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Abstract

While application of clustering algorithms to atom probe tomography data have enabled quan-

tification of solute clusters in terms of number density, size, and subcomposition there exist

other properties (e.g. volume, surface area, and composition) that are better determined by

defining an interface between the cluster and the surrounding matrix. Namely volume, surface

area, and total composition. The limitation in composition results from a pre-filtering step

where the expected matrix ion types are omitted from the cluster search to enhance the con-

trast between the matrix and cluster and to reduce the complexity of the search. Previously

composition determination within solute clusters has utilized a secondary envelopment and

erosion step on top of conventional methods such as maximum separation. In this work we

present a novel and automated method that combines the particle identification fidelity of

a conventional clustering algorithm with the analytical flexibility of mesh-based approaches

through the generation of alpha shapes for each identified cluster. The corresponding mesh

accounts for concave components of the clusters and determines the volume and surface area

of the clusters, additionally the mesh boundary is utilized to update the total composition
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according to the internal ions.

Key Words: atom probe tomography, alpha shapes, clustering (Received XX Y 20ZZ; revised
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Introduction

Atom probe tomography (APT) provides the unique capability to probe 3-dimensional spatial

and chemical identity information simultaneously at the nanoscale (Geiser et al., 2007, 2009;

Bas et al., 1995; Gault et al., 2012). Due to this joint capability APT has become a standard

method for visualizing solute-rich microstructural features in a wide variety of materials (Mar-

quis & Hyde, 2010). Despite APT’s sub-nm, 3D spatial resolution, accurate quantification

of nanoscale features is still a source of ongoing research with many groups developing new

frameworks and algorithms to improve the detection of atomic ordering and clustering within

the generated point cloud (Wang et al., 2019; Ghamarian & Marquis, 2019). Much of this

work is focused on the characterization of precipitates during thermal aging or irradiation due

to the impact such precipitates have on the mechanical properties of the alloys in question

(Bailey et al., 2015; Bachhav et al., 2014; Miller & Kenik, 2004). Yet, more recently attempts

have been made to extend past approaches to classification of solute-enriched dislocations,

which prove difficult for conventional concentration based methods, such as isoconcentration

surfaces, and density based methods to detect (Ghamarian et al., 2020). Whether analyzing

precipitates or dislocations the properties of interest are generally the elemental composition

and feature size, the latter of which is often measured in terms of the ions contained within the

features or radial estimations assuming a spherical feature. In this work, we propose a novel

method to enhance composition estimates for clusters regardless of the clustering algorithm

used and extend the computation of feature size to volume and surface area through the use

of alpha shapes.

For both concentration and density-based clustering approaches, a fundamental pre-

2



Evan Still et al: Alpha Shape Analysis

processing step is the filtration of the relevant solute species for clustering. In the case of

isoconcentration surfaces, the filtration is performed with respect to user-selected ions that

are used for the concentration threshold. For spatial search algorithms the filtering is per-

formed externally and produces a subset of the spatial data that corresponds to only the ions

of interest. In the latter, the filtration directly limits composition analysis to the subcomposi-

tion of the selected ions, i.e. for a search of yttrium-titanium-oxygen (YTiO) precipitates using

only yttrium (Y) and titanium (Ti) as the ions of interest, the presence of oxygen (O) and

possible inclusion of other solute ions can not be determined. While, for isosurfaces the gener-

ation of a mesh via the marching cubes algorithm enables recovery of the full local composition

as well as volume and surface area.

This constraint on composition analysis following clustering has long been acknowledged

as a dilemma, and algorithms such as the envelopment method were designed specifically

to account for such discrepancies (Vaumousse et al., 2003). The envelopment and erosion

approach is a modification of maximum separation where two additional distance parameters

are supplied. The first of which determines the inclusion of "non-clustered" ions of all species

relative to the distance to the nearest clustered ion. However, as noted by the authors this

results in an enlargement of the clusters, so they then erode the clusters by removing all ions

within the erosion distance from the cluster/matrix interface (Vaumousse et al., 2003; Guo

et al., 2003). In Felfer et al. (2015) and Ghamarian & Marquis (2019) the convex hull of

a cluster was identified as one possible way to better reflect the structure of the individual

clusters while determining the composition. The convex hull however cannot account for

concave features such as the internal cavity expected when identifying the shell of a core-shell

structure or in identifying dislocations which possess a degree of curvature. Instead alpha

shapes are identified as one possible approach for determining the concave hull. Alpha shapes

have already been used to identify a mesh for the overall atom probe specimen in order to

improve reconstructions as in Felfer & Cairney (2016) or to identify clusters existing near the

boundary of the data as in Jenkins et al. (2020). We propose the alpha shape analysis (ASA)
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Fig. 1. Modified Atom Probe Analysis procedure for feature property extraction with the adden-

dum of alpha shape analysis (ASA). ASA enables conventional clustering algorithms to compete

with the Isosurface method through the determination of composition, surface area, and volume in

addition to the expected subcomposition and atom number.

framework which enables irregular meshing of complex point clouds through a cluster-specific

automated heuristic for selection of its singular input parameter, α, which describes the radius

of a carving sphere. Within the atom probe data analysis pipeline displayed in figure 1 ASA

is performed as a post-clustering step that enables computation of composition, volume, and

surface area for the identified clusters.

Materials and Methods

Computational Background and Methodology

We first briefly review the clustering algorithm, OPTICS, applied to our experimental test

case. Following this the basis of the ASA procedure’s subroutines, as presented in figure 2,

are discussed. The potential limitations will later be assessed through a set of five synthetic

datasets designed to explore three possible concave and two possible convex point clouds.

4



Evan Still et al: Alpha Shape Analysis

Outputs

Alpha
Shape

Generation

Delaunay
Triangulation

Simplex 
Property

Determination

Alpha Shape

Rejection
Sampling

Volume

Surface Area

Atom Number

Composition

Subcomposition

Clustered Data
 X, Y, Z, M/Z, Cluster Label

Optimize Alpha

Fig. 2. Flowchart of the ASA frameworks subroutines. The output of the cluster algorithm along-

side non-clustered data is supplied to the alpha shape generation subroutine. The alpha shape

generation subroutine is furthered compartmentalized into three components which produce the De-

launay triangulation, calculates relevant simplex properties such as volume, and determines the α

parameter. Following this the alpha shape determines the volume and surface Area while rejection

sampling is performed to update the composition and atom number of the clusters.
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OPTICS

Proposed by Ankerst et al. (1999), in order to overcome inherent limitations of density-based

spatial clustering on applications with noise (DBSCAN) when applied to clusters of varying

atomic densities and noise the ordering points to identify the clustering structures (OPTICS)

algorithm makes use of the notion of reachability distance to define a visualization of the

cluster structure Ester et al. (1996). OPTICS requires two input parameters, ε and MinPts,

which define the search distance from a point O, and the number of additional points within ε

for O to be considered a core point. Starting at a random initial point, o, OPTICS identifies

the ε-neighbors and places them within a queue for further processing. If O is found to be a

core point the core-distance (CD) is defined as the distance from O to its MinPts neighbor.

Then for a point, P, in the queue the reachability-distance (RD) is defined as either the CD of

O or the distance between P and O. The RD is then used to reorder the queue and the point

with minimal RD is processed next. The OPTICS procedure and its requirements are further

described in Ankerst et al. (1999).

The RD is plotted with respect to the index ordering to generate a reachability plot which

provides a visualization of the cluster hierarchy as shown in figure 3 for a system with four

clusters over top uniform noise. This plot is then processed to determine the final cluster struc-

ture with the most common analysis being based on identification of local minima alongside

a significance test to determine whether a cluster should be segmented into sub-clusters. For

further information on hierarchical extraction reference Sander et al. (2003) or Wang et al.

(2019), for an atom probe specific algorithm.

Alpha Shape Generation

Originally conceived by Edelsbrunner et al. (1983), alpha shapes and the related alpha hulls and

alpha complexes were designed as a generalization of the 2-dimensional convex hull in which

a point cloud’s representative shape is generated through the eraser intuition and expanded

to higher dimensions by considering the relationship between the alpha complexes and the
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[]

Fig. 3. Example reachability plot for a system of four clusters, each represented in a different color

with black indicating non-clustered points. Cluster boundaries are determined according to a slope

threshold. The reachability distance is presented on the y-axis, while the x-axis indicates the indices

of the ordered list.

Delaunay triangulation (Edelsbrunner et al., 1983; Edelsbrunner & Mücke, 1994). The eraser

intuition is based upon the movement of an eraser or carving ball, of radius α, about the point

cloud’s convex hull. The carving ball is defined to be open and thus the points of the cloud

may be circumscribed but not contained. As the carving ball moves throughout space the

content of the convex hull contained within is deleted producing an alpha hull where circular

arcs of curvature 1
α
bound the surface. The alpha shape is then defined as the linearized alpha

hull as presented in figure 4. Intuitively, when α “ inf, the alpha hull is the convex hull as the

carving ball cannot enter the point cloud, while sufficiently small α can result in the formation

of cavities and eventually a disconnected set.

The alpha hull and thus shape can be more formally defined and generalized for Rd by

considering a filtration of the Delaunay triangulation referred to as the alpha complex. The

Delaunay triangulation of a point set S, DT pSq, can be defined as the set of d-simplices, ∆T ,

such that the circum-hypersphere of any ∆T does not contains a point in S. Given that S is

in general position, i.e. within a hyperplane no three points are collinear and no four points

are cocircular, DT pSq is unique and it is guarantied that each ∆T possesses an open ball with

a radius, σT , and centroid, µT . Additionally, all lower dimensional simplices are bound by
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[]

Fig. 4. Example alpha shape of a loop restricted to 2-simplices. The required carving balls to

remove the simplices on the exterior and interior boundaries are dashed, while the solid lines represent

the triangulation.

the higher dimensional simplices. Thus, the alpha complex can be defined as subset of the

Delaunay triangulation, for which each simplex with σT greater than α is removed. Further

refinement of the alpha complex by identifying the exterior and interior boundaries results in

the identification of the alpha shape.

Simplex Property Determination

For each ∆T within the DT pSq the circumscribing radius, σT , must be determined for the

generation of the alpha complex, and the content, volume in R3 and area in R2, must be

calculated for the computation of the alpha complex’s volume and surface area. All properties

can be related to the Cayley Menger matrix of a ∆T , CMp∆T q presented in eq 1 (Sommerville,
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1958).

CMp∆T q “
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(1)

Here lij denotes the distance between the ith and jth vertex of ∆T for an arbitrary number

of dimensions, note that li“j “ 0. The relationship of |CMp∆T q| to the simplex content, vd is

given in eq 2 (Sommerville, 1958). For a 3-simplex the content, v3, describes the volume and

for a 2-simplex the content, v2, describes the area. All simplices are bounded by a set of lower

dimensional simplices, and for a 3-simplex there are four 2-simplices composing its bounds.The

surface area of a 3-simplex is then a summation over the content of the 2-simplices. Thus, eq 1

enables computation of each simplex’s volume and surface area prior to selection of alpha and

the subsequent generation of the alpha complex.

v2
d “

p´1qd`1

pd!q22d |CMp∆T q| (2)

To derive the relationship between the circumradius, σT , and CMp∆T q consider a ∆T , with

sidelengths lij and a center of mass referred to as a barycenter, rx0, x1, x2, x3, ...xds. Coxeter

(1930), provides eq 3 to relate σT to all lij given the barycenter of ∆T is known. Coxeter

(1930) also establishes that a point, P with barycentric coordinates ry0, y1, y2, ¨ ¨ ¨ , yds, exists

within ∆T only if condition 4 is met.

řd
j“0 xjl

2
ij “ 2σ2

T for i “ p0, 1, 2, 3, . . . , dq (3)

řd
j“0 yj ď 1 (4)
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Consider the following constraints derived from eq 3.

řd
j“0 xjl

2
ij ´ 2σ2

T “ 0 for i “ p0, 1, 2, 3, . . . , dq (5)

Eq 4 and eq 5 provides a set of d + 2 linear equations from which it is evident that the

coefficient matrix is identical to the CMp∆T q as shown in eq 6 and eq 7.
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Left multiplying by CM´1p∆T q results in the final relationship between the Cayley-Menger
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matrix and the circumradius established in eq 8.

CM´1p∆T q
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(8)

Thus, utilizing only the Cayley-Menger matrix enables computation of the content, circumra-

dius, and barycenter of each simplex within the Delaunay triangulation.

Alpha Selection Heuristic

As clusters are not necessarily globally uniform in size and shape, selection of α must be done

on a per cluster basis. A set of N clusters would require manual selection of N α values which

is prohibitive for all but the smallest cluster sets. Overcoming this drawback requires a robust

and sensitive heuristic for determining each optimal α. The simplest and most commonly used

heuristic for identifying α is to select the smallest α for which all clustered points belong on

or interior to the alpha shape and leaves no disjoint members (Wilson et al., 2009). However,

such an approach can lead to erroneous cavities for irregularly sampled volumetric objects.

Additionally, an ideal heuristic would provide meaningful information about the potential

shapes, such as the volume.

Gardiner et al. (2018), provides an alternate heuristic based instead upon the volume of the

corresponding alpha shape for analysis of bacula tomographs. Figure 5 referred to as an alpha

volume curve displays the volume with respect to α. Here morphologically concave features

such as voids appear as sharp decreases in volume as α is decreased, hereby referred to as a

volume drop. Additionally sufficiently small alphas result in a final volume drop corresponding
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Fig. 5. Example plot of complex volume with respect to the selected α for a 2-d loop. Three

example α are selected to show a fragmented complex, an ideal complex, and the convex hull.

to the fragmentation of the complex (Gardiner et al., 2018). In the case of Gardiner et al.

(2018) the optimal α corresponds with a known volume of the object pre-tomography, which is

not applicable to features within APT data. Building upon their work, a heuristic was designed

in order to automatically identify the regions of minimal and maximal volume change by first

fitting the volume drops.

From figure 5 and Gardiner et al. (2018) it is evident that the volume drops possess an

approximately sigmoidal shape with varying levels of asymmetry. An ideal function for the

model of such shapes is the generalized logistic function (GLF), alternatively known as the

Richard’s curve, for which one possible paramaterization is presented in eq 9 and was designed

to model growth processes (RICHARDS, 1959).

Y ptq “ A` K ´ A

p1`Qe´Btq1v
(9)
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Here Y ptq generally denotes the growth property of interest, volume, as a function of the

input, t. A and K represent the lower and upper asymptotes respectively, which can be bound

in (0, 1) if the alpha complex’s volume is measured as a fraction of the convex volume. B

denotes the unbounded growth rate and Q is a scaling parameter. The parameter v controls

the position of the inflection point with respect to the two asymptotes and must be greater

than zero. In order to account for multiple volume drops we propose utilizing a summation

of multiple GLFs acting over different ranges of α. Due to the complexity of identifying the

optimal number of GLFs and fitting a complex curve, we restrict our current heuristic to the

summation of two GLFs, eq 10. In doing so we limit ASA to accurately characterize features

that possess either a singular concave region or a singular α which corresponds to that concave

regions.

V pαq “ A1 `
A2 ´ A1

p1`Q1e
´B1αq

1
v1

`
A3 ´ A2

p1`Q2e
´B2αq

1
v2

(10)

Parameters; A1, A2, A3, define the possible asymptotes, where A1 denotes the lower asymp-

tote. A2 ´ A1 and A3 ´ A2 defines the upper asymptotes of the first and second GLF. Al-

ternatively, A3 is the upper asymptote of the summation and A3 ´ A2 denotes the expected

value at the region of minimal growth. The remaining parameters remain identical to eq 9,

but are subscripted to denote which GLF is parameterized. Furthermore, by constraining our

heuristic to eq 10, numeric approximation is unneeded as the first and second derivatives can

be analytically derived in eq 11 and eq 12.

δV pαq

δα
“
B1Q1pA2 ´ A1qe

´B1αp1`Q1e
´B1αq

´1
v1
´1

v1

`
B2Q2pA3 ´ A2qe

´B2αp1`Q2e
´B2αq

´1
v2
´1

v2

(11)

δ2V pαq

δα2 “
pA2 ´ A1qp´B

2
1Q

2
1p
´1
v1
´ 1qe´2B1αp1`Q1e

´B1αq
´1
v1
´2

v1

`
pA3 ´ A2qp´B

2
2Q

2
2p
´1
v2
´ 1qe´2B2αp1`Q2e

´B2αq
´1
v2
´2

v2

´
B2

1e
´B1αp1`Q1e

´B1αq
´1
v1
´1

v1
´
B2

2e
´B2αp1`Q2e

´B2αq
´1
v2
´1

v2

(12)

From eq 11 and eq 12, the inflection points of the alpha volume curve can be determined
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and used as the potential optimal values of α. The general heuristic for selection is then as

follows: if only a singular inflection point is identified, then the cluster is labeled as convex

and the complex for α “ 8 is returned, else successive inflection points are checked and the

first alpha complex which contains all points on the boundary or interior and has only one

connected component is returned. In the event that all inflection points fail this check the

simplices composing the convex hull are returned. In the case of a 2-compoment mixture of

GLF’s, there are at most three inflection points, two of which correspond to regions of maximal

growth and a singular inflection point which corresponds to minimal growth.

Alpha Complex Composition

Given the accepted simplices of the alpha complex, the remaining data points that were not

used for clustering are reincorporated via rejection sampling to determine a full composition.

A point is accepted if it is contained within a simplex of the convex hull and that simplex

exists within the alpha complex. If an ion is not accepted for any alpha complex it is labeled

as a matrix ion, and can be used to establish the matrix composition. One possible option for

the containment check is the condition that the barycentric coordinates must sum to 1 for the

containing simplex, presented in eq 4. Alternate approaches such as random or directed walks

through the Delaunay triangulation are also applicable. The final composition is calculated

according to the relative abundances of ions within the alpha complex.

Experimental Data Acquisition and Analysis Procedure

An irradiated 304 stainless steel with known radiation induced precipitation at the nanoscale

was used as a test case for the proposed algorithm. Conventional manufacturing of APT

specimens was performed using a Ga focused ion beam (FIB) for both rough cuts and annular

sharpening (Thompson et al., 2007). APT data was collected using a CAMECA LEAP 4000X

HR equipped with a UV 355 nm laser operated in laser mode using a pulse energy of 50

pJ/pulse, 200 kHz pulse rate, and a detection rate and temperature of .5% and 50K respectively.
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Fig. 6. Synthetic datasets used to evaluate the accuracy of the ASA procedure. The datasets

consist of three concave and two convex samples.

APT reconstruction was performed using the CAMECA IVAS software package.

Synthetic Data Generation and Analysis Procedure

The ASA framework was applied to a set of five synthetic datasets, presented in figure 6,

designed to be possess representative shapes for concave and convex features evident in atom

probe tomography data as projected to 2-dimensions for simplicity. The synthetic data was

not generated to possess a target density that is reflective of APT data due to the alpha shape

procedure having dependencies on the number of points and the uniformity of the density and

not the actual point density.

The three concave features types were selected to be representative of dislocation lines,

dislocation loops, and shell structures. Dislocation lines are represented through the use of a

moon and s-curve, which possess one and two sources of concavity, while dislocation loops and

shell structures are represented through a circular dataset. The circle is a direct projection

of a loop or cylindrical shell into lower dimensions, while the rotation about the centroid

would give a typical spherical shell. The three real equivalents would each have one concave

feature. Testing of convex features was accomplished using a rectangular distribution of points

to represent planar features such as grain boundaries, as well as a Gaussian blobs to represent

spherical precipitates.

The synthetic datasets were treated as post-clustered data, so uncertainties due to clus-
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tering and prefiltering would be omitted from the analysis. The goal of this analysis is to

determine the variability in results for ASA when applied to similar features and the overall

accuracy when applied to convex and concave features with respect to the number of reference

points and point density. Finally, the data from the concave and convex test cases are aggre-

gated and used to determine the overall accuracy of the approach with respect to number of

reference points and point density.

All concave features; s-curve, moon, circle, were generated through SciPy’s dataset utility

with Gaussian noise overlaying the true structure (Virtanen et al., 2020). Convex features were

generated using numpy’s random sampling functionality to produce a uniformly random planar

features and a Gaussian feature (van der Walt et al., 2011). Each dataset was generated with

a maximum of 2,000 points with which to generate a representative alpha shape. Following

generation, the datasets were downsampled without replacement to a lower number of points

100 times, to generate a set of distributions with similar shape to the parent which ASA was

then applied to. The number of reference points for these tests ranged from 50 to 1,000 points

in 50 point increments. For each trial the inflection point of the concave solution and the

percent of the convex volume was recorded. The inflection points of the concave solution were

used to determine the true positive rates (TPR) and true negative rates (TNR) and thus the

overall accuracy of the approach. The percent volume was used to compare the expected

volume distributions for each test case. Surface area/perimeter estimations and composition

estimates are left out of this analysis.

ASA Implementation

We combined the above steps into a single framework for robust analysis of composition, surface

area, and volume for a set of clusters from a conventional clustering algorithm. The framework

is developed purely in Python 3.8.2 with open-source projects and user-written programs. All

analyses were performed on a 32 GB Asus Vivobook with a 1.8 GHz Intel Corei7 processor.

All required Python packages and codes are documented and will be available on Github and
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on PyPa as a package.

Given the input data consisting of spatial coordinates X, Y and Z and a mass-to-charge

state ratio (M/Z), and the cluster label of the initial dataset, ions are first grouped according

to the cluster label as determined by a clustering algorithm of choice. Each cluster is then

processed sequentially and the scipy.spatial package is used to generate a nearest site Delaunay

triangulation of the cluster points according to the quickhull algorithm from Qhull (Virtanen

et al., 2020; Barber et al., 1996). From the Delaunay triangulation, the 3-simplices and vertices

are collected and the Cayley-Menger matrix is calculated to determine the circumradius and

volume. Unbounded lower dimensional simplices are omitted from the subsequent alpha shape

generation. Simplices are then sorted according to circumradius and the cumulative volume is

calculated to generate the alpha volume plot.

In order to fit eq 10, a stochastic optimization is performed using the adaptive memory

programming for constrained global optimization (AMPGO) algorithm as provided by the

non-linear least-square minimization and curve-fitting for Python (LMFIT) package (Lasdon

et al., 2010; Newville et al., 2014). It should be noted that any optimization that adequately

explores parameter space and ideally supports unbounded parameters could be used instead.

Constrained optimizations such as AMPGO are applicable if the variables bounds are set broad

enough to allow sufficient exploration of the parameter space. Despite being a constrained

optimization AMPGO was selected due to its competitive convergence rate and ability to avoid

becoming trapped in local minima. The basis of AMPGO is the concept of tabu tunneling,

where after finding a local minima in the objective function the algorithm attempts to find

a point that has a similar evaluation to the current minima and is sufficiently far from all

previously identified minima. Previously identified minima are labeled tabu, and are tunneled

away from in this construction. An additional local search is performed at each minima in

order to more fully explore parameter space. AMPGO has a set of hyperparameters, which

are defined in table 1, and the values set for the ASA procedure are provided. Given the fit

parameters, the number of local maxima is then calculated using a conventional peak-finding
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Table 1. User selected hyperparameters for AMPGO stochastic optimization.

Variable Name Variable Interpretation Value

maxfunevals Maximum number of function evaluations 25

totaliter Number of global iterations 25

glbtotal Tolerance for solution acceptance 1e-5

eps1 Weighting parameter for objection function

during tunneling

.5

eps2 Perturbation factor to move from current minima

prior to tunneling

1e-4

algorithm, data with a singular maxima uses the convex hull for further analysis. In the case

of multimodal data, generated from the 2-component GLF mixture, the three inflection points

corresponding to maximal, minimal, and maximal growth regions are checked to determine if

the cluster points are fully contained within the corresponding alpha complex and that the

alpha complex is composed of one connected component. The lowest inflection point is then

selected as α, and Cayley-Menger analysis is used to determine the area of each remaining

2-simplex bounding an exterior 3-simplex.

Finally, rejection sampling is applied to all unlabeled ions through a scipy.spatial appli-

cation of a directed search algorithm of the containing simplex which starts at the closest

facet of the lifting paraboloid (Virtanen et al., 2020). The search algorithm is based upon

Qhull’s find best facet function which maps the Delaunay triangulation to a higher dimension

generating a lifting paraboloid and computes the distance of a test point to the convex hull of

the paraboloid (Barber et al., 1996). This process is repeated for each cluster, to provide two

output files. The first of which contains the initial parameters as well as the ASA cluster label,

while the latter contains the cluster properties such as volume, surface area, and composition.

In the event of overlapping alpha shapes for clusters sharing similar space, the ions existing in

the shared content are included in the first cluster analyzed.
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Synthetic Data Results

Concave Feature Results

The overall TPR for the concave datasets is defined according to eq 13 which is graphically

presented in figure 7 as a function of point cloud properties. Figure 7a depicts the TPR with

respect to the number of downsampled datapoints (N_points) used for the triangulation, while

figure 7b is with respect to the effective density given by the number of points divided by the

overall content of the alpha shape. These plots are used to assess the conditional accuracy

of the classification heuristics performed during ASA. In the event that an individual cluster

of 50 ions is observed in APT and is concave then the cluster is correctly labeled as concave

approximately 77% of the time when the ASA heuristic is limited to the 2nd inflection point.

TPR “
NConcave Labels|Concave

NConcave Simulations
(13)

To analyze the volume distributions of true concave features, shown in figure 8, as a func-

tion of the inflection points the parent distributions were downsampled to fifty points prior

to application of ASA. 50 was selected for the amount of downsampling as it provided the

maximum difference in TPR according to figure 7. Figure 7 is used to probe the stability

and modality of the volume distribution in the worst case scenario with respect to accuracy.

For the three concave datasets, where only one true volume is correct the volume distribution

should ideally be unimodal with a peak centered on the true value and possessing minimal

spread.

Convex Feature Results

The overall TNR for the convex datasets defined in eq 14 and is graphically presented in

figure 9 as a function of point cloud properties. Figure 9a depicts the TNR with respect to
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Fig. 7. a. True Positive Rate (TPR) of the three concave datasets with respect to the number of

reference points (N_points) used in triangulation. b. True Positive Rate (TPR) of the three concave

datasets with respect to the point cloud density (Points/Content) as determined by the alpha shape

prior to downsampling. Both heuristic options are presented.

Fig. 8. a. Volume distributions of correctly labeled concave datasets given 50 reference points

for samples where the 2nd inflection point was optimal. b. Volume distributions of correctly labeled

concave datasets given 50 reference points for samples where the 3rd inflection point was optimal. The

Volume distributions were generated via a gaussian kernel density estimate (KDE) using Silverman’s

rule for bandwidth selection.
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Fig. 9. a. True Negative Rate (TNR) of the two convex datasets with respect to the number of

reference points (N_points) used in triangulation. b. True Negative Rate (TNR) of the two convex

datasets with respect to the point cloud density (points/content) as determined by the alpha shape

prior to downsampling. Both heuristic options are presented.

the number of downsampled datapoints (N_points) used for the triangulation, while figure 9b

is with respect to the effective density given by the number of points divided by the overall

content of the alpha shape. Whereas figure 7 is used to assess a conditional accuracy for

concave data, figure 9 provides an effective assessment of classification for the convex datasets

given either the number of reference points or the effective point density.

TNR “
NConvex Labels|Convex

NConvex Simulations
(14)

To analyze the volume distributions of false concave features, shown in figure 10, as a

function of the inflection points the parent convex distributions were downsampled to fifty

points prior to application of ASA. 50 was maintained for the amount of downsampling because

it provided the maximum difference in TNR according to figure 9 and was the downsampling

amount selected for comparing the concave volume distributions. Volume distributions are

once more used to assess stability in the resulting alpha shapes for the same feature. Similar
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Fig. 10. a. Volume distributions of incorrectly labeled convex datasets given 50 reference points

for samples where the 2nd inflection point was optimal. b. Volume distributions of incorrectly labeled

convex datasets given 50 reference points for samples where the 3rd inflection point was optimal. The

volume distributions were generated via a gaussian kernel density estimate (KDE) using Silverman’s

rule for bandwidth selection.

to figure 8 an ideal heuristic would provide a sharply peaked unimodal distribution, however for

the convex datasets the selection of α and not just the labeling step is expected to contribute

to the variance in the computed volume.

Aggregated Results

The overall accuracy for all datasets is defined according to eq 15 which is graphically presented

in figure 11 as a function of point cloud properties. Figure 11a displays the accuracy with

respect to the number of downsampled data points (N_points) used for the triangulation,

while figure 11b is with respect to the effective density given by the number of points divided

by the overall content of the alpha shape. This aggregate accuracy does not condition on a

know truth for a feature being concave or convex, and thus is more reflective of the clusters

extracted from APT.

Accuracy “
NConcave Labels|Concave `NConvex Labels|Convex

NConcave Simulations `NConvex Simulations
(15)
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Fig. 11. a. Aggregated accuracy over all synthetic datasets with respect to the number of refer-

ence points (N_points) used in triangulation. b. Aggregated accuracy over all synthetic datasets

with respect to the point cloud density (points/content) as determined by the alpha shape prior to

downsampling. Both heuristic options are presented.

The results from the volume distribution analysis for the correctly labeled concave data

are shown in figure 8 and the incorrectly labeled convex data from figure 10 are aggregated

and displayed in figure 12.

Experimental Results

Ionic Distributions

304SS is a 18/8 Cr/Ni austenitic steel alloy by weight percent. Si, Mn, P, S, Mo, and N are all

expected contaminants in 304SS. The presence of Si in 304SS is often manifested through grain

boundary and dislocation enrichment as well as precipitation. As the goal of using 304SS was

to test the application of ASA to a variety of microstructural features investigation of the ionic

distributions were focused upon Fe, Mn, Ni, and Si observed as elemental peaks. Analysis of

Si was restricted to the Si2+ avoid overlap between the Si1+, Fe2+, and Ni2+ peaks. Mn and Ni
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Fig. 12. a. Volume distributions of all synthetic datasets given 50 reference points for samples

where the 2nd inflection point was optimal. b. Volume distributions of all synthetic datasets given

50 reference points for samples where the 3rd Inflection Point was optimal. The volume distributions

were generated via a gaussian kernel density estimate (KDE) using silverman’s rule for bandwidth

selection.

commonly accompany Si enrichment in 304SS while the Fe concentration should be depleted

within the vicinity of such features, as shown in figure 13.

Application of OPTICS and ASA

Selection of Si ions acted as the prefiltering step for both OPTICS and subsequent applications

of isoconcentration surfaces. The selection of Si ions only resulted in a reduction in the number

of ions from 30 million down to approximately 130,000. OPTICS analysis utilized ε of 25 and

MinPts of 20, producing the set of 203 clusters shown in figure 14b.

Commonly, post clustering analysis of precipitates is focused on the ratios of their ionic

constituents as presented in figure 15. However, unlike the conventional analysis the application

of ASA enables comparison of all ionic species as opposed to just those used for clustering.
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(a) Fe Ion Map (b) Mn Ion Map (c) Ni Ion Map
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(d) Si Ion Map

Fig. 13. 304SS ion distribution maps for Fe, Mn, Ni, and Si Ions. Ni and Si show enrichment along

the grain boundary and within both grains via precipitates. Mn shows a relative depletion at the

grain boundary.
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(a) Si Filtering (b) OPTICS Clusters (c) ASA Clusters (d) ASA Classification

Fig. 14. APT Maps depicting the initial Si distribution, the clustering output of OPTICS for ε of

25 and MinPts of 20, as well as the final cluster output and classification output corresponding to

the ASA framework. In figure 14d orange points represent ions belonging to concave features while

blue points represent those belonging to convex features.
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Fig. 15. a. Ternary diagram consisting of Fe, Cr, and Si ions. b. Ternary diagram consisting of

Si, Mn, and Ni ions. Blue circular points denote the relative abundances of selected ions for clusters,

while the orange square indicates species abundance within the matrix.

Analysis of a Dislocation Loop

In order to assess the similarity of ASA and Isosurfaces for analysis of dislocation loops, the

previously identified dislocation and grain boundary were extracted with a cubic region of

interest. As seen in figure 16a a 2.8 at% Si isoconcentration surface extracts two features of

interest: the dislocation loop and a portion of the grain boundary. In figure 16b, the post-

ASA clusters representing the dislocation loop and grain boundary are shown to be fragmented

due to the inability of OPTICS to preserve these features as whole extracted clusters. The

application of OPTICS only found 2,240 clustered Si ions in this region of interest, while ASA

reintroduced an additional 29,367 ions from the entire mass spectrum. The dislocation loop is

composed of two fragments which were forcibly merged into one cluster prior to reapplication

of ASA in order to ensure the extracted properties are representative of the complete loop and

comparable to those reported by the isoconcentration surfaces.

The ionic concentrations of different species and size descriptors such as volume, surface
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Fig. 16. Si enriched dislocation loop and grain boundary as observed by Isosurfaces and the ASA

framework.

Table 2. Comparison of dislocation loop concentrations determined by isococentration surface

method and ASA

Fe Cr Cu Ni Si Mn

2.8 at% Si Iso 66.59 14.65 .1431 12.86 4.95 .818

2.4 at% Si Iso 67.56 14.88 .1439 12.13 4.32 .862

ASA 67.22 14.87 .1723 11.84 5.01 .88

area, and ion count for ASA as well as two isosurfaces with 2.4% and 2.8% Si are presented in

tables 2 and 3 respectively.

Discussion on Synthetic Data

Heuristic Accuracy

The TPR of the alpha selection heuristic when applied to the concave datasets was presented

in figures 7 as a function of the number of datapoints as well as the point density. In both

scenarios the TPR approaches 1 as the number of points for downsampling and thus the density
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[]

Table 3. Comparison of Dislocation Loop Size measured in number of ions, volume, and surface

area determined according to Isosurfaces and ASA

Number of Ions Volume (nm3) Surface Area (nm2)

2.8% Si Iso 12678 370.6 416.6

2.4% Si Iso 16820 477.3 487.9

ASA 16964 470.6 524.8

increases. The differences between using solely using the 2nd inflection point and allowing the

use of the 3rd inflection point of the alpha volume curve is only evident when using N_points

as the metric, where allowing the 3rd inflection point results in a higher TPR for N_points

< 250.

Figure 9 instead displays the TNR of the heuristic for the evaluated convex datasets.

Regardless of the constraints on inflection points applied to the heuristic the TNR approaches

1 as the number of points for downsampling and thus the density increases. The differences

between using solely using the 2nd inflection point and allowing the use of the 3rd inflection

point of the alpha volume curve is evident for both metrics where allowing the 2nd inflection

point results in a higher or equal TNR for all N_points and densities.

In order to assess the overall efficacy of the heuristic the accuracy was computed considering

both the concave and convex datasets as shown in 11. As expected the accuracy displays similar

trends to the TNR and TPR for it approaches 1 for an increasing number of downsampled

points and thus density. The behavior of the accuracy with respect to density is consistent

regardless of which heuristic is used, but limiting the inflection point selection to the 2nd point

maximizes the accuracy for most densities. The only noticeable deviation in accuracy with

respect to N_points occurs for 50 points where restricting selection to the 2nd inflection point

results in an accuracy drop of approximately 0.15.
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Percent Volume Distributions

From the concave data presented in figure 8 depicting the percent volume distributions for both

heuristic options it is clear that using the third inflection point introduces a right translation of

0.1 to a more convex percent volume. Additionally, the moon and circle datasets experienced

a left skew while the s-curve experienced a right skew.

In opposition to this behavior is the convex data’s percent volume distributions visible in

figure 10. When restricted to the 2nd inflection point of the alpha volume curve, the rectangle

dataset was peaked at a highly convex percent ratio of 0.9, with a long left skew extending

down to 0.4, while the gaussian dataset was peaked near 0.85 and possessed a lesser left skew.

The data with an optimal 3rd inflection point exhibit a left translation of approximately 0.3

and a diminishing amount of left skew in the case of the rectangle dataset. The Gaussian

dataset showcases a lesser translation of 0.1 and a possible right skew.

The combined percent volume distributions are depicted in figure 12. In figure 12a the

distributions are shown when the selection heuristic is restricted to the 2nd inflection point

of the alpha volume curve. In this scenario given the tested synthetic datasets there is clear

separation between the false concave data with a convex parent distribution and true concave

data occurring at 0.6. When the heuristic is allowed to select the 3rd inflection point as an

optimal α, the right and left shifts in the concave and convex data respectively result in a

smearing of volume distributions such that there is no longer a clear separation in the false

concave and true concave data.

Final Heuristic Selection

In determining the constraints on the final selection of α it is imperative to consider which

processes are influenced by the number of datapoints and which are influenced by a point den-

sity. From the perspective of atom probe tomography it would be ideal if the ASA frameworks

accuracy is primarily impacted by point density as that has historically been the method for

assessing clustering accuracy given a background density. However, assuming that the point

29



Evan Still et al: Alpha Shape Analysis

cloud possesses a uniform and isotropic density the efficacy of the delaunay triangulation and

the corresponding alpha shape is governed purely by the number of datapoints. Additionally,

the fitting process of the alpha volume curve is dependent on the number of simplices in the

delaunay triangulation and the proportion of the convex volume which is contained within

concave regions. Neither of which can be related to the initial point density. Thus, looking

at the accuracy with respect to the number of datapoints is most representative of the ASA

framework.

From our synthetic datasets this would suggest that allowing an unrestricted selection of

inflection point is ideal. However, as noted in the discussion of figure 12, there is significant

smearing of the volume distributions that is not present when we restrict our selection to the

2nd inflection point. Allowing the enhanced overlap in volume distributions would make it

exceedingly difficult to apply a secondary categorizing step based on the percent volume as

suggested by Ghamarian et al. (2020) for their approach to quantifying solute topology. As

such we propose that the α selection process should be limited to the 2nd inflection point of the

alpha volume curve despite a slight loss in accuracy for datasets with less than 200 datapoints

in order to maintain tighter volume distributions.

Experimental Discussion

OPTICS and ASA

The high visibility of Si enrichment compared to Mn and Ni only Si ions, as evident in figure

13d was the justification for clustering only the Si ions via the OPTICS algorithm. OPTICS

performed as expected within each grain identifying visibly observable clusters as well as lower

relative density features. Of particular note is the grain boundary which was segmented into

many sub-clusters due to the reachability distance corresponding to points at opposite ends of

the boundary growing prohibitively large. Additionally, directly above the grain boundary on

the right-hand side exists a loop-like structure that was fragmented by OPTICS.
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For the majority of clusters, as observed in figure 14, the ASA and OPTICS results are

comparable, with the most salient observation being that post-ASA the features are higher

density. This is due to the rejection sampling component of ASA which attempts to reintroduce

the ions absent from OPTICS back into the clusters. Many of the features observed after ASA

maintain concavities visible in the cluster results of OPTICS. One exception to this is the

brown cluster front and center in the topmost grain. In the case of OPTICS there is a clear

internal cavity as well as an outward concave region, however ASA only identified the outer

region. It is believed that OPTICS returned a combined feature consisting of a dislocation

loop and precipitate in close proximity. If the two concave regions had varying representative

α values one of the assumptions for ASA was violated explaining the inaccuracy.

In figure 15a, due to the singular cluster within composition space there appears to be no

significant relationship between Mn, Fe, and Si. Investigating the relationships between Si,

Mn, and Ni, in figure 15b, shows an elongated distribution of variable Si/Ni concentration

possessing low Mn amounts as well as a potential secondary distribution with a tighter Ni and

higher Mn spread. This observation may correspond with clusters that originate in the grain

boundary due to the observed Ni, Si enrichment and Mn depletion. Finally, due to the nature

of rejection sampling, all ions that were rejected from the set of clusters are used to estimate

the matrix composition denoted by the orange squares.

Analysis of a Dislocation Loop

The Si isconcentration surface presented in figure 16a shows the beginnings of a pinch point

which may explain the fragmentation of the dislocation loop into two clusters that OPTICS

reported. This hypothesis is also supported by the presence of the adjacent grain boundary.

During irradiation both grain boundaries and dislocations act as competing defect sinks for

Si, which could result in a lower density of Si ions in the bordering portion of the loop.

Analysis of the compositions from table 2 shows that ASA reports lower concentrations of

Ni1 and higher amounts of Mn, Cr, Cu, and Fe relative to the 2.8 at% Si isoconcentration
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surface. While ASA reports higher Si compared to this isoconcentration surface the difference

is likely to be within experimental error. Applying a lower threshold of 2.4 at% Si results in

the Ni and Si content dropping and the amounts of Cr, Mn, and Fe to rise while Cu remains

similar. This change results in the Fe and Ni content exceeding that of ASA, while Mn and

Cr approach that reported by ASA. The difference in reported Si content is amplified with an

approximate difference of 0.7 at%. It is believed that the 2.4 at% Si isoconcentration surface

results in a higher proportion of the matrix being contained within the surface, explaining the

overall decrease in Si and increase in expected matrix components such as Fe and Cr/

The size metrics provided in table 3 show that ASA reports a total of 16,964 ions within the

dislocation loop which exceeds that of the 2.8 at% Si isoconcentration surface by 3,000 ions,

while the 2.4 at% Si isoconcentration surface contains a comparable 16,820 ions. As expected

from observations with contained ions ASA also reports a higher volume and surface area of

470.6 nm3 and 524.8 nm2 compared to the 2.8 at% isoconcentration surface. Interestingly,

while the 2.4 at% Si isoconcentration surface reports a comparable volume of 477.3 nm3 the

surface area is only 487.9 nm2. This may be due to the inherent smoothing of the data that

isoconcentration surface introduce during their voxelization and kernel smoothing steps, while

the ASA framework does not inherently guarantee smooth features nor does the framework

currently include a smoothing process.

Conclusions

In this work a novel and automated post-clustering framework based on alpha shapes was de-

veloped to enhance quantification of volume, surface area, and composition for solute clusters

identified by arbitrary clustering algorithms using simulated and experimental APT data. The

Alpha Shape Analysis (ASA) framework provided accuracy rates exceeding 80% regardless of

the number of points provided and minimized the overlap of resulting percent volume distri-

butions for a set of three concave and two convex datasets. Additionally, ASA was applied to

an experimental 304SS data set containing silicon (Si) enrichment enabling measurement of
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volume, surface area, and composition for a set of 203 clusters as identified by the OPTICS

algorithm with only Si ions as the ions of interest. The ASA clusters maintained visual equiv-

alence with the clusters as reported by OPTICS in the majority of cases and maintains any

deficiencies that the cluster algorithm of choice possesses, i.e. fragmentation of clusters with

variable Si content such as the grain boundary as observed by OPTICS.

In the current state ASA assumes that each provided cluster possesses uniform and isotropic

density. One avenue to address this current limitation is the implementation of the anisotropic

density-scaled alpha shape reconstruction procedure which would minimize connections over

sparse regions and enable a scaling α parameter as a function of local density. Additionally, the

alpha selection heuristic can only account for concave features with a singular representative α

value due to the reliance on a 2-component GLF mixture. Ideally, a Dirichlet mixture model

composed of GLFs could be designed to enable higher dimensional fits without overfitting.

The final and most accessible direction is to include topological characterization of the alpha

shapes via Betti numbers.

Acknowledgements

This work was supported as part of FUTURE (Fundamental Understanding of Transport Under

Reactor Extremes), an Energy Frontier Research Center funded by the U.S. Department of Energy,

Office of Science, Basic Energy Sciences. E.K.S acknowledges a graduate fellowship through the

Nuclear Regulatory Committee.

References

Ankerst, M., Breunig, M.M., Kriegel, H.P. & Sander, J. (1999). Optics: Ordering points

to identify the clustering structure, SIGMOD Rec 28, 49–60, URL https://doi.org/10.1145/

304181.304187.

Bachhav, M., Odette, G. & Marquis, E. (2014). α precipitation in neutron-irradiated fe–cr

alloys, Scripta Materialia 74, 48–51.

Bailey, N.A., Stergar, E., Toloczko, M. & Hosemann, P. (2015). Atom probe tomography

33

https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187


Evan Still et al: Alpha Shape Analysis

analysis of high dose ma957 at selected irradiation temperatures, Journal of Nuclear Materials

459, 225–234.

Barber, C.B., Dobkin, D.P. & Huhdanpaa, H. (1996). The quickhull algorithm for convex

hulls, ACM Trans Math Softw 22, 469–483, URL https://doi.org/10.1145/235815.235821.

Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the re-

construction of 3d atom probe data, Applied Surface Science 87-88, 298 – 304, URL http:

//www.sciencedirect.com/science/article/pii/0169433294005613, proceedings of the 41st

International Field Emission Symposium.

Coxeter, H.S.M. (1930). The circumradius of the general simplex, The Mathematical Gazette 15,

229–231.

Edelsbrunner, H., Kirkpatrick, D. & Seidel, R. (1983). On the shape of a set of points in the

plane, IEEE Transactions on Information Theory 29, 551–559.

Edelsbrunner, H. & Mücke, E.P. (1994). Three-dimensional alpha shapes, ACM Trans Graph

13, 43–72, URL https://doi.org/10.1145/174462.156635.

Ester, M., Kriegel, H.P., Sander, J. & Xu, X. (1996). A density-based algorithm for discovering

clusters in large spatial databases with noise, Proceedings of the Second International Conference

on Knowledge Discovery and Data Mining, KDD’96, 226–231, AAAI Press.

Felfer, P. & Cairney, J. (2016). A computational geometry framework for the optimisation of

atom probe reconstructions, Ultramicroscopy 169, 62 – 68, URL http://www.sciencedirect.

com/science/article/pii/S0304399116300961.

Felfer, P., Ceguerra, A., Ringer, S. & Cairney, J. (2015). Detecting and extracting clusters in

atom probe data: A simple, automated method using voronoi cells, Ultramicroscopy 150, 30 – 36,

URL http://www.sciencedirect.com/science/article/pii/S0304399114002307.

Gardiner, J.D., Behnsen, J. & Brassey, C.A. (2018). Alpha shapes: determining 3d shape

complexity across morphologically diverse structures, BMC Evolutionary Biology 18, 184, URL

https://doi.org/10.1186/s12862-018-1305-z.

34

https://doi.org/10.1145/235815.235821
http://www.sciencedirect.com/science/article/pii/0169433294005613
http://www.sciencedirect.com/science/article/pii/0169433294005613
https://doi.org/10.1145/174462.156635
http://www.sciencedirect.com/science/article/pii/S0304399116300961
http://www.sciencedirect.com/science/article/pii/S0304399116300961
http://www.sciencedirect.com/science/article/pii/S0304399114002307
https://doi.org/10.1186/s12862-018-1305-z


Evan Still et al: Alpha Shape Analysis

Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). New York, NY: Springer New

York, URL https://doi.org/10.1007/978-1-4614-3436-8_1.

Geiser, B., Larson, D., Oltman, E., Gerstl, S., Reinhard, D., Kelly, T. & Prosa, T. (2009).

Wide-field-of-view atom probe reconstruction, Microscopy and Microanalysis 15, 292 – 293.

Geiser, B.P., Kelly, T.F., Larson, D.J., Schneir, J. & Roberts, J.P. (2007). Spatial distri-

bution maps for atom probe tomography, Microscopy and Microanalysis 13, 437–447.

Ghamarian, I. & Marquis, E. (2019). Hierarchical density-based cluster analysis framework for

atom probe tomography data, Ultramicroscopy 200, 28 – 38, URL http://www.sciencedirect.

com/science/article/pii/S0304399118303267.

Ghamarian, I., Yu, L.J. & Marquis, E.A. (2020). Quantification of solute topology in atom probe

tomography data: Application to the microstructure of a proton-irradiated alloy 625, Metallurgical

and Materials Transactions A 51, 42–50, URL https://doi.org/10.1007/s11661-019-05520-6.

Guo, Z., Sha, W. & Vaumousse, D. (2003). Microstructural evolution in a ph13-8 stainless steel

after ageing, Acta Materialia 51, 101 – 116, URL http://www.sciencedirect.com/science/

article/pii/S1359645402003531.

Jenkins, B.M., London, A.J., Riddle, N., Hyde, J.M., Bagot, P.A. & Moody, M.P.

(2020). Using alpha hulls to automatically and reproducibly detect edge clusters in atom probe

tomography datasets, Materials Characterization 160, 110078, URL http://www.sciencedirect.

com/science/article/pii/S1044580319329511.

Lasdon, L., Duarte, A., Glover, F., Laguna, M. & Martí, R. (2010). Adaptive memory

programming for constrained global optimization, Computers & Operations Research 37, 1500 –

1509, URL http://www.sciencedirect.com/science/article/pii/S0305054809002937, oper-

ations Research and Data Mining in Biological Systems.

Marquis, E.A. & Hyde, J.M. (2010). Applications of atom-probe tomography to the character-

isation of solute behaviours, Materials Science and Engineering: R: Reports 69, 37 – 62, URL

http://www.sciencedirect.com/science/article/pii/S0927796X10000525.

35

https://doi.org/10.1007/978-1-4614-3436-8_1
http://www.sciencedirect.com/science/article/pii/S0304399118303267
http://www.sciencedirect.com/science/article/pii/S0304399118303267
https://doi.org/10.1007/s11661-019-05520-6
http://www.sciencedirect.com/science/article/pii/S1359645402003531
http://www.sciencedirect.com/science/article/pii/S1359645402003531
http://www.sciencedirect.com/science/article/pii/S1044580319329511
http://www.sciencedirect.com/science/article/pii/S1044580319329511
http://www.sciencedirect.com/science/article/pii/S0305054809002937
http://www.sciencedirect.com/science/article/pii/S0927796X10000525


Evan Still et al: Alpha Shape Analysis

Miller, M. & Kenik, E. (2004). Atom probe tomography: A technique for nanoscale characteriza-

tion, Microscopy and Microanalysis 10, 336–341.

Newville, M., Stensitzki, T., Allen, D.B. & Ingargiola, A. (2014). LMFIT: Non-Linear Least-

Square Minimization and Curve-Fitting for Python, URL https://doi.org/10.5281/zenodo.

11813.

RICHARDS, F.J. (1959). A Flexible Growth Function for Empirical Use, Journal of Experimental

Botany 10, 290–301, URL https://doi.org/10.1093/jxb/10.2.290.

Sander, J., Qin, X., lu, Z., Niu, N. & Kovarsky, A. (2003). Automatic extraction of clusters

from hierarchical clustering representations, 75–87.

Sommerville, D.M.Y. (1958). An introduction to the geometry of N dimensions, Dover New York.

Thompson, K., Lawrence, D., Larson, D., Olson, J., Kelly, T. & Gorman, B. (2007). In

situ site-specific specimen preparation for atom probe tomography, Ultramicroscopy 107, 131 –

139, URL http://www.sciencedirect.com/science/article/pii/S0304399106001203.

van der Walt, S., Colbert, S.C. & Varoquaux, G. (2011). The numpy array: A structure for

efficient numerical computation, Computing in Science Engineering 13, 22–30.

Vaumousse, D., Cerezo, A. & Warren, P. (2003). A procedure for quantification of precipitate

microstructures from three-dimensional atom probe data, Ultramicroscopy 95, 215 – 221, URL

http://www.sciencedirect.com/science/article/pii/S0304399102003194, iFES 2001.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett,

M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A.R.J., Jones, E., Kern,

R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E.W., Vand erPlas, J., Laxalde,

D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,

A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P. & Contributors, S... (2020). SciPy

1.0: Fundamental Algorithms for Scientific Computing in Python, Nature Methods 17, 261–272.

36

https://doi.org/10.5281/zenodo.11813
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.1093/jxb/10.2.290
http://www.sciencedirect.com/science/article/pii/S0304399106001203
http://www.sciencedirect.com/science/article/pii/S0304399102003194


Evan Still et al: Alpha Shape Analysis

Wang, J., Schreiber, D.K., Bailey, N., Hosemann, P. & Toloczko, M.B. (2019). The appli-

cation of the optics algorithm to cluster analysis in atom probe tomography data, Microscopy and

Microanalysis 25, 338–348.

Wilson, J.A., Bender, A., Kaya, T. & Clemons, P.A. (2009). Alpha shapes applied to molec-

ular shape characterization exhibit novel properties compared to established shape descriptors,

Journal of Chemical Information and Modeling 49, 2231–2241, URL https://doi.org/10.1021/

ci900190z, pMID: 19775113.

37

https://doi.org/10.1021/ci900190z
https://doi.org/10.1021/ci900190z

	Introduction
	Materials and Methods
	Computational Background and Methodology
	OPTICS
	Alpha Shape Generation
	Simplex Property Determination
	Alpha Selection Heuristic
	Alpha Complex Composition

	Experimental Data Acquisition and Analysis Procedure
	Synthetic Data Generation and Analysis Procedure
	ASA Implementation

	Synthetic Data Results
	Concave Feature Results
	Convex Feature Results
	Aggregated Results

	Experimental Results
	Ionic Distributions
	Application of OPTICS and ASA
	Analysis of a Dislocation Loop

	Discussion on Synthetic Data
	Heuristic Accuracy
	Percent Volume Distributions
	Final Heuristic Selection

	Experimental Discussion
	OPTICS and ASA
	Analysis of a Dislocation Loop

	Conclusions

