce two insulated nichrome twisted wires (50 μmdiameter
each). Wires were cemented to the skull with their exposed tips at the polymorphic layer of the centro-

Figure 1. Methods. Step-by-step detailed explanation in protocols.io A) Surgical procedures. B) Recovery and fish
adaptation to the tank. During this period the implanted wires (20-25 cm long) were connected to the amplified probe,
which in turn was hanging from a rubber band. We verified electrode location recording field potentials at 10 Hz - 10 KHz
bandpass filtering and setup unit recordings and analysis (Pereira et al., 2014). C) Identification of receptive fields. We took
advantage of long resting periods tomanually explore the receptive field of the best sorted unit with a small copper ball (8mm
diameter) moved in all directions parallel to the skin. D) Raw recordings and point process conversion. Each signal was
appropriately thresholded (dotted lines) to define the timestamp of each recorded unit (ovals) and EOD (triangles). E)
Experimental maneuvers aimed to: i) Identify opposite responses to plastic ormetal objects at the center of the receptive field
(Clarke et al., 2015); ii) Explore electric texture effects caused by sharp edges and gutters on object’s surface (Caputi et al.,
2011); and, iii) Explore the effect of hiding in a plastic tube. F) Spike clustering and sorting plotting various spike parameters in
a multidimensional space. G) Construction of raster plots. H) Statistical comparison of post-EOD spike timing distributions
using chi-squared tests.
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medial map of the lobe (1400 μm depth). This pair, and another in the tank (40x50x7 cm, water at 20º
and 100 μS/cm), were connected to differential amplifiers (1800-AM-systems, bandpass: 300-3000 and
10-10000 Hz for spikes and EOD, respectively) whose outputs were digitized (50 kHz), stored, and
processed using Experimenter (Datawave Technologies). Recordings started four hours after the EOD
rate returned to the previous baseline (Fig. 1). After recordings, fish were euthanized.

Results

Multiunitary recordings were obtained in one fish. In the other 3 fish, 2 units were clearly sorted in each.
In these 6 units, spike timing showed a non-uniform probability distribution following the EOD. Spike
patterns exhibited the presence of a silence between 7 to 10 ms, and 1 to 3 modes found at ca. 5, 12, or
more than 23 ms after the positive peak of the EOD. Post-EOD spike histogram peaks were differently
modulated, corresponding to the unit and sensory context. In three units we identified the receptive field.
These were selected to explore their responses to distinct types of electrosensory stimuli. Each of these
responses is illustrated in different figures (Fig 2: object conductivity, plastic vs. metal cubes 2 cm side, see
Clarke et al., 2015; Fig. 3: movement and texture effects, see Caputi et al., 2011; and Fig. 4: tube hiding
behavior, see Pereira et al., 2005).

Figure 2. On and off neurons. Conductance dependent post-EOD spiking patterns and adaptation. These experiments
were made to confirm the presence of two types of opposite responses to metal and plastic objects and to evaluate the
presence of adaptation. A) Traces: EOD (top) and the electrosensory lobe (bottom) recordings; inset: superimposed
waveforms of sorted spikes. Histology indicates the recording site(CM: centromedial, ML: mediolateral, L: lateral, maps). B
and C) A metal static cube (2 cm side) facing the center of the receptive field (shadowed regions of the rasters) either caused
increases (B) or decreases (C) in the firing rate depending on its conductivity. These increments may represent those that led
the functional classification of electrosensory neurons as “centre-on” (B) and “centre-off” (C) in wave fish (Clarke et al., 2015).
The motion of the plastic object and the introduction of the metal object (downward and upward pointing triangles in B,
respectively) causes novelty responses (sudden reductions in the interEOD interval, gray dots). Strikingly,G. omarorum centre-
on neuron (panel B, receptive field at the foveal region) showed changes in the post-EOD firing pattern in addition to the
change in the number of spikes per EOD. Plastic and metallic objects caused opposite effects in the firing rate. However, they
did not provoke simple mirror-image changes, but drastic changes in the post-EOD pattern when comparing the stationary
state prior to removal of the plastic cube with the stationary state after positioning the metal cube (200 spikes indicated by
from left and right boxes were used to build each histogram χ2=221, DF=49, p<0.003). Both the “centre on” (B) and “centre off”
units (C, receptive field at mouth commissure, same unit as in Fig. 3) shows clear adaptation. The “centre off” unit (C) shows a
maximal decrement just after placing themetal object before the receptive field the spike ratemeasured on the first half of the
stimulation periodwas reduced to one third of the control. This was followed by a slow return to two thirds of the resting value
in the second half period even when fish and object positions remained unchanged. When the object was removed a rebound
was observed.
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Discussion

Although swimming behavior is relatively limited in tethered recordings, the experimentalmodulation of
post-EOD spiking patterns in freely discharging, drug free, permanently implanted fish, shows that spike
timing contains additional information on the electrosensory input that is not contained in the average
number of spikes per EOD. This form of post-EOD spike-timing code is shared with the phylogenetically
distant Mormyroidea, but not with the much more closely related wave Gymnotiformes, who exhibit
similar electrosensory lobe anatomy (Bell & Maler, 2005). This suggests that distinct central processing
mechanisms are associated with the polarization strategies and electroreceptor responsiveness charac-
teristic of each taxonomic group (Caputi & Aguilera, 2020).

Figure 3. Electric “texture”. The ability to respond to the “electric texture” of object surfaces was proposed by Caputi et al.
(2011). To explore this effect, the 2 cmwide face of a copper cube (carved with a saw-tooth profile) wasmoved back and forth
against the skin at the receptive field (head side, inset). A) Raster of a “centre off” in the absence of an object (control). B)
Raster plot when the unit was strongly modulated in its firing rate and post-EOD spike timing pattern by va-et-vient
movements. Paradoxically for a “centre-off” neuron, a moving metal object caused an increase in its firing rate (note the
difference in the number of EODs required to recruit 200 of spikes, indicated by the width of gray bands respect to that
observed in the absence of an object) and also a relative peak at about 12-14 ms after the silence. C) Histograms
corresponding to the control condition. D-F) Histograms corresponding to mobile stimulus (built from the three samples
of the same number of spikes as the control, gray rectangles). χ2 tests showed significant differences between the distribution
of each sample obtained during object movement and during the control without object (χ2=58.1, 50.1, and 67.3 respectively,
p<0.001 in all cases) but were not able to show significant differences between pairs of distributions obtained during object
movement (χ2=20.9, 18.3, and 22.5 respectively, p>0.45, DF=23, significance: 0.003 after Holm-Bonferroni sequentially rejective
procedure).
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Conclusion

Data suggest that post-EOD spike timing encoding of electrosensory signals have evolved concomitantly
with the ability to explore the environment using pulsatile discharges in a convergent manner for African
andAmerican species. Our study paves the way to unveil electric image processing inG. omarorum, since
unitary recordings can now be correlated with video tracking availablemodels (Pedraja et al., 2014) of the
electric image flow. For these purposes, tethered recordings should be complemented with recently
introduced wireless systems facilitating skeletomotormotor exploration behaviors with a lower common
mode rejection ratio (Cohen et al., 2019; Fotowat et al., 2019).
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