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Abstract

In the context of the ongoing biodiversity crisis, understanding forest ecosystems, their tree species composition, and
especially the successional stages of their development is crucial. They collectively shape the biodiversity within
forests and thereby influence the ecosystem services that forests provide, yet this information is not readily available
on a large scale. Remote sensing techniques offer promising solutions for obtaining area-wide information on tree
species composition and their successional stages. While optical data are often freely available in appropriate quality
over large scales, obtaining light detection and ranging (LiDAR) data, which provide valuable information about
forest structure, is more challenging. LiDAR data are mostly acquired by public authorities across several years and
therefore heterogeneous in quality. This study aims to assess if heterogeneous LiDAR data can support area-wide
modeling of forest successional stages at the tree species group level. Different combinations of spectral satellite data
(Sentinel-2) and heterogeneous airborne LiDAR data, collected by the federal government of Rhineland-Palatinate,
Germany, were utilized to model up to three different successional stages of seven tree species groups. When
incorporating heterogeneous LiDAR data into random forest models with spatial variable selection and spatial cross-
validation, significant accuracy improvements of up to 0.23 were observed. This study shows the potential of not
dismissing initially seemingly unusable heterogeneous LiDAR data for ecological studies. We advocate for a
thorough examination to determine its usefulness for model enhancement. A practical application of this approach
is demonstrated, in the context of mapping successional stages of tree species groups at a regional level.

Impact Statement

Data sets obtained on a large regional or even national scale, not recorded for a specific study, often present a
significant heterogeneity, requiring extensive preprocessing efforts. Despite these challenges, these data sets can
reveal valuable ecological information and can be used as readily available data sets. This study shows the
advantages of using heterogeneous light detection and ranging (LiDAR) data for ecological modeling and
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mapping. The study emphasizes the benefits of exploiting so-called “data-at-hand”, rather than dismissing those
in anticipation of more refined data sources.

1. Introduction

Forests provide a variety of indispensable ecosystem services, such as water storage and purification,
regulation of air quality, and climate regulation by functioning as a sink and source for greenhouse gases,
as well as recreation and provision of raw materials and food (TEEB, 2010). Thus, forests and their
biodiversity are indispensable for mitigating the effects of climate change e.g., as carbon sinks (Hisano
et al., 2018). In addition, forests with rich vegetation diversity and structural complexity offer various
positive effects on biodiversity, including the promotion of animal species richness (Felix et al., 2004;
Heidrich et al., 2023; Macarthur and Macarthur, 1961; Stein et al., 2014; Zellweger et al., 2013). To
preserve the ecosystem services and functions that forests provide, and to secure their climate mitigation
potential, comprehensive information on the state and diversity of their ecosystems is needed to inform
decision-making. An important component in this context is the accurate assessment of tree species
composition (Berg, 1997; Cavard et al., 2011; Felton et al., 2020; Gamfeldt et al., 2013; Seidl et al., 2011)
and additionally, the classification of forest successional stages at the tree species level. Forest succes-
sional stages typically describe the development of the forest ecosystem after a disturbance in several
phases, which are different in forest structure and can thus serve as indicators for forest biodiversity
(Wilson and Peter, 1988). For example, early successional forest ecosystems can provide complex
structures of herbs and shrubs, that support high species diversity, and provide valuable habitat for many
arthropods as well as numerous rare species (Swanson et al., 2011). Hilmers et al. (2018) found that the
early and late successional stages support high biodiversity in temperate forests. Such a high level of
biodiversity also enhances forest resilience to climate change, as it is linked to the functioning of the
ecosystem (Hisano et al., 2018). However, the effects of climate change, such as fires, storms, and the
introduction of new species, can also alter processes of forest succession (Dale et al., 2001). Therefore,
knowledge of forest successional stages and their associated ecological processes is crucial for under-
standing and mitigating for example climate change or anthropogenic disturbances (Corona et al., 2011;
Poorter et al., 2023). Such an understanding can furthermore improve monitoring and is fundamental for
the development of adequate conservation strategies (Hilmers et al., 2018; Tew et al., 2022).

The monitoring of forests and their successional stages is one of the main goals of extensive manual
forest inventories, which usually only provide point-based information (Vidal et al., 2016). Comprehen-
sive area-wide information on their spatial distribution and proportions can be of help for near-natural
forest management (Hilmers et al., 2018). Remote sensing can also contribute to enhancing traditional
forest inventories (White et al., 2016). Multispectral remote sensing has been found to be a feasible
approach to classify tree species in numerous studies (Grabska et al., 2019; Hemmerling et al., 2021;
Hościło and Lewandowska, 2019; Immitzer et al., 2016; Welle et al., 2022; Wessel et al., 2018; Xi et al.,
2021). Several studies have utilized remote sensing, particularly light detection and ranging (LiDAR)
data, for area-wide classification of successional stages and the age of forest stands (Berveglieri et al.,
2018; Cao et al., 2015; Duan et al., 2023; Falkowski et al., 2009; Fujiki et al., 2016; Maltman et al., 2023;
Zhao et al., 2021). However, those studies analyze the successional stages across large areas without
differentiating between tree species. Up-to-date studies classifying tree species-specific successional
stages are still rare (Stoffels et al., 2015), but would contribute to recognizing the distinct differences
associated with each tree species. Additionally, these studies were performed in rather small areas with
temporally aligned LiDAR data, typically collected through dedicated flight campaigns. Unfortunately,
LiDAR surveys are still very cost- and labor-intensive and therefore often not directly commissioned by
ecological monitoring programs.

Even though costs for LiDAR flight campaigns are high, Germany and large parts of Europe benefit
from abundant LiDAR data collected through statewide governmental campaigns. The complete cover-
age of a federal state in Germany through multiple flights typically spans several years. For instance,
regions such as Hesse (HVBG, 2023) and Saxony (GeoSN, 2023) have intervals of 6 years, North Rhine-
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Westphalia (Geobasis NRW, 2023) is covered every 5 years, and Rhineland-Palatinate (LVermGeo, 2023)
every 4 years. Similar circumstances are found in other European countries, for example in Finland (NLS,
2023) or Spain (MITMA, 2023) where governmental LiDAR data are collected at intervals of approxi-
mately 6 years, or in Estonia with updates every 4 years (Maa-amet, 2023). Moreover, data availability is
unsystematically documented with no common standard or database. As the data are collected over
multiple flights, there are e.g., inconsistencies in flight dates and technical scanning properties. Further-
more, also the already rather low point resolution of LiDAR data can vary as there are ongoing
developments in sensor technologies (see Figure 4). As a consequence, these data sets are often viewed
as not reliable enough for ecological research purposes at larger scales and in some cases, it is even
documented that studies refrained from using LiDAR data sets for modeling due to their presumed poor
quality (Stoffels et al., 2015). However, obtaining an exact overview of when the data were not used for
this reason is difficult, as the majority of studies do not report instances of unused data.

This study evaluates the potential of typically available heterogeneous LiDAR data in Germany and
many parts of Europe for mapping temperate forest successional stages at the tree species level. Instead of
only mapping e.g. tree species or age distribution of a forest, this present study explicitly focuses on
classifying and mapping forest successional stages for individual tree species. A comparative analysis of
models is conducted, employing different combinations of variables, which were derived from optical
satellite data (Sentinel-2) and heterogeneous LiDAR data. Random forest models were used with a
modeling approach that takes spatial auto-correlation into account by using spatial variable selection and
spatial cross-validation techniques (Meyer et al., 2019; Ploton et al., 2020). In a hierarchical modeling
approach, first a large-scale map for the seven most common tree species groups (Douglas fir, larch, pine,
spruce, beech, oak, and other deciduous trees) was generated for the entire federal state of Rhineland-
Palatinate, Germany. Subsequently, for each mapped tree species group up to three successional stages
(qualification, dimensioning, and maturing) were modeled in three modeling approaches utilizing
different variable sets. In doing so, the aim of this study is to determine whether the utilization of
heterogeneous LiDAR data can positively influence model outcomes for forest successional stages at the
tree species level.

2. Materials and methods

In the following sections, the modeling of tree species group-specific forest successional stages is presented
in detail (see Sections 2.1–2.3.4 and Figure 1). The methodology involves training different models with
varying combinations of Sentinel-2 and/or LiDAR data to predict forest successional stages utilizing the
forest inventory of Rhineland-Palatinate as reference data. Through the application of spatial variable
selection and spatial validation techniques, the potential of the heterogeneous LiDAR data was evaluated.
The successional stages of the different tree species groupsweremappedwith a hierarchical approach.A tree
species group model of Rhineland-Palatinate formed the basis for the successional stages models (see
Section 2.3.4). All data processing and modeling was done in R version 4.2.3 (R Core Team, 2023).

2.1. Study area

The federal state of Rhineland-Palatinate with an area of 19,858 km2 (see Figure 2) is one of the especially
forest-rich regions in Germany, with 42% of its area covered by temperate forest (BMEL, 2018). Only
25.6% are state-owned and surveyed by regular forest inventory campaigns. Most of the forests in
Rhineland-Palatinate (46.1%) are owned by public corporations (e.g., local administration) or privately
owned (26.7%) and therefore, no centralized information on the state of all forests is available (Thünen-
Institut, 2012b). Themajority of the forests are mixed forests and only 17.7% of the forests are pure stands
(Thünen-Institut, 2012a). Overall, deciduous forests predominate, with shares ranging from 54.8% to
64.6% of the forest, depending on the ownership structure (Thünen-Institut, 2012c).
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2.2. Databases

2.2.1. Forest inventory data
In this study, the official forest inventory of RhinelandPalatinate was used as reference data, encompass-
ing stand information from state-owned forests. Each forest stand in varying size and shape is recorded in
polygons, which led to approximately 170,000 polygons (see Figure 3). From these forest inventory
polygons (Landesforsten Rheinland-Pfalz, 2014) information about the forest successional stage, the
most common tree species group and the species purity were utilized. The polygons were filtered to a
purity of the most common tree species group of at least 80%. Following this filtering process, seven tree
species groups with at least 50 polygons for two to three successional stages (see Table A5 in the
appendix) remained for model training: Douglas fir, larch, pine, spruce, beech, oak and other deciduous
trees. Three successional stages were considered for all tree species groups except for larch and pine: the
qualification stage (I), represents the early growth phase, which begins as the young trees outgrow
competition vegetation (Landesforsten Rheinland-Pfalz, 2023). Following this, the dimensioning stage
(II) develops, characterized by a notable decline in the height and lateral growth of the tree crown. The

Figure 1. General modeling workflow that is applied to every tree species group to model the specific
successional stages. The modeling makes use of two different data sets for prediction. On the one hand
LiDAR data, on the other hand, multispectral Sentinel-2 data. From the LiDAR data various indices are
derived in the Remote Sensing Database (RSDB; Wöllauer et al., 2020). The Sentinel-2 data were
processed within the “Software Framework for Operational Radiometric Correction for Environmental
Monitoring” (FORCE; version 3.7.10; Frantz, 2019) and additionally spectral indices were calculated.
As reference data and therefore response variable of the models the data from the forest inventory were
used. We conducted three different model types, namely structural, hybrid, and spectral models using
different combinations of the predictive data sets.
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Figure 2. (a) Location of the study area (orange) in Europe. (b) The study area is confined to the forest
mask (dark green) derived from the Copernicus high-resolution layer. Data: EEA, 2022; GeoBasis-DE/
LVermGeoRP, 2022; OpenStreetMap, 2023.

Figure 3. Spatial distribution of the tree species groups (a) and successional stages (b) from the forest
inventory. As the forest inventory only surveys state-owned forests the depicted polygons represent only a
subset within the whole study area. Data: Landesforsten Rheinland-Pfalz (2014).
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oldest successional stage considered in this study is the maturing stage (III), where the tree surpasses
75–80% of its final height, resulting in a deceleration of height growth. Since the number of polygons
available for the qualification stage of both pine (16 polygons) and larch (1 polygon) was insufficient to
provide representative information, the focus for these two tree species groups was directed solely on the
dimensioning and maturing stages.

2.2.2. Sentinel-2 data
Multispectral optical data are proven to be adequate for tree species classifications (Grabska et al., 2019;
Hemmerling et al., 2021; Hościło and Lewandowska, 2019; Immitzer et al., 2016; Wessel et al., 2018;
Xi et al., 2021), making them an essential component in this study as well. ESA’s Sentinel-2 data
provided the spectral predictors for the models and were processed using the “Software Framework for
Operational Radiometric Correction for Environmental Monitoring” (FORCE; version 3.7.10; Frantz,
2019). With FORCE, the Sentinel-2 data from 2019 to 2021 were downloaded at level 1C and further
atmospherically as well as topographically corrected. Within FORCE near-infrared Landsat data were
used to correct the spatial position of the Sentinel-2 images and, thus, decreasing the spatial error across
satellite images (Rufin et al., 2021). The Sentinel-2 images of the 3 years were used to create high-
quality gap-free monthly mean composites for the entire state of Rhineland-Palatinate at a resampled
spatial resolution of 10 m. To cover the whole phenological development, one image for winter
(January), four covering the fast-changing period from deciduous leaf-unfolding to establishing the
canopy (March, April, May, and June) and two images for leaf senescence (September and October)
were created. In addition to the original bands, multiple spectral indices reflecting vegetation properties
were calculated. Table 1 shows the Sentinel-2 spectral bands and indices that were used in this study.
Refer to Bhandari et al. (2024) for a more detailed and comprehensive description of the workflow for
processing the Sentinel-2 data.

2.2.3. LiDAR data
TheLiDARdata are the key elements of this study, as its aim is to identify the potential of these heterogenous
data in contributing to the classification of successional stages for individual tree species groups. The
LiDAR data utilized in this study were collected by the department for Surveying and Geographic
Information of Rhineland-Palatinate (GeoBasis-DE/LVermGeoRP, 2022). Recently, the acquisition interval
for LiDAR data in Rhineland-Palatinate was increased from a collection over 9 years to only 4 years. As the
transition is still ongoing, in this study data froma7-year interval from2014 to2021 covering thewhole state
were used (LVermGeo, 2023). Since the data result from many different flights, there are variations in data
point density across the acquisition dates (see Figure 4). Study areas consisting of different flight campaigns
tend to also vary notably in technical properties such as scan angle and flight altitude (Næsset, 2009; Ørka
et al., 2010; Solberg et al., 2009). However, often detailedmetadata on these parameters are not available for
freely available data. For the LiDAR data used in this study information was provided only on the sensors
used each year and beam divergence, which can be found in Table A3 in the appendix. In total, 29 indices
were computed from the LiDAR data using the Remote SensingDatabase (RSDB) ofWöllauer et al. (2020;
see Table 2). The indices were computed for all areas identified as deciduous or coniferous forests according
to the Copernicus high-resolution layer for forest types of 2018 with a spatial resolution of 10 m (EEA,
2022). The calculated indices represent different categories of forest structure including canopy character-
istics (e.g., canopy height), vegetation structure (e.g., the penetration rate of different vegetation layers),
overall vegetation properties (e.g., aboveground biomass, vegetation coverage, and leaf area index), and
terrain features (e.g., elevation; see Table 2).

2.3. Methods

2.3.1. Matching data
For each tree species group, the successional stages from the forest inventory data were used as response
variables, while either Sentinel-2, LiDAR, or Sentinel-2 and LiDAR variables were used as predictors in

e24-6 Lisa Bald et al.



different models (see Figure 1). To process the polygons from the forest inventory data, all intersecting
pixels from the Sentinel-2 and LiDAR variables were extracted. To prevent confusion with adjacent areas,
a 10 m negative buffer was applied at the edges of the polygons to exclude the border areas of the
polygons.

Table 1. Sentinel-2 bands and indices used in this study. Images for these bands and indices were
calculated from monthly composites for 2019 to 2021 for January, March, April, May, June, September,
and October. See Table A2 in the appendix for the complete formulas to calculate the spectral indices

Name Description Reference/central wavelength

Visible bands
B2 Blue 490 nm
B3 Green 560 nm
B4 Red 665 nm
Near infrared bands
B5 Red edge 1 705 nm
B6 Red edge 2 740 nm
B7 Red edge 3 783 nm
B8 Near infrared 842 nm
B8a Broad near infrared 865 nm
Shortwave bands
B11 Shortwaved infrared 1 1610 nm
B12 Shortwaved infrared 2 2190 nm
Vegetation indices
VI1 Chlorophyll index red edge Gitelson et al. (2003)
VI2 Enhanced vegetation index Huete et al. (2002)
VI3 Kernel NDVI Camps-Valls et al. (2021)
VI4 Modified normalized difference water index Xu (2006)
VI5 Modified simple ratio red edge Chen (1996)
VI6 Modified simple ratio red edge narrow Fernández-Manso et al. (2016)
VI7 Normalized difference moisture index Gao (1996)
VI8 Normalized difference red edge index 1 A. Gitelson and Merzlyak (1994)
VI9 Normalized difference red edge index 2 Barnes et al. (2000)
VI10 Normalized difference vegetation index Tucker (1979)
VI11 Normalized difference vegetation index red

edge 1
Gitelson and Merzlyak (1994)

VI12 Normalized difference vegetation index red
edge 2

Fernández-Manso et al. (2016)

VI13 Normalized difference vegetation index red
edge 3

Fernández-Manso et al. (2016)

VI14 Normalized difference vegetation index red-
edge 1 narrow

Fernández-Manso et al. (2016)

VI15 Normalized difference vegetation index red-
edge 2 narrow

Fernández-Manso et al. (2016)

VI16 Normalized difference vegetation index red-
edge 3 narrow

Fernández-Manso et al. (2016)

VI17 Normalized difference water index McFeeters (1996)
VI18 Soil adjusted and atm. resistant vegetation

index
Kaufman and Tanre (1992)

VI19 Soil adjusted vegetation index Huete (1988)
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2.3.2. Balancing data and splitting into testing and training data
Reference data were balanced to ensure that all classes of successional stages of tree species groups were
treated equally in the modeling process, finding a trade-off between as much training data as possible and
equal distributions across classes. The data were balanced to ensure that for each tree species group (I) the
same number of polygons from each successional stage was used and at the same time (II) the same number
of pixels fromeach polygonwas randomly sampled. If a small number of pixels fromwithin each polygon is
chosen,manyof the available polygons can be included (also very small polygons).However, only very few
pixels are used from each polygon, even from those that are very large. On the other hand, sampling a large
number of pixels from each polygon results in more polygons being excluded from consideration, but it
allows for more pixels to be sampled from the remaining polygons. This sampling of the data set was
therefore optimized individually for each tree species group producing a balanced data set as large as

Figure 4. Properties of heterogeneous LiDAR data of Rhineland-Palatinate. The year in which the data
were recorded as well as the calculated point density derived directly from the LiDAR data set, based
on 100m pixel are depicted. It is visible that there is a transition from lower point densities in earlier years
to higher point densities in later years. Data: GeoBasis-DE/LVermGeoRP (2022).
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possible (formore details seeAppendix FigureA1or theR code in the data availability statement). From this
data set, 20% of the polygons from each class were retained for external testing. The remaining data were
used for model training and validation (see Tables A1 and A5 in the appendix). From the training data sets
for the successional stages, a data set for the tree species group model was created. This data set was later
used as a base for the hierarchical mapping of the successional stages. The same balancing process as for
each of the successional stages models was done for the tree species group model on this data set.

2.3.3. Model specifications
Random forest models (Breiman, 2001) were trained with a forward feature selection (FFS) from the R
package CAST (version 0.7.1; Meyer et al., 2023). The FFS trains the models with each possible two-
variable combination, keeps the best performing one and adds more predictor variables until none

Table 2. Overview of LiDAR indices characterizing the vegetation calculated with the Remote Sensing
Database (RSDB; Wöllauer et al., 2020; see Appendix A4 for RSDB labels)

Name Description

Canopy
CH (canopy height) max Maximum canopy height
CHM (canopy height model)

max
Highest surface above ground - canopy height model (CHM) raster

based
CH mean Mean top-of-canopy height
CHM mean Mean of the surface above ground - CHM raster based
CH SD Standard deviation of canopy height
CHM SD Standard deviation of the surface above ground - CHM raster based
CH median Median canopy height
CH skew Skewness of the canopy height distribution
CH curtosis Excess kurtosis of the canopy height distribution
CH perc 30 30% percentile of canopy heights
CH perc 70 70% percentile of canopy heights
Vegetation structure
PR (penetration rate) canopy Penetration rate of canopy vegetation layer
PR regeneration Penetration rate of the regeneration vegetation layer
PR understory Penetration rate of the understory vegetation layer
RD (return density) canopy Return density of canopy vegetation layer
RD regeneration Return density of regeneration vegetation layer
RD understory Return density of understory vegetation layer
VDR Vertical distribution ratio
Vegetation
AGB Aboveground biomass
LAI Leaf area index
FHD Foliage height diversity
VC (vegetation coverage) 1 m Vegetation coverage in 1 m height
VC 2 m Vegetation coverage in 2 m height
VC 5 m Vegetation coverage in 5 m height
VC 10 m Vegetation coverage in 10 m height
Terrain
Elev (elevation) max Highest ground a.s.l.
Elev mean Mean elevation
Elev SD Standard deviation of ground a.s.l.
Elev slope Mean slope
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decreases the error of the current best model. This allowed the recognition and removal of variables that
lead to overfitting (Meyer et al., 2018). As a result, only a small proportion of the variables prepared in this
study, specifically those that are relevant to the models, are actually used.

Spatial cross-validation was used during variable selection and model tuning to evaluate which
variables and hyperparameters lead to the highest ability to make predictions for new spatial locations
within the study area. The polygons were used as spatial units and were randomly split into ten different
folds for spatial cross-validation (Meyer et al., 2018; Ploton et al., 2020). The final models were then
tested on 20% of the polygons that were held out for spatially independent testing (see section 2.3.2) to
evaluate the potential of LiDAR data for classifying successional stages.

2.3.4. Modeling approach
To analyze the utility of LiDAR variables to classify and map forest successional stages, models were
trained on different combinations of Sentinel-2 and LiDAR variables using a variable selection algorithm.
Three models were trained for each of the tree species groups Douglas fir, larch, pine, spruce, beech, oak,
and other deciduous trees, to predict the successional stages. Themodels solely using Sentinel-2 variables
are hereafter referred to as the “spectral models”, the models incorporating Sentinel-2 and LiDAR
variables will be denoted as “hybrid models” in the following and the models exclusively trained on
LiDAR variables as “structural models”. The comparison focused solely on models for successional
stages assuming the tree species group as known.

To show the applicability of the successional stagemodels, an area-wide mapwith a resolution of 10m
for all forested areas of Rhineland-Palatinate was generated. To achieve this, the Copernicus high-
resolution layer forest-type data from 2018 were used as a forest mask (EEA, 2022). To map the
successional stages a tree species groups model was used as a baseline in a hierarchical modeling
approach. This entailed a two-step process: first, modeling all tree species groups across the entire area
as a baseline, and second, modeling successional stages based on the predicted tree species groups. The
modeling approach (either spectral, structural, or hybrid) that performed best across all tree species groups
on the test data, was used for mapping. The tree species groupsmodel was based on 360 training polygons
from the forest inventory data, each with 180 pixels, and tested on 96 polygons. The tree species groups
were modeled using the same modeling approach and the performance was tested using the same testing
data set as for all successional stages models. These data sets were never considered during model
training, neither for the tree species model nor for the successional stages models and were spatially
independent from the training data.

3. Results

This section presents the study’s findings on the performance of three different modeling approaches for
modeling the successional stages of tree species groups. The potential of using heterogeneous LiDAR
data was assessed by comparing the results of spectral, structural, and hybrid models. Additionally, the
variable selection of the different models and the area-wide prediction of tree species groups specific
successional stages throughout Rhineland-Palatinate were analyzed.

3.1. Model performance

The structural models (accuracy from 0.4 to 0.68) and hybrid models (accuracy from 0.43 to 0.78)
performed notably better than the spectral models (accuracy from 0.33 to 0.63) for all tree species groups.
The hybrid models and structural models were quite similar in performance with the hybrid models
performance always being slightly superior except for pine, where model performances were the same
(see Figure A2 in the appendix). Therefore, and for more clear comparability, the following analyses were
limited to the comparison of the spectral models to the hybrid models. The results of the structural model
can be found in Figure A2 in the appendix. The two left columns of Figure 5 show the test results of each
successional stage and model. The right column shows the difference in the proportion of correctly
classified pixels between models. For the spectral models, an overall accuracy between 0.33 for the group
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other deciduous trees and 0.63 for larch could be achieved. With the additional LiDAR variables in the
hybrid models, the overall accuracies could be increased to between 0.43 for other deciduous trees to 0.78
for larch. However, the models for spruce and beech only gained very little improvements in overall
accuracy (0.05 and 0.04) compared to the spectral models and therefore, the additional use of LiDAR
variables (hybrid model) could not notably improve those performances.

The largest increase per tree species group in overall accuracy by adding LiDAR variables occurred for
Douglas fir with an increase of 0.23, followed by oak and larch with an increase of 0.19 and 0.15,
respectively. Overall, for individual successional stages, only the performances of the maturing stage of
larch and beech decreased, all other stages benefited from the additional LiDAR variables. To investigate
whether one successional stage profited more from the availability of LiDAR variables than another, an
analysis of variance was performed. The differences in gain of accuracy between the modeled stages
across all tree species groups showed no significant trend (p-value 0.29). A t-test was conducted to
determine if the increase in accuracy differs between deciduous and coniferous forests, however, no

Figure 5.Model performances. The left column of the plots shows the results of models applied to the test
data sets only using Sentinel-2 variables (spectral models), and themiddle column shows the results using
Sentinel-2 and LiDAR variables (hybrid models). Each colored plot shows the confusion matrices of the
testing for one tree species. Labels from the reference data are shown on the x-axis and the predicted
values on the y-axis in percent. For example, the bar for thematuring phase (yellow), indicating themodel
classification, should be as large as possible in the first row (maturing) of each plot. All classifications in
the same row, but in the other phases (blue and green) are misclassified. The right column shows the
differences in accuracy for each class between the spectral models and the hybrid models. All values are
rounded to two decimals.
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significant difference existed (p-value 0.72). Generally, confusion matrices indicated that confusion
predominantly occurred among adjacent successional stages. The only exception is the qualification stage
of other deciduous trees, where only 5% of pixels were classified correctly. Here, the most misclassifi-
cations were not in the adjacent stage (dimensioning stage) but in the maturing stage, which led to low
evaluation scores (precision, recall, and f1). In the hybridmodel, the scores of themost diverse tree species
group of other deciduous trees clearly improved but still had the weakest performance with an accuracy of
0.43 and poor recall (qualification: 0.22 and dimensioning: 0.36) and precision values below 0.4
(dimensioning: 0.37). Therefore, it appeared inappropriate to use this group and its classified stages
for mapping and consequently, it was excluded from area-wide mapping (see Section 4.3). For all other
hybrid models, overall accuracies were at least above 0.6 and the gain in accuracy through the usage of
LiDAR variables was 0.13 on average (see Figure 5).

3.2. Contribution of predictor variables

During model training, the feature selection process optimized the selection of variables to create the
optimal model. As described in more detail in Section 2.3.4, the variable selection of the FFS starts with a
combination of two variables and adds the variable to the model that improves the current model the most
until no further improvement occurs (Meyer et al., 2018). As a result, from a multitude of variables, only
those deemed important for the models were selected and used in the models, as a side effect of this
process correlated variables are only considered once. The assessment of the variable importance of each
variable and each model is provided in Figure A4 in the appendix. As the hybrid model additionally used
LiDAR-derived variables it was expected that the composition of variables changed for each hybrid
model compared to the spectral model. As there might be similarities between variables (especially
between the vegetation indices), all variables were categorized into groups by their information content to
enable a comparison (see Tables 1 and 2). Figure 6 displays boxplots for both the spectral and the hybrid
models containing the ranks of the variables per group as determined by the FFS. A smaller rank indicates
an earlier selection and therefore, a stronger improvement and contribution to the model. The boxplot of
the spectral model shows the lowest ranks for the variables of the shortwave infrared group (median rank
2), followed by the visible (median rank 4). The near-infrared and the group of the vegetation indices both
were selected on average at rank 6. For the spectral models, variables from all groups but the visible bands
were selected for the first variable combination (Note: As the FFS chooses a combination of two variables
to start the feature selection with, rank 1 exists twice for each model). In every model at least one variable
from the group of vegetation indices and for the hybrid models additionally, one variable from the group
canopy was selected. For all other variable groups, at least two models did not select any variables from
the respective variable group (see Table 3).

For the hybrid models, there was a clear shift in variable selection. During variable selection, the group
of canopy variables, containing different properties of the canopy, was selected the earliest. This is
represented by the median on the first rank, which differed significantly from the other variable groups
(see appendix Table A6) withmedian ranks ranging from four to six. The vegetation indices and the group
of near-infrared bands had on average a lower rank in the hybrid model than in the spectral model. In all
spectral models except for Douglas fir, at least one variable from the group of vegetation indices was used
as the initial variable combination. Only variables of canopy and vegetation indiceswere used in the initial
variable combination (rank 1) in the hybridmodel. Eachmodel used one of those two groups for the initial
combination, except for beech, where even two variables from the canopy properties group were used.
The number of selected variables did not significantly differ between the spectral and the hybrid models
(t-test p-value = 0.48).

3.3. Area-wide mapping

To assess the applicability of themodels, successional stages for all forested areas in Rhineland-Palatinate
were mapped, allowing for the approximation of a comprehensive spatial cross-validation error and the
visual testing of the plausibility of spatial patterns. The tree species groups model reached an accuracy of
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0.81. Details of the model and its variable importance are provided in the appendix (see Figure A3 and
Table A7). The area-wide map of tree species groups specific successional stages for the entire state of
Rhineland-Palatinate using the tree species groupsmodel as well as the hybridmodels for the successional
stages achieved an overall accuracy of 0.6 on the test data sets. For detailed confusion matrices see
Tables A7 and A8 in the appendix.

Figure 7 shows the map of tree species groups specific successional stages for the entire federal state of
Rhineland-Palatinate. On this map, general spatial patterns of distributions are visible. In the Southeast
(Palatinate forest), pine trees dominate, while in the North (Westerwald) and West (Eifel and Hunsrück),
spruce trees are predominantly present. In the areas around the rivers (e.g., Moselle and Rhine), mainly
various classes of deciduous trees are found. For a more detailed view visit the digital map at https://
envima.github.io/LidarForestModeling/. Artifacts caused by the heterogeneous LiDAR data were not
detected.

Figure 8 shows two areas of the area-wide map in more detail, which are located directly at the survey
borders of different LiDAR scenes (see Figure 8b) with up to 6 years of temporal difference. Figure 8a
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Figure 6. The ranks of variable groups from variable selection. Boxplots display the ranks of variables
selected during feature selection for different variable groups. Colored dots show the rank separated by
tree species group. The boxes in the plot show the interquartile range of the ranks, with themedianmarked
by a vertical line within each box. The whiskers extend to the minimum and maximum ranks without
outliers. The data within the boxes indicate the average rank at which variables from each variable group
were selected during the feature selection process in model tuning. As each variable group consists of
several variables (see Tables 1 and 2), each model might be represented in each group multiple times.
Numbers in y-axis labels indicate how many variables belong to each specific group. Black y-axis labels
indicate that variables are Sentinel-2 variables, while gray labels are LiDAR-derived variables. Variable
importance for each variable individually for each model is provided in Figure A4 in the appendix. *Each
Sentinel-2 variable is available for 7 months.
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shows an area dominated by deciduous species, while Figure 8c illustrates an area where predominantly
coniferous forests are located. In the detailed maps of these border areas, no patterns are identifiable that
can be attributed to artifacts of the LiDAR data.

4. Discussion

Although there have been attempts to identify either only tree species (Breidenbach et al., 2021;
Hemmerling et al., 2021) or tree species in combination with successional stages (Stoffels et al., 2015)
on large-scale recently, the identification of the successional stages of tree species remains a major
challenge (Fassnacht et al., 2016). In this context, the successional stages of seven distinct tree species
groups were modeled using different combinations of input variables and a variable selection approach.
The best results were obtained through the combined use of Sentinel-2 and LiDAR data, even though the
LiDAR data were of heterogeneous quality. This approach illustrated the potential of incorporating
heterogeneous LiDAR data sources in varying quality as typically available from governmental sources
for ecological mapping and monitoring.

Table 3. Count of chosen variables during feature selection. Numbers in row names indicate how many
variables belong to the specific variable group. Black variables are Sentinel-2 variables while gray
variables are LiDAR-derived variables. (a) Spectral models. (b) Hybrid models. *Each Sentinel-2

variable is available for 7 month

(a)

Douglas fir Larch Pine Spruce Beech Oak

Other
deciduous
trees

Total
times
chosen

Visible bands (3*) 1 1 0 2 1 2 0 7
Near infrared bands (5*) 2 1 2 0 3 0 1 9
Shortwave bands (2*) 3 0 0 2 1 1 0 7
Vegetation indices (19*) 1 9 2 9 14 7 15 57
Total number of vars per

model
7 11 4 13 19 10 16

(b)

Douglas fir Larch Pine Spruce Beech Oak

Other
deciduous

trees

Total
times
chosen

Visible bands (3*) 0 1 2 4 0 0 1 8
Near infrared bands (5*) 0 0 1 0 2 0 0 3
Shortwave bands (2*) 0 0 0 1 0 1 0 2
Vegetation indices (19*) 5 4 3 2 6 7 6 33
Canopy (11) 1 1 2 1 2 2 2 11
Vegetation structure (7) 1 0 0 2 1 1 0 5
Vegetation (7) 0 2 0 1 1 0 0 4
Terrain (5) 0 0 0 0 1 0 2 3

Total number of vars per
model

7 8 8 11 13 11 11
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4.1. Modeling of tree species groups specific successional stages

The results of the study highlight that models of tree species groups specific successional stages
benefit from additional structural LiDAR variables regardless of the tree species group. Only in three
models, the recall of singular successional stages decreased with the additional use of LiDAR

Figure 7. Area-wide map of tree species groups and its successional stages for Rhineland-Palatinate.
Leaflet available at: https://envima.github.io/LidarForestModeling/.
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variables, while at the same time the overall model performance of the particular tree species groups
specific successional stages model was increased. This confirms that heterogeneous LiDAR data can
supplement models based on multispectral satellite data for modeling tree species groups specific
successional stages.

Several of the hybrid models predicted the tree species groups specific successional stages with high
precision, but there were still limitations. Especially the successional stages model for the tree species
group of other deciduous trees showed a rather poor performance. Even though its accuracy increased by
0.1, from 0.33 to 0.43, with the additional LiDAR variables, the performance still seemed not sufficient to
use this model for accurate area-wide mapping. Therefore the group of other deciduous tree species was
excluded from mapping. One potential factor causing the poor performance was likely to be the highly
heterogeneous composition of this class. While polygons were filtered to have at least 80% purity, a large
number of different tree species were grouped together in this class (see appendix Table A9). Individual
tree species as cherry, birch, or willow were available in the data set with extremely limited amounts of
polygons preventing a meaningful modeling of these groups independently. As these species are
occurring less frequently in the study area, only enhanced field surveys targeting these species could
enable effective modeling of these species. All other classes yielded overall accuracies above 0.6 for the
hybrid models and were therefore appropriate for the use of mapping (see the use-case in section 3.3).
Larch achieved the best performance with an overall accuracy of 0.78. However, due to limited data

Figure 8. Detailed map of LiDAR survey borders. Variations of the tree species group specific
successional stages are indicated with colors in two map sections in plot (a) and (c). These exemplary
areas were chosen at boundaries of LiDAR scenes with large temporal differences. On plot (b) the years of
acquisition for the LiDAR data set can be identified with lighter colors for olderdata and darker colors for
more recent data.
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availability, larch was one of the two tree species groups where only two successional stages were
modeled, which increased the possibility of random correct classification.

An area-wide map of tree species specific successional stages can be used for the identification of the
habitat suitability for a certain species (e.g. Felix et al., 2004). However, the reliability of such maps is
determined by the quality of the remote sensing and especially the forest inventory data as well as by the
modeling approach. Forest inventory data of higher spatial resolution, potentially collected at individual
tree level, could improve spatial mapping and could overcome limitations of data availability and quality
for accurate and transferable models (Yates et al., 2018). Despite these challenges, mapping successional
stages has great potential. In managed forests, the successional stages with the highest biodiversity (early
and late successional stages) are often the least represented (Hilmers et al., 2018). Large-scale regional
mapping can provide planners with a comprehensive overview of the current state of the forest, that
extends beyond the information from the forest inventory data. Such maps of successional stages can be
utilized to identify particularly valuable habitats for conservation efforts (Hilmers et al., 2018; Reif et al.,
2013) and guide forest management on which areas have high potential for future biodiversity enhance-
ment and restoration initiatives.

The mapping of tree species groups specific successional stages in this study not only served as an end
in itself but will form a baseline for more indirect biodiversity mapping. Specifically, this study is a
component of a broader project that incorporated this information for modeling the habitat of endangered
forest-dwelling bat species (Bald et al., 2024). This direct application underscores how such readily
available but heterogeneous LiDAR data can contribute to nature conservation efforts. The availability of
governmental LiDAR data is high in Europe, and the successful utilization of LiDAR data in biodiversity
research was proven (Reddy et al., 2021; Toivonen et al., 2023) for various ecological domains. However,
the unsystematic accessibility and inherent heterogeneity in acquisition years and pulse densities of large-
scale governmental data sets for entire federal states remain challenging and time-consuming. Greater
focus must be placed on the preprocessing of data and the adjustment of modeling techniques, which
increases workload substantially. Nonetheless, in this study the rather slow development of successional
stages in forest ecosystems was investigated and the additional value of heterogeneous LiDAR data was
shown. The data set used in this study, illustrates a typical temporal and spatial imbalance of data often
faced. Advocating for thoroughly analyzing and, if applicable, using such heterogeneous and “old” data
with appropriate training and validation procedures rather than dismissing it prematurely. In order to meet
the growing requirements on conservation monitoring, those readily available but highly heterogeneous
data should not be neglected (Vanden Borre et al., 2011). These data offer valuable insights into the three-
dimensional forest structure, which passive sensors cannot fully substitute, which makes them especially
valuable for forest ecosystemmonitoring. Although high-resolution LiDARdata that are acquired close to
the time of the conducted study, as used by Falkowski et al. (2009), should be preferable and likely yield
better results, such options are too cost-intensive for most practical ecosystem monitoring applications.
Governmental LiDAR data are more and more freely accessible (at least for scientific projects), and when
combined with publicly available Sentinel-2 data, they can provide a valuable and cost-effective data set.
Therefore, researchers and practitioners are encouraged to utilize the available heterogeneous data to
advance the understanding of ecosystems.

4.2. Change in variable selection

To assess the potential of heterogeneous LiDAR data for modeling of tree species groups specific
successional stages, it is of interest how the variable composition changes, when LiDAR variables are
available for selection. Figure 6 clearly shows that with the availability of LiDAR variables, the canopy
properties became important predictors. For the group of vegetation indices, interpretation is twofold.
Except for the spectral model for douglas fir and the hybrid model for beech, at least one variable from the
group of vegetation indices was used for every initial variable combination, indicating vegetation indices
can facilitate the prediction of successional stages (see Table 3). However, the rather low average rank
shows that vegetation indices were also often selected rather late in the FFS, indicating only little
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improvement of modeling performance. Vegetation indices form a strong modeling base, with different
other variables in the spectral model depending on the tree species group. In the hybrid model these
fluctuations were uniformly replaced by canopy properties adding to a strong combination of canopy
properties and vegetation indices for the prediction of successional stages in all tree species groups. Apart
from the initial variable combination, the median ranks of all variables but the canopy properties (rank 1)
ranged between 4 and 6 in the hybrid models. In the hybrid model, the variables of the canopy properties
also seem to replace the early usage of single Sentinel-2 bands in the spectral model. This means that the
combination of structural and optical features form a great baseline for the differentiation between
successional stages. The importance of structural information is reasonable as during succession the
growth of vegetation is a key component. Therefore, it seems plausible that canopy variables are more
crucial. In particular, canopy height (see Figure A4 in the appendix) was often selected as one of the first
and, therefore, most important variables.

4.3. Area-wide mapping

According to Holzwarth et al. (2020) and to our state of knowledge, large-scale mapping of tree species
groups specific successional stages has so far only been carried out once in Germany by Stoffels et al.
(2015). Here, the tree species groups specific successional stages for the entirety of Rhineland-Palatinate
were mapped. The hybrid models, which demonstrated superior performance in modeling successional
stages compared to the other models (see Section 3) supported by a preceding tree species groups model
were utilized for mapping. The accuracy as derived from the test data was 0.6 for all 16 classes (this
excludes the successional stages classes of other deciduous trees) and is therefore comparable with the
results of Stoffels et al. (2015; Accuracy 0.55).

While the direct comparability of results of other studies is limited due to slightly different classes and
the spatially independent validation and testing approach, a rough comparison of the magnitudes of their
performances is permissible given the similarity. Both models demonstrate similar qualities, with the
extended scope in the approach used here of including the larch tree species group intomodeling. Notably,
both approaches also show confusion mainly among adjacent successional stages. One advantage of the
approach of this study is the utilization of free Sentinel-2 data in combination with readily available
LiDAR data. However, even though typically LiDAR data are being collected and available almost
everywhere across Europe, its documentation and accessibility vary significantly, often requiring case-
based inquiries with the relevant authorities to obtain access. Nevertheless, depending on local regula-
tions, the LiDAR data are often freely available for research and monitoring purposes, enabling
monitoring regardless of financial capabilities. However, not only the availability and accessibility of
LiDAR data are often unsatisfactorily documented, the metadata are also often lacking and incomplete.
The LiDAR data used in this study were provided with very little detailed metadata (see Table A3 in the
appendix) and information on pulse density, wavelength or footprint were lacking. Despite our efforts to
obtain more details by contacting the data providers and the federal state office, metadata were not
available to, or known by the authorities. Therefore, we advocate for more standardized documentation
practices and improved metadata transparency when LiDAR data are collected and distributed. This
would further enhance their broader usability and facilitate greater comparability across studies. The
hierarchical modeling approach additionally features flexibility to improve the quality depending on the
research question. Especially when interested in specific tree species or tree species groups this approach
delivers the possibility to develop or use specialized tree species groups models and add successional
stages models. This study also demonstrates that model accuracy of certain tree species groups (beech and
spruce) do not significantly benefit from the additional LiDAR data. In cases where studies specifically
focus on one of these tree species groups for the modeling of successional stages, potentially, no further
benefit can be derived by adding LiDAR data for these species.

Not only the careful quantitative testing but also the visual analysis of the map yielded convincing
results. Figure 7 shows general spatial patterns of tree species that align with the actual forest patterns in
Rhineland-Palatinate (see Figure 3; PEFC—Arbeitsgruppe Rheinland-Pfalz, 2010). If the heterogeneity
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of the LiDAR data had posed a problem for the models, this would be expected to be revealed by the
observation of rectangular areasmirroring the LiDAR flight scenes across themap. No artifacts are visible
on the map, and even at boundaries between LiDAR aerial surveys that are furthest apart in time as shown
in Figure 8 do not exhibit any distorting patterns. At the intersection of the 2014, 2017 and 2020 flight
campaign boundaries in Figure 8, there is an area classified as beech in the qualification stage spreading
across the borders of all three LiDAR scenes, without showing any artificial linear structures that could
originate from these abrupt transitions. Nevertheless, we acknowledge that differences in acquisition
dates have an impact on the data, due to changes in forest structure over time, such as the transition of trees
between successional stages. However, the absence of visible artifacts and distorting patterns at these
boundaries suggests that any temporal changes did not greatly affect the model outputs in our study.

This study focused on forests, where changes occur rather slowly compared to other vegetation types.
It was demonstrated that even heterogeneous LiDARdata can be valuable formapping tree species groups
specific forest successional stages. However, there might be limits with faster growing vegetation that
should be explored further.

5. Conclusion

In the ongoing biodiversity crisis, the monitoring of forests is of high importance. Traditional field-based
inventories are not able to provide comprehensive, area-wide coverage of information over large areas due
to their cost and labor-intensive nature. Remote sensing is a promising solution to develop efficient area-
wide monitoring strategies. However, capturing structural data, such as LiDAR information for modeling
of successional stages, necessitates expensive flight campaigns to acquire current high-resolution data.
Such resources are often unavailable for regional monitoring purposes or minor nature conservation
projects. In Germany, federal states commonly conduct smaller LiDAR flight campaigns, covering the
same region approximately every 5 to 10 years. Consequently, this results in heterogeneous data sets that
are often viewed with skepticism regarding their utility, leading to their exclusion from modeling efforts.
The present study reveals that these highly heterogeneous LiDAR data improved the modeling of tree
species groups specific successional stages considerably. Therefore, it can be concluded that the potential
of LiDAR data should not be underestimated and at least a thorough analysis of their potential benefit for
ecological studies should be conducted. The effort of adapting preprocessing and modeling can lead to
improved results that can be valuable to nature conservation approaches. It is expected that more recent
and higher-quality LiDAR data would improve model results further, however, such instances are rarely
encountered in reality for large-scale studies. Improving the available LiDAR data was not within the
scope of this study but it might be possible that utilizing current data sources like GEDI (Global
Ecosystem Dynamics Investigation), could potentially optimize the use of heterogeneous LiDAR data
in the future. During this study, it was found that even heterogeneous LiDAR data were evidently helpful
for modeling tree species groups specific successional stages and should not be neglected. While public
authorities collect LiDAR data almost everywhere in Germany and also other European countries, the
direct availability and documentation are highly heterogeneous, incomplete, and disorganized. Therefore,
we advocate for relevant authorities to make the data more accessible or at least visible in a structured
manner and provide comprehensive metadata whenever data are made publicly accessible. As this study
showed, this could provide a valuable contribution to ecosystem research and, subsequently, to the
preservation of forest ecosystem services.
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A. Appendix

Table A1. Number of available pixels and polygons per tree species group after balancing

Tree species group
Training
pixels

Training
polygons

Pixel per
polygon

Test
pixels

Test
polygons

Douglas fir 10,380 60 151 3114 18
Larch 7596 36 211 2110 10
Pine 12,844 26 494 3952 8
Spruce 30,810 237 130 7410 57
Beech 61,152 168 364 14,560 40
Oak 18,573 123 151 4983 33
Other deciduous

trees
12,714 78 163 3423 21

Table A2. Formulas for Sentinel-2 bands and indices used in this study. Images for these bands and
indices were calculated from monthly composites for 2019–2021 for January, March, April, May, June,
September, and October. For the full workflow to create the Sentinel-2 data refer to Bhandari et al.

(2024)

Name Description Formula/central wavelength

Visible bands
B2 Blue 490 nm
B3 Green 560 nm
B4 Red 665 nm
Near-infrared bands
B5 Red edge 1 705 nm
B6 Red edge 2 740 nm
B7 Red edge 3 783 nm
B8 Near infrared 842 nm
B8a Broad near infrared 865 nm
Shortwave bands
B11 Shortwave infrared 1 1610 nm
B12 Shortwave infrared 2 2190 nm
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Table A2. Continued

Name Description Formula/central wavelength

Vegetation indices
VI1 Chlorophyll index red edge (B7/B5) – 1
VI2 Enhanced vegetation index G × ((B8a –B4)/(B8a + C1 × B4 –C2 × B2 + L))

with G = 2.5, L = 1, C1 = 6, C2 = 7.5
VI3 Kernel NDVI (1 – k) / (1 + k) with k = exp(�(B8a – B4)^2/(2 ×

sigma^2)) with sigma = 0.5 × (B8a + B4)
VI4 Modified normalized difference water index (B3 – B11)/(B3 + B11)
VI5 Modified simple ratio red edge ((B8/B5) – 1)/sqrt((B8/B5) + 1)
VI6 Modified simple ratio red edge narrow ((B8a/B5) – 1)/sqrt((B8a/B5) + 1)
VI7 Normalized difference moisture index (B8a – B11)/(B8a + B11)
VI8 Normalized difference red edge index 1 (B6 – B5)/(B6 + B5)
VI9 Normalized difference red edge index 2 (B7 – B5)/(B7 + B5)
VI10 Normalized difference vegetation index (B8a – B4)/(B8a + B4)
VI11 Normalized difference vegetation index red

edge 1
(B8 – B5)/(B8 + B5)

VI12 Normalized difference vegetation index red
edge 2

(B8 – B6)/(B8 + B6)

VI13 Normalized difference vegetation index red
edge 3

(B8 – B7)/(B8 + B7)

VI14 Normalized difference vegetation index red-
edge 1 narrow

(B8a – B5)/(B8a + B5)

VI15 Normalized difference vegetation index red-
edge 2 narrow

(B8a – B6)/(B8a + B6)

VI16 Normalized difference vegetation index red-
edge 3 narrow

(B8a – B7)/(B8a + B7)

VI17 Normalized difference water index (B3 – B8a)/(B3 + B8a)
VI18 Soil adjusted and atm. Resistant vegetation

index
(B8a – RB)/(B8a + RB + L) × (1 + L) with

RB = B4 – (B2 – B4) with L = 0.5
VI19 Soil adjusted vegetation index (B8a –B4) / (B8a +B4 + L) × (1 + L) with L= 0.5

Table A3. Used sensors for the acquisition of LiDAR data for each year and beam divergence of the
respective sensor. 0.18 mrad correspond to an increase of 18 cm of beam diameter per 1000 m distance

Time of data acquisition Sensor Beam divergence

2014 to 2016 Riegl LMS Q560 and Riegl LMS Q680i ≤ 0.5 mrad
2017 to 2019 Riegl LMS Q780 ≤ 0.25 mrad
2020 Riegl LMS VQ780i ≤ 0.18 mrad
2021 Riegl LMS VQ780II ≤ 0.18 mrad
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Table A4. Overview of structural LiDAR indices with the names of the Remote Sensing Database
(RSDB; Wöllauer et al., 2020). The formulas of the calculation of each index can be found under their

RSDB name at: https://github.com/environmentalinformatics-marburg/rsdb/wiki/Point-cloud-indices

Name RSDB label

Canopy
CH (canopy height) max BE_H_MAX
CHM max chm_height_max
CH mean BE_H_MEAN
CHM mean chm_height_mean
CH SD BE_H_SD
CHM SD chm_height_sd
CH median BE_H_MEDIAN
CH skew BE_H_SKEW
CH curtosis BE_H_KURTOSIS
CH perc 30 BE_H_P30
CH perc 70 BE_H_P70
Vegetation structure
PR (penetration rate) canopy BE_PR_CAN
PR regeneration BE_PR_REG
PR understory BE_PR_UND
RD (return density) canopy BE_RD_CAN
RD regeneration BE_RD_REG
RD understory BE_RD_UND
VDR VDR
Vegetation
AGB AGB
LAI LAI
FHD BE_FHD
VC (vegetation coverage) 1 m vegetation_coverage_01m_CHM
VC 2 m vegetation_coverage_02m_CHM
VC 5 m vegetation_coverage_05m_CHM
VC 10 m vegetation_coverage_10m_CHM
Terrain
Elev (elevation) max dtm_elevation_max
Elev mean BE_ELEV_MEAN
Elev sd dtm_elevation_sd
Elev slope BE_ELEV_SLOPE
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function

density = count rows of data grouped by response

rename density columns to ("Var1", "Freq")

densityPlots = count rows of data grouped by polygonID

Rename desityPlots columns to ("Var1", "Freq")

balancingDF = create an empty data frame

for i in 1 to 500 (max number of pixel per polygon to consider)

minID = get rows from densityPlots where Freq is greater than or equal to i

locationID = unique values of minID Var1

dataSubset = filter rows of data where polygonID is in locationID

trainDensity = count rows of dataSubset grouped by response

summarize trainDensity with numberDistinctLocations and store it in sampels and
minSamples columns 

append trainDensity to balancingDF

end

balancer = get rows from balancingDF where sampels is the minimum value

balancerDF = get rows from balancingDF where response matches balancer

maxBalancer = get rows from balancerDF where sampels is the maximum value

if rows in maxBalancer are more than 1

maxBalancer = get rows from maxBalancer where numberDistinctLocations is the
maximum 

end

balanceAll = get rows from balancingDF where minSamples matches maxBalancer 

minID = get rows from densityPlots where Freq is greater than or equal to maxBalancer 
minSamples

locationID = unique values of minID Var1

dataSubset = filter rows of data where polygonID is in locationID

IDs = empty list

for each class in unique response

tmp = filter rows of dataSubset where response matches class

ID = get unique values of tmp polygonID and sample a minimum of density
numberDistinctLocations

add ID to IDs

end

balancedData = filter Rows of dataSubset where polygonID is in IDs

return balancedData

end

Figure A1. Pseudocode balancing.
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Figure A2. The left Column of the plots shows the test results of models only using Sentinel-2 variables
(spectral models), middle column shows test results using Sentinel-2 and LiDAR variables (hybrid
models). The right column shows the test results of the models using only LiDAR variables (structural
model). Each plot shows the confusion matrices of the testing for one tree species group. Observed values
are shown on the x-axis and the predicted values on the y-axis in percent. For example, the bar for the
maturing phase (yellow) should be as large as possible in the first row (maturing) of each plot. All values
that end up in the other phases (blue and green) are misclassified pixels. Values are rounded to two
decimals.

Table A5. Number of available forest inventory polygons for each successional stage and tree species
group

Tree species group Establishment Qualification Dimensioning Maturing
Generational
change Decay

Douglas fir 8 157 1104 98 0 0
Larch 0 1 78 88 0 0
Pine 0 16 101 1726 0 0
Spruce 6 255 1777 1320 0 2
Beech 10 283 695 1636 0 13
Oak 25 162 1135 1810 0 1
Other deciduous trees 13 157 600 462 0 2
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Table A6. Significance of t-test for each variable group

Visible
Near-
infrared Shortwave

Vegetation
index Canopy Structure Vegetation Terrain

Visible 0.6789 0.4249 0.4874 0.009882 0.7102 0.7979 1
Near-infrared 0.6789 0.7609 1 0.1009 1 0.5821 0.5066
Shortwave 0.4249 0.7609 0.8581 0.1761 0.8451 0.4811 0.4
Vegetation

index
0.4874 1 0.8581 0.009464 0.8112 0.5548 0.666

Canopy 0.009882 0.1009 0.1761 0.009464 0.02926 0.03983 0.06984
Structure 0.7102 1 0.8451 0.8112 0.02926 0.705 0.6447
Vegetation 0.7979 0.5821 0.4811 0.5548 0.03983 0.705 1
Terrain 1 0.5066 0.4 0.666 0.06984 0.6447 1

Table A7. Confusion matrix for the tree species groups model with a total accuracy of 0.81 on test
data. The values indicate the classified pixels as percentage

Douglas fir Larch Pine Spruce Beech Oak Other deciduous trees

Douglas fir 85 0 4 2 0 1 2
Larch 1 86 2 2 1 2 4
Pine 5 3 90 2 5 1 2
Spruce 7 0 2 89 2 1 2
Beech 1 5 2 1 84 11 3
Oak 0 3 1 0 6 63 13
Other deciduous trees 1 2 0 3 1 23 74

Figure A3. Variable importance of the tree species groups model. Sentinel-2 variables are labeled black
and LiDAR variables are labeled gray at the y-axis.
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Table A8. Confusion matrix for the hierarchical modeling of tree species groups and successional
stages with letters indicating the successional stages (qualification: q, dimensioning: d, and

maturing: m). The values indicate the classified pixels as a percentage

Douglas fir
q d m

Larch
d m

Pine
d m

Spruce
q d m

Beech
q d m

Oak
q d M

Douglas
fir q

65 12 2 0 0 0 0 2 0 0 0 0 0 1 0 0

Douglas
fir d

14 41 31 0 0 0 1 0 0 1 0 0 0 1 0 0

Douglas
fir m

3 36 56 0 0 2 3 0 0 2 0 0 0 0 0 0

Larch d 0 1 1 76 22 0 0 1 0 0 1 2 0 2 1 0
Larch m 0 0 1 16 63 3 0 0 0 0 1 1 0 0 0 3
Pine d 3 4 3 4 1 65 27 1 1 1 1 5 1 1 0 0
Pine m 0 1 2 0 1 26 61 0 1 1 1 0 1 2 0 1
Spruce q 12 1 0 0 0 0 0 72 26 2 3 1 1 2 0 0
Spruce d 1 2 1 0 0 0 0 21 47 29 0 1 0 0 0 0
Spruce m 0 2 3 0 0 0 4 1 22 62 1 1 1 0 1 0
Beech q 0 0 0 0 0 0 0 1 0 0 48 3 5 12 1 0
Beech d 0 1 0 3 2 1 1 0 0 0 25 53 12 1 4 0
Beech m 0 1 0 1 4 2 1 0 1 1 10 30 72 9 5 11
Oak q 0 0 0 0 0 0 0 1 0 0 5 1 4 54 9 0
Oak d 0 0 0 1 1 0 0 0 1 0 3 2 1 14 62 24
Oak m 0 0 0 0 4 1 0 0 0 0 3 1 3 1 18 61

Table A9. The most important species in the tree species groups in the forest inventory data

Douglas fir

Douglas fir Pseudotsuga menziesii
False cypress Chamaecyparis
Juniper Juniperus
Redwoods Sequoioideae
Thuja Thuja
Tsuga Tsuga
Yew Taxus
Larch
European larch Larix decidua
Japanese larch Larix kaempferi
Pine
Black pine Pinus nigra
Pine Pinus nigra
Ponderosa pine Pindus ponderosa
Weymouth pine Pinus strobus
Spruce
Serbian spruce Picea omorika
Sitka spruce Picea sitchensis
Spruce Picea
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Table A9. Continued

Douglas fir

Beech
Beech Fagus
Oak
Common oak Quercus robur
Downy oak Quercus pubescens
Sessile oak Quercus petraea
Turkey oak Quercus cerris
Other deciduous trees
Short-lived deciduous trees
Alder Alnus
Aspen Populus tremula
Balsam poplar Populus balsamifera
Birch Betula
Black poplar Populus nigra
Cherry Prunus
Downy birch Betula pubescens
European crab apple Malus sylvestris
European wild pear Pyrus pyraster
Goat willow Salix caprea
Poplar Populus
Rowan Sorbus aucuparia
Silver birch Betula pendula
Long-lived deciduous trees
Ash Fraxinus excelsior
Black locust Robinia pseudoacacia
Common hornbeam Carpinus betulus
Common whitebeam Sorbus aria
Eastern american black walnut Juglans nigra
Elm Ulmus
English walnut Juglans regia
Field maple Acer campestre
Large-leaved linden Tilia platyphyllos
Linden T. platyphyllos
Montpellier maple Acer monspessulanum
Norway maple Acer platanoides
Red oak Quercus rubra
Service tree Sorbus domestica
Shadbush Amalanchier
Small-leaved linden Tilia cordata
Sorbus species Sorbus
Sweet chestnut Castanea sativa
Sycamore maple Acer pseudoplatanus
Wild service tree Sorbus torminalis
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Figure A4. Variable importance of hybrid and spectral tree species groups specific successional stages
models. For each tree species group one model only using Sentinel-2 data (spectral on the left) and one
using Sentinel-2 and LiDAR (hybrid on the right) is depicted. Sentinel-2 variables are labeled black and
LiDAR variables are labeled gray at the y-axis.
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