University Collaboration Budget Final report

Stephen J Eglen
October 11, 2021

1 Summary of work

We thank CUP for supporting us financially on our project to develop resources for
mathematics students to learn the Julia language. We have developed a set of freely
available materials at: https://sje30.github.io/catam-julia, thus meeting our
core objective of the application.

Our project took some time to get started initially using a group of Phd students
to create material. This proved to be hard as everyone was busy with their research.
Once the pandemic struck, we needed to pause the project anyway. We then decided
a new, and successful, approach which was instead to hire summer students to work
on the material full-time. This proved to be very productive.

https://sje30.github.io/catam-julia

2 Case study

We have successfully created a set of materials for introducing the Julia Language
to mathematics undergraduates, targeted in particular for the CATAM projects that
are part of the Mathematics undergraduate tripos at Cambridge: https://sje30.
github.io/catam-julial

The funding was used to hire two talented undergraduate students over the sum-
mer of 2021. Rather than write a fresh introduction to Julia language, we instead
refer students to an excellent (already freely available) course created at MIT by
developers of the Julia language: https://computationalthinking.mit.edu/. We
then highlighted key aspects of the Julia language that we think students should
learn. We have developed case studies of popular mathematical examples that should
be accessible to 1st year undergraduates of mathematics.

Finally, in discussion with CUP editors, we have selected a book, Data Driven
Science and Engineering by Brunton and Kutz http://databookuw.com, and con-
verted some of that code from matlab to Julia. In many cases this conversion was
straightforward due to the clearly written code provided by the authors. We also
wanted to work on another CUP book, Introduction to Computational Genomics
(Cristianini and Hahn, 2006). One immediate problem was that the book’s website is
no longer available, www.computational-genomics.net. Further, when the authors
directed to us to code on their personal site, https://computationalgenomics.
blogs.bristol.ac.uk/, we could not use it, as most of the matlab code in turn
depended on further matlab toolboxes.

We have also had several discussions with CUP editors about advantages of dif-
ferent computational notebooks (e.g. we chose Pluto here for elegance and simplicity,
rather than the more popular Jupyter notebook) and online computational resources
for running code.

Our work has been well-received by the directors of the CATAM in the Mathe-
matics faculty at Cambridge, and we hope that future students will use our resources
for their computing teaching and research.

https://sje30.github.io/catam-julia
https://sje30.github.io/catam-julia
https://computationalthinking.mit.edu/
http://databookuw.com
www.computational-genomics.net
https://computationalgenomics.blogs.bristol.ac.uk/
https://computationalgenomics.blogs.bristol.ac.uk/

3 Student summaries

I asked the two students to describe their experiences working on the project, and
specifically whether they would recommend using Julia. The consensus seems to be
that they found Julia might be best suited as a second-language to learn, once a
user is familiar with computing concepts and can see the advantages of Julia (speed,
single-language design, flexibility). Matlab and python may therefore still (currently)
be better choices for students who are new to programming.

Student two has also provided specific feedback on converting the matlab code
provided by Brunton and Katz.

3.1 Student one feedback

Julia is a language which I find is particularly slick and satisfying to use. It might just
be attuned to the way that I think, but it tends to be easier to translate ideas into
code than just about anything else that I have used before. For any mathematical
programming that I do in the near future, I expect Julia would be my best option.
Perhaps one of my favourite aspects of Julia is that so much of the language and
almost all of its packages are written in Julia and are opensource, which can be very
useful for debugging what would seem in other languages to be bizarre and unfixable
issues.

For CATAM, I think MATLAB remains slightly easier to use for a complete begin-
ner to programming, as Julia is a little less "plug and play". Also I think MATLAB
code would remain more readable to a beginner (Julian peculiarities such as short-
circuiting if statements and automatic returning of the final statement spring to mind
as examples of things unintuitive to a new programmer). Its active development may
also be a deterrent to some, as while the base language has been around long enough
to be stable, the same might not be true for some of the packages that might be
required.

However, Julia would be my first preference if I were to do CATAM-like projects
in the future, and I would recommend it to anyone already familiar with programming
for similar mathematical projects. If the Faculty so wish, I think that dual support
of both MATLAB and Julia would be good to give the students more of a choice. At
the very least, I think that the Faculty could do a better job of encouraging students
to choose their language carefully, and not just default to MATLAB when it may
not be the best tool for the job.

Since they have been rather central to this project, I would also like to comment
on Pluto notebooks. I hadn’t really used notebooks like this (or Jupyter etc.) before

this project, and when we were looking into methods of presentation at the start of
the project, they did jump out to me as a great choice but for a couple of minor
grievances that for the most part I have managed to work around or solve myself
(apart from outputs being above the code, which remains odd). Initially I thought
that reactivity was a bit of a gimmick, but the interactivity that it can provide with
minimal effort is a great tool to have, even if it doesn’t work without opening the
file with Pluto (which can take a while). I think that they would actually be an
excellent format to present a CATAM project in, were it not for the currently awful
PDF conversion.

3.2 Student two feedback
3.2.1 Julia In General:

Before this project I had never used julia before. Learning julia with my preknowl-
edge of mostly c++ and python wasn’t a big challenge and it soon became clear to
me that in terms of both speed and convenience it is the right language for data
science and mathematical computation. With its speed, versatility, convenience and
features like broadcasting, macros and many inbuilt functions and tools for all areas
of science the language has grown on me and I plan to utilise its full potential going
forth.

The biggest drawback of Julia is probably the lack of beginner friendly "out of
the box" environments. Also, many of the more specialised julia packages are still
experimental and while everything is open source and things like incompatibilities
can easily be worked around with some effort, this might scare away people with
little previous programming knowledge.

There are a few things that need some getting used to when picking up julia
for the first time. Things like different types representing the same thing not being
compatible (column and row matrices, vectors, arrays, ranges for example) and the
intricacies of type deduction (indices cant be floating point numbers for example).

3.2.2 Thoughts on Pluto Notebooks:

It was the first time that I worked with an interactive notebook. While it is a nice
way to create good looking documents combining code, markdown and LaTex, the
interface is still very rough and the slow compiling times for larger projects can get
quite annoying. Since code is dependent on everything above it, changing small
details like plot formatting requires recompiling and rerunning big junks leading to
rather long waits during which no work can be done. I do however think there is

a lot of potential going forth and these problems could be fixed in the future using
things like smaller, parallel scopes or a smarter dependency detection.

3.2.3 Julia for CATAM:

I think that julia is the perfect fit for CATAM. In contrast to MATLAB julia offers
so much more in terms of specialisation, active community and future potential.
The University should in my opinion do more to encourage a conscious choice of
programming language to use for CATAM, offering advise, guidance and examples
not just exclusively for MATLAB. T also think that the CATAM projects should be
phrased in a more general setting, moving away from the MATLAB centred format
they tend to be in at the moment, considering that a good choice of programming
language for a given project is already an important skill to work on.

While it is definitely slightly trickier to pick up as a beginner, I think that with
resources like the introduction and case studies developed in this summer project
it is very feasible to include julia as a second standout alongside MATLAB for the
CATAM projects. Julia code can be made to look very similar to MATLAB code
and more advanced features like short circuiting, macros and classes can easily be
avoided and left for the more advanced students to play around with.

3.2.4 Julia and the book "Data-Driven Science and Engineering":

When translating MATLAB code from the book into julia code, a few things stuck
out to me: For the most part the code translates very easily with the only main
difference in core functionality being the use of square brackets for indexing in julia
(which I like a lot more as it differentiates indexing and function calls). I ran into a
few bugs caused by the difference in type deduction between the languages, mainly
due to the fact that in MATLAB everything defaults to floating point numbers
while in julia types are more complicated than that. Another problem I ran into
occasionally was differing conventions with things like function parameter order or
matrix orientation (for example ranges in MATLAB are treated as row-arrays while
in julia they are column-vectors).

For loading the data files julia has a nice package for dealing with MATLARB files,
however it would have been nice to have data stored in a format independent to the
programming language used (CSV or HDF5 etc). I also found it somewhat confusing
that functions are used across files without any mention of the place they are defined,
a MATLAB feature I very much disagree with from a design point of view. I also
found that for many MATLAB files the largest part of the code consists of graph
formatting, something julia solves much more elegantly than CATAM in my opinion.

