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Abstract
Given a smooth compact hypersurface 𝑀 with boundary Σ = 𝜕𝑀 , we prove the existence of a sequence 𝑀 𝑗 of
hypersurfaces with the same boundary as 𝑀 , such that each Steklov eigenvalue 𝜎𝑘 (𝑀 𝑗 ) tends to zero as 𝑗 tends
to infinity. The hypersurfaces 𝑀 𝑗 are obtained from 𝑀 by a local perturbation near a point of its boundary. Their
volumes and diameters are arbitrarily close to those of 𝑀 , while the principal curvatures of the boundary remain
unchanged.
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1. Introduction

Let𝑀 be an 𝑛-dimensional smooth compact Riemannian manifold with boundary Σ = 𝜕𝑀 . The Steklov
eigenvalue problem on𝑀 consists in finding all numbers𝜎 ∈ R for which there exists a nonzero function
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𝑢 ∈ 𝐶∞ (𝑀), which solves {
Δ𝑢 = 0 in 𝑀 ,
𝜕𝜈𝑢 = 𝜎𝑢 on Σ.

Here, Δ is the Laplacian induced from the Riemannian metric 𝑔 on 𝑀 , and 𝜕𝜈 is the outward pointing
normal derivative along the boundary Σ. The Steklov eigenvalues form an unbounded increasing
sequence 0 = 𝜎0 ≤ 𝜎1 ≤ 𝜎2 ≤ · · · → ∞, each of which is repeated according to its multiplicity. Note
that if 𝑀 is connected, then 𝜎1 > 0. See [9, 12] for background on this problem.
One of our main interests in recent years has been to understand the particular role that the

boundary Σ plays with respect to Steklov eigenvalues. Some papers studying this question are
[6, 14, 4, 2, 16, 11, 7, 5, 15]. In particular, we have considered the effect of various geometric constraints
on individual eigenvalues 𝜎𝑘 . One particularly interesting question is to prescribe a Riemannian metric
𝑔Σ on the boundary Σ and to investigate lower and upper bounds for the eigenvalue 𝜎𝑘 among all Riem-
manian metrics 𝑔 that coincide with 𝑔Σ on the boundary. Given any Riemannian metric 𝑔 on𝑀 such that
𝑔 = 𝑔Σ on Σ, it is proved in [4] that one can make any eigenvalue 𝜎𝑘 arbitrarily small by modifying the
Riemannian metric 𝑔 in an arbitrarily small neighborhood 𝑉 ⊂ 𝑀 of a point 𝑝 ∈ 𝜕𝑀 . More precisely,
for each 𝜖 > 0 and each 𝑘 ∈ N, there exists a Riemannian metric 𝑔̃ = 𝑔̃𝜖 ,𝑘 on 𝑀 that coincides with 𝑔Σ
on Σ and also with 𝑔 outside the neighborhood 𝑉 , such that 𝜎𝑘 (𝑀, 𝑔̃) < 𝜖 . For manifolds 𝑀 of dimen-
sion 𝑛 ≥ 3, one can also obtain arbitrarily large eigenvalues, but in general not using a perturbation
that is localized near the boundary of 𝑀 (see [4, 2]). In [5] a more restrictive constraint was imposed
by requiring the manifold 𝑀 to be a submanifold of R𝑚 with prescribed boundary Σ = 𝜕𝑀 ⊂ R𝑚.
In this context an upper bound for 𝜎𝑘 was given in terms of Σ and of the volume of 𝑀 . The authors
were unable at the time to give a lower bound and they raised the question of whether one exists, or if
instead, arbitrarily small eigenvalues are possible. The goal of this paper is to answer that question.

Theorem 1.1. Let 𝑀 ⊂ R𝑛+1 be a smooth 𝑛-dimensional compact hypersurface with nonempty boundary
Σ = 𝜕𝑀 . For each 𝑝 ∈ Σ, there exists a sequence of hypersurfaces 𝑀 𝑗 ⊂ R𝑛+1, 𝑗 ∈ N, with boundary
𝜕𝑀 𝑗 = Σ and with the hypersurface 𝑀 𝑗 coinciding with 𝑀 outside of a ball 𝐵(𝑝, 1

𝑗
), such that

lim
𝑗→∞

𝜎𝑘 (𝑀 𝑗 ) = 0 for each 𝑘 ∈ N. (1.1)

The principal curvatures of Σ ⊂ 𝑀 𝑗 are independent of 𝑗 . Moreover, the volume and diameter of 𝑀 𝑗

converge to those of 𝑀 as 𝑗 → ∞.

In order for (1.1) to hold for each 𝑘 ∈ N, it is necessary that the perturbed hypersurfaces 𝑀 𝑗 differ
from 𝑀 arbitrarily close to the boundary Σ as 𝑗 → ∞. Indeed, let 𝑏 be the number of connected
components of Σ and note that any hypersurface 𝑀 that coincides with 𝑀 in a neighborhood Ω of Σ
satisfies 𝜎𝑏+1 ≥ 𝐶 > 0, where 𝐶 is given by a sloshing problem on Ω ∩ 𝑀; see [5] for details.

Remark 1.2. Theorem 1.1 holds in arbitrary positive codimension and ambient space. We decided
to state it for hypersurfaces in R𝑛+1for the sake of notational simplicity. Note also that Theorem 1.1
certainly holds under weaker regularity asumptions.

Remark 1.3. By construction (see Section 3), eachmanifold𝑀 𝑗 coincides with𝑀 in a neighborhoodΩ 𝑗

of its prescribed boundary Σ. Hence, the Dirichlet-to-Neumannmaps 𝐷 𝑗 : 𝐶∞ (Σ) → 𝐶∞ (Σ) associated
with 𝑀 𝑗 all have the same full symbol [13]. The asymptotic behavior of 𝜎𝑘 (𝑀 𝑗 ) as 𝑘 → ∞ is therefore
independent of 𝑗 . That is, for each 𝑗1, 𝑗2 ∈ N the following holds: 𝜎𝑘 (𝑀 𝑗1 ) − 𝜎𝑘 (𝑀 𝑗2 ) = 𝑂 (𝑘−∞);
see [7, Lemma 2.1]. In particular, the limits of 𝜎𝑘 (𝑀 𝑗 ) as 𝑗 → ∞ and as 𝑘 → ∞ do not commute.

1.1. The Strategy of the Proof

For eigenvalues of the Laplace operator, it is well known that one can obtain arbitrarily small eigenvalues
by constructing thin Cheeger dumbbells in the interior of the manifold; see [1, 3]. This strategy does
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not work for Steklov eigenvalues. For Steklov eigenvalues, it is possible to obtain arbitrarily small
eigenvalues by creating thin channels, but this involves deformation of the boundary or a perturbation
of the Riemannian metric in the interior of 𝑀; see [8, 4]. In order to prove Theorem 1.1, we have to use
a more elaborate strategy.
Given a smooth function 𝑢̃ : R𝑛+1 → R, consider the restriction 𝑢 = 𝑢̃

��
𝑀
. It is well known that if∫

Σ
𝑢 𝑑𝐴 = 0,

𝜎1 (𝑀)
∫
Σ

𝑢2 𝑑𝐴 ≤
∫
𝑀

|∇𝑢 |2 𝑑𝑉 ; (1.2)

see [9] and Section 2 below. Here ∇𝑢 is the tangential gradient of 𝑢. It is the projection of the ambient
gradient ∇𝑢̃ on the tangent spaces of 𝑀 ⊂ R𝑛+1. The basic idea of our proof is to fix a function
𝑢̃ ∈ 𝐶∞ (R𝑛+1) and consider the vector field ∇𝑢̃ in the ambient space R𝑛+1. The hypersurface 𝑀 is then
deformed by creating “wrinkles” that tend to make the various tangent spaces 𝑇𝑝𝑀 , for 𝑝 ∈ int 𝑀 ,
perpendicular to ∇𝑢̃(𝑝). This is achieved by “folding the surface like an accordion” in the direction
perpendicular to ∇𝑢̃. In the limit the right-hand-side of inequality (1.2) tends to zero. Let us illustrate
this strategy with a simple example.

Example 1.4. Given a smooth function 𝑓 : D→ R vanishing on the circle 𝑆1 = 𝜕D, consider the surface

𝑆 𝑓 := Graph of 𝑓 =
{
(𝑥, 𝑦, 𝑓 (𝑥, 𝑦)) : (𝑥, 𝑦) ∈ D

}
.

The boundary of 𝑆 𝑓 is the same for each 𝑓 . We will use the function defined by 𝑢̃(𝑥, 𝑦, 𝑧) = 𝑥 and
its restriction 𝑢 = 𝑢̃ |𝑆 𝑓

as a trial function in inequality (1.2). Because ∇𝑢̃ = (1, 0, 0), it follows from
Lemma 2.4 that the Dirichlet energy of 𝑢 := 𝑢̃

��
𝑆 𝑓
: 𝑆 𝑓 → R is given by∫

𝑆 𝑓

|∇𝑢 |2 =
∫
D

1 + 𝑓 2𝑦√︃
1 + 𝑓 2𝑥 + 𝑓 2𝑦

𝑑𝑥𝑑𝑦.

For 𝑛 ∈ N, define 𝑓 = 𝑓𝑛 : D→ R by

𝑓 (𝑥, 𝑦) = sin(𝑛𝑥) (

𝜙 (𝑥,𝑦)︷       ︸︸       ︷
1 − 𝑥2 − 𝑦2).

It follows from

𝑓 2𝑥 = 𝑛2
(
cos(𝑛𝑥)𝜙 + 1

𝑛
sin(𝑛𝑥)𝜙𝑥

)2
and 𝑓 2𝑦 = sin2 (𝑛𝑥)𝜙2𝑦

that

lim
𝑛→∞

∫
𝑆 𝑓𝑛

|∇𝑢 |2 = 0.

Together with (1.2), this shows that lim𝑛→∞ 𝜎1 (𝑆 𝑓𝑛 ) = 0.

The proof of Theorem 1.1 is based on the above idea, but it is technically more involved, because
we want to localize this argument to a small neighbourhood of a point 𝑝 of the boundary. This is a
significant gain compared to the above example, because it allows the construction of an arbitrary finite
number of disjointly supported trial functions with small Dirichlet energy, leading to the collapse of
each eigenvalue 𝜎𝑘 rather than just 𝜎1. For the sake of readability and simplicity, the deformations that
we use in the proof of Theorem 1.1 are Lipschitz continuous but only piecewise smooth. This is not
problematic because only integrals of the first derivatives of these deformations appear.
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Plan of the Paper

In Section 2 we review the min-max characterization of Steklov eigenvalues, and we prove a lemma
regarding the control of the Dirichlet energy under quasi-isometries. We then proceed to construct
the perturbed hypersurfaces in Section 3. We use a quasi-isometric chart to a hypersurface with a flat
boundary. The perturbed submanifold is then constructed by considering the graph of a locally supported
oscillating function. Finally, in Section 4 an appropriate trial function is used to conclude the proof of
Theorem 1.1.

2. Notation and Preliminary Considerations

Let 𝑀 be a smooth compact manifold with boundary Σ. The volume form on 𝑀 is written 𝑑𝑉 ,
while the volume form on Σ is 𝑑𝐴. We denote by 𝐻1 (𝑀) the standard Sobolev space of functions in
𝐿2 (𝑀, 𝑑𝑉) with weak first derivative in 𝐿2 (𝑀, 𝑑𝑉). The Steklov eigenvalues 𝜎𝑘 admits a variational
characterization in terms of the Steklov–Rayleigh quotient of a function 0 ≠ 𝑢 ∈ 𝐻1 (𝑀),

R(𝑢) =
∫
𝑀

|∇𝑢 |2 𝑑𝑉∫
Σ
𝑢2 𝑑𝐴

.

The numerator 𝐷 (𝑢) =
∫
𝑀

|∇𝑢 |2 𝑑𝑉 is the Dirichet energy of 𝑢 ∈ 𝐻1 (𝑀). It is well known that

𝜎𝑘 = min
𝑆⊂𝐻1 (𝑀)
dim 𝑆=𝑘+1

max
𝑢∈𝑆\{0}

R(𝑢), (2.1)

where the minimum is taken over all (𝑘 + 1)-dimensional linear subspaces 𝑆 ⊂ 𝐻1 (𝑀).

2.1. Quasi-isometries and Dirichlet Energy

Let 𝑀 and 𝑀 be two 𝑛-dimensional Riemannian manifolds with boundary. A diffeomorphism 𝜙 : 𝑀 →
𝑀 is a quasi-isometry with constant 𝐶 ≥ 1 if for each 𝑝 ∈ 𝑀 and each 0 ≠ 𝑣 ∈ 𝑇𝑝𝑀 ,

1
𝐶

≤
∥𝐷 𝑝𝜙(𝑣)∥2

∥𝑣∥2
≤ 𝐶.

Quasi-isometries provide a control of the Dirichlet energy of a function.

Lemma 2.1. Let 𝜙 : 𝑀 → 𝑀 be a quasi-isometry with constant 𝐶 ≥ 1. Let 𝑓 ∈ 𝐻1 (𝑀); then

1
𝐶

𝑛
2 +1

≤
∥∇( 𝑓 ◦ 𝜙)∥2

𝐿2 (𝑀)

∥∇ 𝑓 ∥2
𝐿2 (𝑀)

≤ 𝐶
𝑛
2 +1.

Proof. Let 𝑔̃ be the Riemannian metric of 𝑀 and let 𝑔 be that of 𝑀 . Let 𝑔̂ = 𝜙★(𝑔̃) be the pull-back of
the metric 𝑔̃. Because 𝜙 is a quasi-isometry with constant 𝐶, the following holds for each 0 ≠ 𝑣 ∈ 𝑇𝑀 ,

1
𝐶

≤ 𝑔(𝑣, 𝑣)
𝑔̂(𝑣, 𝑣) ≤ 𝐶.

It follows that
1
𝐶
𝑔(∇𝑔 𝑓 ,∇𝑔 𝑓 ) ≤ 𝑔̂(∇𝑔 𝑓 ,∇𝑔 𝑓 ) ≤ 𝐶𝑔(∇𝑔 𝑓 ,∇𝑔 𝑓 ).
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The corresponding volume forms satisfy

𝐶−𝑛/2𝑑𝑉𝑔 ≤ 𝑑𝑉𝑔 ≤ 𝐶𝑛/2𝑑𝑉𝑔 .

This leads to

∥∇( 𝑓 ◦ 𝜙)∥2
𝐿2

=

∫
𝑀

𝑔
(
∇𝑔 ( 𝑓 ◦ 𝜙),∇𝑔 ( 𝑓 ◦ 𝜙)

)
𝑑𝑉𝑔

≤ 𝐶𝑛/2+1
∫
𝑀

𝑔̂
(
∇𝑔 ( 𝑓 ◦ 𝜙),∇𝑔 ( 𝑓 ◦ 𝜙)

)
𝑑𝑉𝑔

= 𝐶𝑛/2+1
∫
𝑀

𝑔̃(∇𝑔 𝑓 ,∇𝑔 𝑓 ) 𝑑𝑉𝑔 .

The proof of the lower bound is identical, and accordingly omitted. □

2.2. Quasi-isometric Charts

Recall that a subset 𝑀 ⊂ R𝑛+1 is a hypersurface with boundary if for each 𝑝 ∈ 𝑀 , there exist open sets
𝑊,𝑊 ′ ⊂ R𝑛+1 with 𝑝 ∈ 𝑊 and a diffeomorphism 𝜓 : 𝑊 → 𝑊 ′ such that 𝜓(𝑀 ∩𝑊) is an open set in
the half-space

𝐻 = {𝑥 ∈ R𝑛+1 : 𝑥𝑛+1 = 0, 𝑥1 ≥ 0}.

The point 𝑝 ∈ 𝑀 is on the boundary Σ of 𝑀 if and only if 𝜓 sends it to the boundary of the half-space 𝐻:

𝜓(𝑝) ∈ 𝜕𝐻 := {𝑥 ∈ 𝐻 : 𝑥1 = 0}.

This definition is coherent. It does not depend on the choice of the diffeomorphism 𝜓; see [10, Chapter 1]
for details. By further restricting 𝜓 and scaling if necessary, we can assume that it is a quasi-isometry
and that its image𝑊 ′ is a cylinder. This is summed up in the next lemma.

Lemma 2.2. For each 𝑝 ∈ Σ, there exists a quasi-isometry

𝜓 : 𝑊 −→ 𝑊 ′ = 𝐵R𝑛 (0, 1) × (−1, 1)

with 𝜓(𝑝) = 0 and such that the image of 𝑀 ∩𝑊 is

𝑈 := 𝜓(𝑀 ∩𝑊) = {𝑥 ∈ 𝐻 : |𝑥 | < 1}.

Remark 2.3. We identify 𝑈 ⊂ R𝑛+1 with a subset of R𝑛 so that we can write 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑈

instead of 𝑥 = (𝑥1, . . . , 𝑥𝑛, 0) ∈ 𝑈.

In particular, the restriction of 𝜓 to Σ ∩𝑊 is also a quasi-isometry.

2.3. Dirichlet Energy on the Graph of a Function

Let𝑈 ⊂ R𝑛 be a bounded open set and let 𝑓 : 𝑈 → R be a bounded smooth function. Consider the graph

𝑆 𝑓 = {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ 𝑈} ⊂ R𝑛+1.

Given a function 𝑢 : 𝑈 → R, define 𝑢̃ : 𝑈 × R→ R by 𝑢̃(𝑥, 𝑥𝑛+1) = 𝑢(𝑥) and define 𝑢 𝑓 : 𝑆 𝑓 → R by

𝑢 𝑓 (𝑥, 𝑓 (𝑥)) = 𝑢(𝑥) = 𝑢̃
��
𝑆 𝑓
. (2.2)
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Figure 1. The domain 𝑈.

Lemma 2.4. The Dirichlet energy of 𝑢 𝑓 : 𝑆 𝑓 → R is∫
𝑆 𝑓

|∇𝑢 𝑓 |2 𝑑𝑉 =

∫
𝑈

|∇𝑢 |2 + |∇𝑢 |2 |∇ 𝑓 |2 − ⟨∇𝑢,∇ 𝑓 ⟩2√︁
1 + |∇ 𝑓 |2

𝑑𝑥, (2.3)

where on the left-hand-side ∇, 𝑑𝑉 , and the norm are taken on 𝑆 𝑓 , and on the right-hand-side 𝑑𝑥 =

𝑑𝑥1 · · · 𝑑𝑥𝑛 is the Lebesgue measure on 𝑈, while ∇ is the usual gradient on R𝑛.

The Cauchy–Schwarz inequality gives |∇𝑢 |2 |∇ 𝑓 |2 − ⟨∇𝑢,∇ 𝑓 ⟩2 ≥ 0 with equality if and only if
∇𝑢 = 𝑐∇ 𝑓 for some constant 𝑐.

Proof of Lemma 2.4. To simplify notation, we will write 𝑆 = 𝑆 𝑓 . For any point 𝑝 ∈ 𝑆, the gradient
∇𝑢 𝑓 ∈ 𝑇𝑝𝑆 is the projection of ∇𝑢̃ on 𝑇𝑝𝑆, that is,

∇𝑢 𝑓 = ∇𝑢̃ − ⟨∇𝑢̃, 𝑁⟩𝑁,

where 𝑁 is a unit normal vector to 𝑇𝑝𝑆. It follows from

∇𝑢̃ =

( 𝜕𝑢
𝜕𝑥1

, . . . ,
𝜕𝑢

𝜕𝑥𝑛
, 0
)
,

𝑁 =
1√︁

1 + |∇ 𝑓 |2
(
𝑒𝑛+1 −

𝑛∑︁
𝑖=1

𝜕 𝑓

𝜕𝑥𝑖
𝑒𝑖

)
.

that

|∇𝑢 𝑓 |2 =
|∇𝑢 |2 + |∇𝑢 |2 |∇ 𝑓 |2 − ⟨∇𝑢,∇ 𝑓 ⟩2

1 + |∇ 𝑓 |2
. (2.4)

The volume element on 𝑆 𝑓 is given by

𝑑𝑉 =

√︃
1 + |∇ 𝑓 |2. (2.5)

Together with identity (2.4), this completes the proof. □
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3. Perturbation of the Submanifold 𝑀

Given 𝑝 ∈ Σ, let 𝜓 be the quasi-isometric chart provided by Lemma 2.2. In order to prove Theorem
1.1, we will deform the submanifold 𝑀 in the neighborhood 𝑊 of the point 𝑝 by deforming the
neighborhood𝑈 ⊂ 𝑊 ′ inside𝑊 ′ and pulling back to𝑊 using the quasi-isometry 𝜓. Consider a smooth
function 𝑓 : 𝑈 → R that is supported in the interior of𝑈 and which satisfies | 𝑓 (𝑥) | < 1 for each 𝑥 ∈ 𝑈.
This last condition implies that the graph of 𝑓 ,

𝑆 𝑓 = {(𝑥, 𝑓 (𝑥)) : 𝑥 ∈ 𝑈},

is contained in the cylinder𝑊 ′. Hence it can be used to define a deformation of 𝑀 as follows:

𝑀 𝑓 := (𝑀 \𝑊) ∪ 𝜓−1 (𝑆 𝑓 ). (3.1)

Because 𝑓 is smooth and supported in 𝑈 and 𝑆 𝑓 ⊂ 𝑊 ′, the subset 𝑀 𝑓 ⊂ R𝑛+1 is also a submanifold
with boundary 𝜕𝑀 𝑓 = Σ = 𝜕𝑀 .

Remark 3.1. It might be possible to prove Theorem 1.1 by performing a deformation of 𝑀 directly in
the ambient space R𝑛+1, but it appears to be simpler to use quasi-isometric charts.

3.1. Deformation Function

We now construct specific functions 𝑓 and 𝑢 such that the Dirichlet energy of 𝑢 𝑓 , defined by (2.2), is
small. Our method is based on Lemma 2.4, which shows that if ∇𝑢 and ∇ 𝑓 are parallel the numerator
of (2.3) is independent of ∇ 𝑓 , while the denominator behaves as |∇ 𝑓 |. Thus, we want 𝑓 and 𝑢 to have
parallel gradients with |∇ 𝑓 | big to get a small Dirichlet energy for 𝑢 𝑓 .
Consider numbers 𝜖, 𝜕1, 𝜕2, 𝜌 > 0 that are sufficiently small and define 𝜕 := 𝜕1 + 𝜕2. These constants

will be adjusted later in equation (4.6). Let 𝑞 = (𝜕, 0, . . . , 0) ∈ 𝐻. Consider the following subsets of𝑈:

𝐴 :=
{
(𝑥1, . . . , 𝑥𝑛) | 𝑥1 ≥ 𝜕, ∥𝑥 − 𝑞∥ ≤ 𝜖

}
,

𝐵 :=
{
(𝑥1, . . . , 𝑥𝑛) | 𝜕1 ≤ 𝑥1 ≤ 𝜕, ∥Π𝑥∥ ≤ 𝜖

}
,

𝐶 :=
{
(𝑥1, . . . , 𝑥𝑛) | 0 ≤ 𝑥1 ≤ 𝜕1, ∥Π𝑥∥ ≤ 𝜖

}
,

𝐷 :=
{
𝑥 ∈ 𝑈 \ (𝐴 ∪ 𝐵 ∪ 𝐶) | 𝑑 (𝑥, 𝐴 ∪ 𝐵 ∪ 𝐶), ≤ 𝜌

}
where Π(𝑥1, 𝑥2, . . . , 𝑥𝑛) = (𝑥2, . . . , 𝑥𝑛) is the projection on the boundary. Let Ω = 𝐴 ∪ 𝐵 ∪ 𝐶. See
Figure 2, where the 𝑥1-axis is vertical.

x1

0

q

Є

A

B

C δ1

δ2
D

ρ

Figure 2. Perturbation region.
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Define cutoff functions

𝜂 : [0,∞) → R, 𝛾 : [0, 𝜕] → R,

𝜂(𝑡) = max{0, 1 − 𝑡}, 𝛾(𝑡) =
{
0 if 𝑡 ≤ 𝜕1,
𝑡 − 𝜕1 if 𝜕1 ≤ 𝑡 ≤ 𝜕.

Finally, define 𝐹 : [0,∞) → R to be periodic of period 4, given on the interval [0, 4] by

𝐹 (𝑡) =
{
1 − 𝑡 if 𝑡 ∈ [0, 2],
𝑡 − 3 if 𝑡 ∈ [2, 4] .

Given 𝜔 > 0, define 𝑓 : 𝑈 → R by

𝑓 (𝑥) =
{
𝜂
( 𝑑 (𝑥,Ω)

𝜌

)
𝛾(𝑥1)𝐹 (𝜔∥Π𝑥∥) if 𝑥1 ≤ 𝜕,

𝜂
( 𝑑 (𝑥,Ω)

𝜌

)
𝜕2𝐹 (𝜔∥𝑥 − 𝑞∥) if 𝑥1 ≥ 𝜕.

(3.2)

Note that functions 𝜂 and 𝛾 are used to localize the deformation function 𝑓 . In particular, the use of the
function 𝛾 restrict the deformation function 𝑓 outside a neighborhood of the boundary, hence keeping
this neighborhood fixed under the deformation. The parameter 𝜔 will be sent to∞ later in the proof. It
is important to remark that |𝐹 ′(𝑥) | = 1 at points where 𝐹 is differentiable and |𝐹 (𝑥) | ≤ 1 for all 𝑥.

Remark 3.2. The deformation function 𝑓 is Lipschitz continuous and piecewise smooth. Because only
integrals of first order derivatives of this function appear in the estimates below, one could replace it by
smooth approximations without affecting the results.

4. Trial Function

The trial function 𝑢 is supported on Ω ⊂ 𝑈 and is defined by

𝑢(𝑥) =


1 − ∥Π𝑥 ∥

𝜖
if 𝑥 ∈ 𝐵 ∪ 𝐶,

1 − ∥𝑥−𝑞 ∥
𝜖

if 𝑥 ∈ 𝐴,
0 elsewhere.

(4.1)

By construction, the function 𝑢 𝑓 defined by (2.2) belongs to 𝐻1 (𝑆 𝑓 ), and we can estimate its Dirichlet
energy. On 𝐴, the Dirichlet energy of 𝑢 𝑓 can be made small by taking𝜔 big. Indeed, for almost all 𝑥 ∈ 𝐴,

∇ 𝑓 = ±𝜕2𝜔
𝑥 − 𝑞

∥𝑥 − 𝑞∥ , (4.2)

∇𝑢 = −1
𝜖

𝑥 − 𝑞

∥𝑥 − 𝑞∥ , (4.3)

and using the fact that ∇ 𝑓 and ∇𝑢 are parallel, the Dirichlet energy is∫
𝑆 𝑓 ∩𝐴×R

|∇𝑢 𝑓 |2𝑑𝑉 =

∫
𝐴

|∇𝑢 |2√︁
1 + |∇ 𝑓 |2

𝑑𝑥 =
1
𝜖2

1√︃
1 + 𝜕22𝜔

2
Vol 𝐴

=
𝑐1𝜖

𝑛−2√︃
1 + 𝜕22𝜔

2

where 𝑐1 is some dimensional constant.
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On 𝐵 and 𝐶, ∇ 𝑓 and ∇𝑢 are not parallel, but it is possible to make the Dirichlet energy small by
making the volume of 𝐵 and 𝐶 small. For 𝐵, we have for almost all 𝑥 ∈ 𝐵:

∇ 𝑓 (𝑥) = 𝐹 (𝜔∥Π𝑥∥)𝑒1 ± 𝛾(𝑥1)𝜔
Π𝑥

∥Π𝑥∥ , (4.4)

∇𝑢(𝑥) = −1
𝜖

Π𝑥

∥Π𝑥∥ , (4.5)

and since 𝑒1 and Π𝑥 are orthogonal,

|∇ 𝑓 (𝑥) |2 = 𝐹 (𝜔∥Π𝑥∥)2 + 𝛾(𝑥1)2𝜔2.

Then the Dirichlet energy on 𝐵 is∫
𝑆 𝑓 ∩𝐵×R

|∇𝑢 𝑓 |2𝑑𝑉 =

∫
𝐵

1
𝜖 2

+ 1
𝜖 2
𝐹 (𝜔∥Π𝑥∥)2√︁

1 + 𝐹 (𝜔∥Π𝑥∥)2 + 𝛾(𝑥1)2𝜔2
𝑑𝑥

≤ 1
𝜖2

∫
𝐵

2√︁
1 + 𝛾(𝑥1)2𝜔2

𝑑𝑥

= 𝑐2𝜖
𝑛−3

∫ 𝜕2

0

1√︃
1 + 𝑥21𝜔

2
𝑑𝑥1

= 𝑐2𝜖
𝑛−3
ln(𝜕2𝜔 +

√︃
1 + 𝜕22 )

𝜔
,

where 𝑐2 is a constant that depends only on the dimension. And on 𝐶, since 𝑓 = 0, the Dirichlet energy
is simply ∫

𝑆 𝑓 ∩𝐶×R
|∇𝑢 𝑓 |2𝑑𝑉 =

1
𝜖2
Vol𝐶 = 𝑐3𝜕1𝜖

𝑛−3,

where 𝑐3 is a constant that depends only on the dimension. The denominator in the Steklov–Rayleigh
quotient of 𝑢 𝑓 satisfies ∫

𝐵(0, 𝜖 )

(
1 − |𝑥 |

𝜖

)2
𝑑𝑥 ≥ 1

4
Vol

(
𝐵

(
0,

𝜖

2

))
= 𝑐4𝜖

𝑛−1,

for some constant 𝑐4 > 0. In total, the Steklov–Rayleigh quotient of 𝑢 𝑓 on 𝑆 𝑓 is bounded as follows:

R(𝑢 𝑓 ) ≤
1

𝑐4𝜖𝑛−1

(
𝑐1

𝜖𝑛−2√︃
1 + 𝜕22𝜔

2
+ 𝑐2

𝜖𝑛−3 ln(𝜕2𝜔 +
√︃
1 + 𝜕22𝜔

2)
𝜔

+ 𝑐3𝜕1𝜖
𝑛−3

)

=
1
𝑐4

(
𝑐1

𝜖−1√︃
1 + 𝜕22𝜔

2
+ 𝑐2

𝜖−2 ln(𝜕2𝜔 +
√︃
1 + 𝜕22𝜔

2)
𝜔

+ 𝑐3𝜕1𝜖
−2
)
.

We are now ready to define the constants more precisely. By using the following:

𝜕1 = 𝜖3, 𝜕2 = 𝜖3/2, 𝜔 = 𝜖−3, 𝜌 = 𝜖, (4.6)

we obtain
R(𝑢 𝑓 ) = O(𝜖1/2) as 𝜖 −→ 0.
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0

x
x′

y

Figure 3. The set {𝑥 | 𝑓 (𝑥) = 0} is shown in grey. The path in bold from an arbitrary 𝑥 ∈ Ω to a point
on 𝜕𝑀 𝑓 has length going to 0 as 𝜖 → 0.

We have proved that a local perturbation of 𝑈 allows the construction of a local trial function with
arbitrarily small Steklov–Rayleigh quotient. The proof of our main result is now an easy consequence.

Proof of Theorem 1.1. Without loss of generality, we work under the asumption that 𝑘 ∈ N is fixed. The
general case will then follow by a standard diagonal selection argument. Let 𝑘, 𝑗 ∈ N with 𝑗 sufficiently
large. Let 𝑝1, . . . , 𝑝𝑘+1 ∈ 𝐵(𝑝, 1

𝑗
) ∩ Σ be distinct points, and let 𝜓 be the quasi-isometric chart from

Lemma 2.2. For each 𝑝𝑖 , we follow the above construction to obtain deformation functions 𝑓𝑖 that are
disjointly supported, by taking 𝜖 > 0 small enough, and trial functions 𝑢𝑖 that have disjoint supports
contained in in 𝜓(𝐵(𝑝, 1

𝑗
) ∩ 𝑀). By possibly choosing a smaller 𝜖 in the previous construction, we

guarantee that the Rayleigh quotient of each 𝑢𝑖 is smaller than 1/ 𝑗 . Consider the deformation function
𝑓 = 𝑓1 + · · · + 𝑓𝑘+1 supported in 𝐵(𝑝, 1/ 𝑗) and the perturbed manifold 𝑀 𝑗 = 𝑀 𝑓 . Taking the pullback
by 𝜓, we obtain 𝑘 + 1 trial functions 𝜓∗ (𝑢𝑖) with disjoint supports and from Lemma 2.1, their Rayleigh
quotient is less than 𝑐/ 𝑗 where 𝑐 is a constant depending on 𝜓. By the variational characterization (2.1)
of the eigenvalue 𝜎𝑘 , we conclude that 𝜎𝑘 (𝑀 𝑗 ) ≤ 𝑐/ 𝑗 .
It remains to prove that the perturbedmanifolds𝑀 𝑗 satisfy the geometric conditions from the theorem.

Without loss of generality, we consider a single perturbation region Ω ∪ 𝐷 near one of the points 𝑝𝑖 .
Let 𝑥 ∈ Ω. There exists 𝑥 ′ ∈ Ω such that 𝑓 (𝑥 ′) = 0, and the distance in 𝑀 𝑓 between 𝑥 and 𝑥 ′ is O(𝜖3/2).
There is a path from 𝑥 ′ to some point 𝑦 on 𝜕𝑀 such that the length of the path is less than 𝜕 + 𝜖𝜋/2, it
suffices to take the shortest path in {𝑥 ∈ 𝑀 | 𝑓 (𝑥) = 0} from 𝑥 ′ to 𝜕𝑀 (see Figure 3). This total length
of the path from 𝑥 to 𝑦 goes to 0 when 𝜖 goes to 0, and since 𝜕𝑀 𝑓 = 𝜕𝑀 , this implies that the diameter
of 𝑀 𝑓 converges to the diameter of 𝑀 when 𝜖 goes to 0.
For the volume of 𝑀 𝑓 , taking 𝜌 = 𝜖 , the volume difference between 𝑀 𝑓 and 𝑀 goes to 0 as 𝜖 → 0.

Indeed, using the fact that the chart 𝜓 is a quasi-isometry, it is enough to show that the difference in

Table 1. This is table caption.

Element 1 Element 2*

Projectile Energy 𝜎calc 𝜎expt Energy 𝜎calc 𝜎expt

Element 3 990 A 1168 1547 ± 12 780 A 1166 1239 ± 100
Element 4 500 A 961 922 ± 10 900 A 1268 1092 ± 40
*This is an example of table footnote
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volume between 𝑆 𝑓 and Ω ∪ 𝐷 goes to 0. Note that

Vol(𝑆 𝑓 ) =
∫
Ω∪𝐷

√︃
1 + |∇ 𝑓 |2𝑑𝑥1 · · · 𝑑𝑥𝑛 ≥ Vol(Ω ∪ 𝐷).

It follows from (4.2) and (4.4) that, on Ω, the following holds:

|∇ 𝑓 |2 ≤ 1 + 𝜕22𝜔
2 = 𝜖−3.

Similarly, it follows from (3.2) that on 𝐷,

|∇ 𝑓 |2 ≤ 𝑐5

( 𝜕22
𝜖2

+ 𝜕22𝜔
2
)
= 𝑐5 (𝜖 + 𝜖−3),

where 𝑐5 is a positive constant. It follows that

|Vol(𝑆 𝑓 ) − Vol(Ω ∪ 𝐷) | =
∫
Ω∪𝐷

√︃
1 + |∇ 𝑓 |2𝑑𝑥1 · · · 𝑑𝑥𝑛 − Vol(Ω ∪ 𝐷)

= O(𝜖𝑛−3/2),

which goes to 0 for 𝑛 ≥ 2. Finally, it is clear that the curvatures of 𝜕𝑀 𝑓 do not change, as 𝑀 is kept fixed
on some neighborhood of the boundary due to the localisation of 𝑓 by the function 𝛾, which vanishes
near the boundary; see Figure 3 and the definition (3.2) of 𝑓 . □

Here is the sample for numbered list.

1. First item in the number list.
2. Second item in the number list.
3. Third item in the number list.

Here is the sample for bulleted list.

• First item in the bullet list.
• Second item in the bullet list.
• Third item in the bullet list.

Here is the sample for description list.

First item in the description list.
Second item in the description list.
Third item in the description list.

5. Conclusion

Some Conclusions here.
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