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Abstract
The bacterial foraging optimisation (BFO) algorithm is a commonly adopted bio-inspired opti-
misation algorithm. However, BFO is not a proper choice in coping with continuous global path
planning in the context of unmanned surface vehicles (USVs). In this paper, a grid partition-based
BFO algorithm, named AS-BFO, is proposed to address this issue in which the enhancement
is contributed by the involvement of the A* algorithm. The chemotaxis operation is redesigned
in AS-BFO. Through repeated simulations, the relative optimal parameter combination of the
proposed algorithm is obtained and the most influential parameters are identified by sensitivity
analysis. The performance of AS-BFO is evaluated via five size grid maps and the results show
that AS-BFO has advantages in USV global path planning.
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1. Introduction

The development and application of freshwater and marine areas is becoming increas-
ingly extensive. Owing to the special working requirements of water, most water
operations need to be accomplished by ships. Unmanned surface vehicles (USVs),
with the advantages of flexible controllability, strong autonomy and field operation,
have been widely applied in the civil and military fields, such as maritime cruise ships,
emergency rescue activities, lake patrols and hydrological monitoring (Thomas et al.,
2008; Liu et al., 2015; Nad et al., 2015; Nikola et al., 2015; Liu & Bucknall, 2016; Ma
et al., 2016).
In order to guide a USV through a cluttered environment, planning a high-quality

and collision-free path is a critical part during the USV’s voyage (Perera et al., 2015).
Particularly, path planning is an important technology in the application of the USV’s
intelligent control and an indispensable part of driverless technology, which not only
determines the level of autonomy of the vehicle but also premises the reliability of a
mission and the likelihood of success. Fundamentally, USV path planning is a branch of
classical robot tracing, which mainly concerns two factors: the total path distance and
safety (Zheng et al., 2014). In addition, the quality of the generated trajectory, such as
smoothness and continuity, also needs to be taken into account (Smierzchalski, 1999).
Path planning technologies can be generally divided into two groups: the pre-

generative approach (static planning) and the reactive approach (dynamic planning)
(Liu & Bucknall, 2015). Shi et al. (2019) focused on the smoothness and seaworthiness
properties of the path. A hybrid A* algorithm with motion primitive constraints is pro-
posed to generate an initial reference path. In order to optimise the path, a number of
computational intelligent algorithms have been applied. A genetic algorithm (GA) is
used to determine the optimised path for a USV under environmental loads in Kim et al.
(2017). The optimised paths are determined by numerical simulations. An approach of
fast path planning based on a Voronoi diagram and an improved GA has been proposed
in Cao (2015). Furthermore, as a branch of intelligent algorithms, the swarm intelli-
gence algorithm plays an important role in research on USV global path planning. Song
et al. (2015) proposed a method for USV global path planning based on particle swarm
optimisation. By using typical obstacle modelling and the ant colony algorithm (ACO)
for global path planning, theUSVglobal pathwas achieved inWang&Chi (2016). Song
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(2014) improved the ACO-based grid environment model for USV global path plan-
ning. Meanwhile, some works have been done to combine various intelligent swarm
algorithms for USV global path planning. For example, in Hu et al. (2015), both GA
and ACO are used to generate an initial pheromone distribution and carry out dynamic
integration of genetic operators, which not only can improve the convergence rate of
the algorithm, but also can solve the problem of precocious and poor global search
ability.
The bacterial foraging optimisation (BFO) algorithm is a new bionic algorithm,

which has become another hotspot in the field of heuristic computing. Owing to its
advantages, such as parallel searching of the swarm intelligence algorithm and ease
of jumping out from local minima, it has attracted more interest. At present, BFO has
been successfully applied in many fields, such as image processing (Madhubanti &
Chatterjee, 2008; Nandita et al., 2011; Rajinikanth&Couceiro, 2014), shop scheduling
(Wu et al., 2007; Raj & Priya, 2013; Cheng et al., 2015; Li et al., 2015; Zhao et al.,
2015), robotics (Jati et al., 2012; Mickael et al., 2012; Yang et al., 2012; Liang et al.,
2013; Frantisek et al., 2014), etc.

1.1. Contributions of this paper

This paper proposes a more efficient grid partition-based hybrid BFO path planning
method, named AS-BFO, by integrating the A* algorithm to enhance the conventional
BFO algorithm, thus solving the issue of the generation of a discontinuous path. The
main contributions of this paper are listed below:

(1) The bacterial foraging optimisation algorithm is improved and applied in USV
global path planning under the grid environment.

(2) The cost function of the A* algorithm is integrated into the tumble motion, which
solves the problem of repairing a discontinuous path.

(3) The relative optimal parameter combination is obtained and it makes the
AS-BFO algorithm run effectively in different working environments.

1.2. Organisation of this paper

The rest of the paper is organised as follows. Section 2 describes the basic steps of
the BFO. Section 3 establishes an environmental model and introduces the AS-BFO
for our problem. The parameter combination simulation and the optimal parameter
combination are obtained, and the sensitivity analysis of AS-BFO parameters is carried
out in Section 4. GA, ACO and AS-BFO are selected for comparison in different
experimental environments. Section 5 concludes this work.

2. Description of BFO

BFO is a global random searching algorithm, whose operation aims to simulate the
physiological behaviour of Escherichia coli bacterium in the process of foraging
behaviour, the modelling iteration producing the optimal solution. The BFO consists
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of three principal mechanisms to find the relative optimal solution: chemotaxis, repro-
duction and elimination–dispersal, each of which is detailed below (Passino, 2002;
Kushwaha et al., 2012; Hossain & Ferdous, 2015; Zhao & Wang, 2015).

2.1. Chemotaxis

In biology, the movement of bacteria is called chemotactic behaviour, and there are
two types of chemotaxis of bacteria: swim and tumble/rotate. Swimming is the motion
of bacteria forwards along the same direction as the last stage; rotation is the bacteria
staying in the same position and rotating itself into a new direction. These two chemo-
tactic operations guarantee that bacteria search the problem space as well as avoid
obstacles in the searching process. The new position of the bacteria after chemotaxis
can be obtained by

𝜃𝑖 ( 𝑗 , 𝑘, 𝑙) = 𝜃𝑖 ( 𝑗 + 1, 𝑘, 𝑙) + 𝐶 (𝑖) Δ(𝑖)√︁
ΔT (𝑖)Δ(𝑖)

, (2.1)

where 𝜃𝑖 ( 𝑗 , 𝑘, 𝑙) represents the bacterium 𝑖 in the 𝑗 th chemotaxis, 𝑘th reproduction
and 𝑙th elimination–dispersal step, 𝐶 (𝑖) denotes the size of chemotaxis during each
swim or tumble, and Δ(𝑖) is the direction vector of the 𝑗 th chemotactic step. Finally,
Δ(𝑖) is a random direction vector with a range of [−1, 1].
During cell-to-cell communication, when each bacterium moves, it releases attrac-

tant to signal other bacteria to swarm towards it. At the same time, a repellent signal
is also released to warn other bacteria to keep a safe distance from itself. Such a com-
munication mechanism is also simulated by representing the combined cell-to-cell
attraction and repulsion, which can be expressed by

𝐽𝑐𝑐 (𝜃𝑖 ( 𝑗 , 𝑘, 𝑙), 𝜃 ( 𝑗 , 𝑘, 𝑙)) =
𝑆∑︁
𝑖=1

𝐽𝑖𝑐𝑐 (𝜃𝑖 , 𝜃)

=

𝑆∑︁
𝑖=1

[
−𝑑attract exp

(
−𝜔attract

𝐷∑︁
𝑚=1

(𝜃𝑚 − 𝜃𝑖𝑚)2
)]

+
𝑆∑︁
𝑖=1

[
ℎrepellant exp

(
−𝜔repellant

𝐷∑︁
𝑚=1

(𝜃𝑚 − 𝜃𝑖𝑚)2
)]
, (2.2)

where 𝐽𝑖𝑐𝑐 (𝜃𝑖 , 𝜃) denotes the object function value, which represents a time-varying
objective function, 𝑆 represents the total number of bacteria, 𝐷 is the number of
variables to be optimised, and 𝑑attract, 𝜔attract, ℎrepellant and 𝜔repellant are coefficients
representing the attractive depth, attractive width, repellent height and repellent width,
respectively.



Phonology 5

2.2. Reproduction

After the chemotaxis, the health status of each bacterium is determined by the sum of
the step fitness, i.e.

∑𝑁𝑐

𝑗=1 𝐽 (𝑖, 𝑗 , 𝑘, 𝑙), where 𝑁𝑐 is the maximum step in a chemotaxis
process. Based on their health status (fitness values), all bacteria are sorted. In the
reproduction step, the half of the bacteria with higher fitness values survive and the
others are eliminated. And then each surviving bacterium splits into two identical ones.
The reproduction process keeps the population of bacteria constant.

2.3. Elimination–dispersal

In order to avoid the bacteria becoming stuck around the initial positions or local
optima, the elimination–dispersal process is introduced in the BFO. In the elimination–
dispersal process, some bacteria are selected, based on a probability 𝑃𝑒𝑑 , to be moved
to another position within the environment.

3. AS-BFO for USV global path planning

The proposed AS-BFO method is detailed in this section. In particular, given a known
map with a number of obstacles, the proposed algorithm first grid partitions the given
map into an 𝑛 × 𝑛 grid environment. Then, the conventional BFO algorithm is applied
to find the optimal path. During the chemotaxis operations of the BFO, each step
will be monitored to check whether or not the tumbled node is continuous with the
previous node as well as the following node. If any discontinuous path is identified,
the A* algorithm is employed to repair the discontinuous part. This process will be
applied until an optimal solution is found. The final optimal solution will be the best
path for the given map. The flowchart of the proposed method is shown in Figure 1,
and the key components are detailed below.
The grid method is an effective modelling method. The method is easy to construct,

modify and simulate the geographical environment. The grid map not only can sim-
ulate relatively accurate environmental information for the USV, but also can provide
simulation environments of different sizes and complexity for algorithm experiments.
This provides a good basis for analysing the performance of the algorithm. The elec-
tronic chart is a digital chart that is a type of map model for USV global path planning.
Electronic charts can provide map information for USVs, but such maps are less flex-
ible than grid maps. A cellular grid map is also applied to the study of global path
planning. However, in cellular grid maps, the minimum steering angle can only reach
60◦, so the grid map has an advantage in steering angle. USVs usually work in vast
stretches of water.
The work environment can be considered as a two-dimensional space with static

obstacles. Therefore, the working environment of a USV can be gridded. In the general
analysis, if obstacles occupy less than one grid, it will be considered as one whole grid
(Yang et al., 2012). Thus, it will establish a one-to-one correspondence between the
grid number and the two-dimensional coordinates. The data structure of the algorithm
is a nine-square graph centred on the current node, with a total of eight adjacent nodes.
The following node must be chosen from these eight neighbours. In the 𝑛 × 𝑛 grid



6 Yang Long et al.

Figure 1. Flowchart of AS-BFO.
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Figure 2. A feasible path.

Figure 3. Schematic diagram of continuous nodes.

environment, the correspondence between the grid number 𝑆 and its coordinates (𝑥, 𝑦)
is shown by

{
𝑥 = mod (𝑆 − 1, 𝑛) + 0·5,
𝑦 = 𝑛 + 0·5 − ceil(𝑆/𝑛),

(3.1)

where mod(·) is the remainder operation and ceil(·) rounds an element to the nearest
integer towards positive infinity. As mentioned above, the goal of path planning is to
find an ordered grid with the shortest distance among feasible ordered grids.

3.1. Coding method

The population described in this paper consists of a limited number of bacteria. Each
bacterium is connected by a series of nodes. One bacterium represents a feasible
path. It should be noted that, owing to the randomly generated paths being composed
of different numbers of nodes, the lengths of the paths are not uniform. Therefore,
variable length bacteria are used to represent individuals. Figure 2 shows a path and
its corresponding bacterium.
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(a) (b)

Figure 4. Schematic diagram of discontinuous nodes. (a) Intermittent path, (b) Patch-
ing path.

3.2. Three operators of AS-BFO

3.2.1. Chemotaxis
This paper defines the chemotaxis operation of BFO in the grid environment. Chemo-
taxis in traditional BFO means that any nodes will tumble and swim in any direction.
However, some tumbling motions can result in discontinuous paths in the grid environ-
ment. Therefore, AS-BFO improves the chemotaxis operator. Firstly, it judges whether
the tumbled nodes are continuous with the previous and the following nodes. Then,
the discontinuous paths are repaired using the A* algorithm.
When the chemotaxis operator is performed, the following situations are possible.

Firstly, after the node is tumbled, the tumbled node is continuous with its previous
and following nodes, as shown in Figure 3. If 𝑛2 is a tumble node, it can be randomly
tumbled to the adjacent free grids. Taking Figure 3 as an example, 𝑛2 tumbles to 𝑛′2.
Then, according to Equation (3.2), it is judged whether 𝑛1 and 𝑛′2, 𝑛

′
2 and 𝑛3 are,

respectively, continuous. If Δ = 1, then 𝑛1 and 𝑛′2, 𝑛
′
2 and 𝑛3 are continuous; otherwise,

they are not:

Δ = max{abs(𝑥tumbled − 𝑥)}, abs(𝑦tumbled − 𝑦)} (3.2)

Here (𝑥𝑡𝑢𝑚𝑏𝑙𝑒𝑑 , 𝑦𝑡𝑢𝑚𝑏𝑙𝑒𝑑) are the horizontal and vertical coordinates of the tumbled
node (𝑛′2) and (𝑥, 𝑦) are the horizontal and vertical coordinates of the previous or the
following node (𝑛1, 𝑛3). The path after the tumble motion is marked by the red line.
Secondly, it is discontinuous with the previous or the following node, when the

node is tumbled. As shown in Figure 4(a), 𝑛2 is used as the tumble node. So 𝑛2 is
tumbled to 𝑛′2, and then it is judged whether 𝑛1 and 𝑛

′
2, 𝑛

′
2 and 𝑛3 are, respectively,

continuous. It can be observed that 𝑛′2 and 𝑛3 are continuous; however, 𝑛
′
2 and 𝑛1 are

not continuous. At this time, the evaluation function of the A* algorithm is applied
to the tumble motion, and the problem of repairing the discontinuous path has been
solved. Figure 4(b) shows that there are many repaired nodes around 𝑛′2 (𝑥, 𝑦), and the
yellow nodes are repaired nodes.
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A repaired node will be selected depending on Equations (3.3)–(3.5):

𝐹min = 𝐺 + 𝐻, (3.3)

𝐺 =

√︃
(𝑥′tumbled − 𝑥′′tumbled)2 + (𝑦′tumbled − 𝑦′′tumbled)2, (3.4)

𝐻 =

√︃
(𝑥 − 𝑥′′tumbled)2 + (𝑦 − 𝑦′′tumbled)2. (3.5)

Here (𝑥, 𝑦) represents the coordinates of the previous node, (𝑥′tumbled, 𝑦
′
tumbled) denotes

the coordinates of a node after it has been tumbled, and (𝑥′′tumbled, 𝑦
′′
tumbled) indicates

the coordinates of the repair nodes. As shown in Figure 4(b), we use (𝑥′′𝑛2 , 𝑦
′′
𝑛2 ) as

the coordinates of the repaired node. When the discontinuous path is repaired, it is
represented by the red line. Although the path increases slightly, this method solves
the problem that the path is discontinuous after the node is tumbled.
Finally, the tumbled node is discontinuous with the previous node and the fol-

lowing node after the node is tumbled. Then, the repaired point can be found by
Equations (3.3)–(3.5) so that the path is continuous. Note that we need to use the
evaluation function of the A* algorithm twice in this condition. The method to deal
with discontinuity with the previous and the following nodes is the same as the above
method. Therefore, an effective method to repair discontinuous paths is proposed,
which ensures that each tumble can be performed efficiently.

3.2.2. Reproduction
When the chemotaxis operation is completed, the path length represented by each
bacterium is sorted. The half of the bacteria with longer paths are eliminated, and the
half of the bacteria with shorter paths are reproduced. Thus, bacteria number is kept
unchanged.

3.2.3. Elimination–dispersal
When the reproduction operation is completed, a random probability 𝑃𝑟 is generated
and compared with the fixed migration probability 𝑃𝑒𝑑 . If 𝑃𝑟 < 𝑃𝑒𝑑 , the bacterium
is dispersed. This operation can reduce the possibility of bacteria falling into a local
optimal solution. It can also be a good solution for maintaining diversity.

3.3. Algorithm description

In this algorithm, the path optimisation problem is encoded. One feasible path repre-
sents one bacterium. The initial population is usually randomly generated without
infeasible paths, which can reduce the blindness of initial population generation.
Among the three main operators in the algorithm, the chemotaxis operator can improve
the local search accuracy of bacteria, the reproduction operator can increase the con-
vergence performance of bacteria, and the elimination–dispersal operator can increase
the diversity of solutions. The parameters of AS-BFO are tightly coupled. The selec-
tion of the parameters directly affects the performance of the algorithm. At present,
there is no perfect theoretical basis to determine the optimal combination parameters.
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Figure 5. Generation of simulation environment in line with real ones, where S and
G. The map size is 20 × 20 (i.e. S3).

The traditional method is repeated trials to obtain the relative optimal combination of
parameters.

4. Analysis of results

It is very important for the application of AS-BFO in practical problems to study
the parameters of population size, chemotaxis number, replications number and
elimination–dispersal number. However, the setting of the parameters mainly depends
on the statistical data and simulation experiment. This paper studies the path planning
in two different environments shown in Figure 5, in which the islands represent the
obstacles.

4.1. Experiment 1

Different parameter settings may lead to different performances. In this experiment,
different parameters are applied in the proposed method, in order to compare the
performances generated by different parameter settings.

4.1.1. Population number
In this experiment, the chemotaxis number 𝑁𝑐 = 5, reproduction number 𝑁𝑟𝑒 = 2
and elimination–dispersal number 𝑁𝑒𝑑 = 2 are fixed, and the population number 𝑃 is
selected to be 10, 20, 30, 40, 50, 60, 70 and 80, respectively. The simulated results are
shown in Figure 6. The results show that the greater the number of bacteria, the faster
the convergence rate.

4.1.2. Chemotaxis number
The chemotaxis operator is an important operator of AS-BFO, and the chemotaxis
number directly affects the local optimisation ability of the algorithm. In this simulation
experiment, 𝑃 = 50, 𝑁𝑟𝑒 = 2 and 𝑁𝑒𝑑 = 2 are fixed, and the chemotaxis number is set
to 𝑁𝑐 = 1, 2, 3, 4, 5, 6, 7 and 8. The results are shown in Figure 7. For environment
1, when 𝑁𝑐 = 7, the path is the shortest. When 𝑁𝑐 = 8, the number of iterations is
the least. For environment 2, when 𝑁𝑐 = 8, the path is the shortest. When 𝑁𝑐 = 6, the
number of iterations is the least.
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(a) (b)

Figure 6. Impact of the number of bacteria on AS-BFO using S3. (a) Correspondence
between the number of bacteria and the path length. (b) Correspondence between the
number of bacteria and the number of iterations.

(a) (b)

Figure 7. Impact of the chemotaxis number on AS-BFO using S3. (a) Correspondence
between the chemotaxis number and path length. (b) Correspondence between the
chemotaxis number and number of iterations.

4.1.3. Reproduction number
The reproduction operator reduces population diversity and increases the convergence
rate of the algorithm. In the simulation experiment, 𝑃 = 50, 𝑁𝑐 = 5 and 𝑁𝑒𝑑 = 2 are
fixed, and the reproduction number is set to 𝑁𝑟𝑒 = 1, 2, 3, 4 and 5. The results are
shown in Figure 8. For environment 1, when 𝑁𝑟𝑒 = 5, the path is the shortest. When
𝑁𝑟𝑒 = 4, the number of iterations is the least. For environment 2, when 𝑁𝑟𝑒 = 2, the
path is the shortest. When 𝑁𝑟𝑒 = 5, the number of iterations is the least.

4.1.4. Elimination–dispersal number
The elimination–dispersal operator is designed to improve global optimisation and
maintain the diversity of solutions. As the outermost nesting of the algorithm, the
elimination–dispersal number directly affects the algorithm running time. In the sim-
ulation experiment, 𝑃 = 50, 𝑁𝑐 = 5 and 𝑁𝑟𝑒 = 2 are fixed, and reproduction number
varies as 𝑁𝑒𝑑 = 1, 2, 3, 4 and 5. The results are shown in Figure 9. For environment
1, when 𝑁𝑒𝑑 = 3, the path is the shortest. When 𝑁𝑒𝑑 = 5, the number of iterations is
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(a) (b)

Figure 8. Impact of the number of reproductions on AS-BFO using S3. (a) Correspon-
dence between the reproduction number and path length. (b) Correspondence between
the reproduction number and number of iterations.

(a) (b)

Figure 9. Impact of the number of elimination–dispersals on AS-BFO using S3.
(a) Correspondence between the number of elimination–dispersals and path length.
(b) Correspondence between the number of elimination–dispersals and number of iter-
ations.

the least. For environment 2, when 𝑁𝑒𝑑 = 4, the path is the shortest. When 𝑁𝑒𝑑 = 4,
the number of iterations is the least.

4.2. Parameter sensitivity analysis

As demonstrated above, different values of parameters lead to completely different
results. The most influential parameters are identified by sensitivity analysis (SA), as
well as to understand their impact on the model output. For this reason, the Morris
method (Cadero et al., 2018) is applied to develop the parameter sensitivity analysis.
Briefly, the Morris method involves the generation of uncertain parameter samples via
a trajectory-based sampling process. The method calculates and evaluates the standard
deviation 𝜎𝑖 of the elementary effects 𝜇𝑖 , where 𝑖 is the 𝑖th date sample, over 𝑟
repetitions to assess the factors’ importance. A high value of 𝜇𝑖 indicates a high linear
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Table 1. Sampling range of each parameter.

Parameter Range
Population number (𝑃) 𝑃 ∼ (10, 100)
Chemotaxis number (𝑁𝑐) 𝑁𝑐 ∼ (2, 12)
Reproduction number (𝑁𝑟𝑒) 𝑁𝑟𝑒 ∼ (1, 8)
Elimination–dispersal number (𝑁𝑒𝑑) 𝑁𝑒𝑑 ∼ (1, 10)

Table 2. Average optimal path of 20 data samples.

Factor Trajectory 1 Trajectory 2 Trajectory 3 Trajectory 4
1 30·27 30·62 31·09 30·74
2 29·68 29·21 32·97 31·49
3 31·10 29·92 36·53 29·80
4 30·97 31·67 31·42 29·92
5 37·99 30·90 32·39 29·45

Figure 10. The results of the Morris method.

effect for a given factor, while a high value of 𝜎𝑖 represents either nonlinear or non-
additive factor behaviour. The importance of input factors of the model can often be
assessed by plotting the factors (𝜇∗, 𝜎), where 𝜇∗ is the mean of 𝜇𝑖 in two-dimensional
space. The factors closest to the origin are less influential.
There are four uncertain parameters, population number 𝑃, chemotaxis number

𝑁𝑐, reproduction number 𝑁𝑟𝑒 and elimination–dispersal number 𝑁𝑒𝑑 , involved in the
proposed model. Table 1 shows the sampling ranges of each parameter during the
sampling processes of the Morris method. In this experiment, the Morris method runs
a model with five factors along four trajectories, and a total of 20 samples have been
extracted, as listed in Table 2. Each generated data sample is applied as the input to
the proposed method 10 times to get an average optimal path length, which is listed
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Figure 11. Screening of input factors based on the Morris method.

in Table 2. According to the Morris method, the corresponding standard deviation 𝜎
and its elementary effects 𝜇 for each trajectory can be calculated, which is shown in
Figure 10. Figure 10 shows the sensitivity of each parameter in the environmental map
of different sizes. In addition, the (𝜇∗, 𝜎) is also plotted in a two-dimensional plot,
illustrated in Figure 11, for parameter importance analysis. It is clear that parameter
3 (𝑁𝑟𝑒) and parameter 4 (𝑁𝑒𝑑) are away from the origin, which indicates that those
parameters are the most important.

4.3. Algorithm comparison

The performance of the proposed method is evaluated and validated in this section.
Generally speaking, GA and ACO are adopted to against the proposed approach.
Likewise, we first obtain the relative optimal parameters of ACO and GA through
repeated experiments in the S3 environment, and then apply the parameters to other
environments. In order to evaluate the performance of each method under different
environments, the simulated environments, described in Figure 6, are grid partitioned
into five different size, denoted as: S1, 10×10; S2, 15×15; S3, 20×20; S4, 25×25; and
S5, 30 × 30. Each size is considered as an individual scenario. In each environment,
the ratio of the obstacle area to the entire map area is approximately equal. The
experimental results of three approaches under five different sizes are listed in Table 2.
From Table 2, we can see that the AS-BFO has a better average path length using a

very small iteration number. Moreover, the maximum path length obtained by AS-BFO
is less than ACO and GA in the 20 repeated experiments. In S1, S2 and S3, AS-BFO’s
AIN has a great advantage. However, the advantages in MaxPL, MinPL and APL are
not obvious. In S4, the advantage of AS-BFO’s AIN is still obvious. It is worth noting
that AS-BFO’sMaxPL is 24·39 (32·04) smaller than ACO and 6·83 (5·07) smaller than
GA. AS-BFO’sMinPL is 6 (14·49) smaller than ACO and 1·76 (0·59) smaller than GA.



Phonology 15

In S5, the advantages of MinPL’s AIN are equally obvious. AS-BFO’s MaxPL is 76·67
(53·01) smaller than ACO and 17·66 (12) smaller than GA. The MinPL of AS-BFO is
40·39 (57·93) smaller than ACO and 3·76 (2·58) smaller than GA. Analysis shows that
the larger the map size 𝐿, the greater the advantage of AS-BFO. Therefore, AS-BFO
is superior to GA and ACO in searching efficiency and obtaining an optimal solution.

5. Conclusions

This paper proposes a more efficient path planning method based on the AS-BFO
algorithm. The effects of bacteria number, chemotaxis number, reproduction number
and elimination–dispersal number on the global path planning are analysed. Through
experimental analysis, bacteria number is inversely proportional to the path length.
The greater the chemotaxis number, the stronger is the local optimisation ability of
the algorithm. Correspondingly, the path length and iteration number will decrease.
However, the greater the reproduction number, the smaller the diversity of the popula-
tion and the faster the convergence of the algorithm. The experiments indicate that the
increase of elimination–dispersal number will decrease both the path length and itera-
tion number within a certain range. It can be found from the comparison of algorithms
that AS-BFO performs better than comparative algorithms in terms of average itera-
tion number, average path, maximum path and minimum path. A parameter sensitivity
analysis shows that the effects between the various parameters and the effect of each
parameter on the output are different in different environmental maps.
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