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Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros
only at the negative even integers and complex numbers with real part 1

2
. In 2011,

Patrick Solé and Michel Planat stated a new criterion for the Riemann Hypothesis. We
prove the Riemann Hypothesis is true using this criterion.
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Objectives

The Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x , where
log is the natural logarithm. We provide a proof for the Riemann Hypothesis using the
properties of the Chebyshev function.

Frank Vega, CopSonic France (vega.frank@gmail.com) Slide Presentation on the Riemann Hypothesis June 19, 2022 3 / 34



Methods

Say Dedekind(qn) holds provided∏
q≤qn

(
1 +

1

q

)
>

eγ

ζ(2)
× log θ(qn)

where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant, qn is the nth prime
number and ζ(x) is the Riemann zeta function.

Theorem 1

Dedekind(qn) holds for all prime numbers qn > 3 if and only if the Riemann Hypothesis is
true (Solé and Planat, 2011).
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What if the Riemann Hypothesis were false?

Theorem 2

If the Riemann Hypothesis is false, then there are infinitely many prime numbers qn for
which Dedekind(qn) do not hold.
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We know the Riemann Hypothesis is false, if there exists some natural number x0 ≥ 5
such that g(x0) > 1 or equivalent log g(x0) > 0 (Solé and Planat, 2011):

g(x) =
eγ

ζ(2)
× log θ(x)×

∏
q≤x

(
1 +

1

q

)−1

.

We know the bound (Solé and Planat, 2011):

log g(x) ≥ log f (x)− 2

x

where f is introduced in the Nicolas paper (Nicolas, 1983):

f (x) = eγ × log θ(x)×
∏
q≤x

(
1− 1

q

)
.
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Remark

We know when the Riemann Hypothesis is false, then there exists a real number b < 1
2

and there are infinitely many natural numbers x such that log f (x) = Ω+(x
−b) (Nicolas,

1983).
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According to the Hardy and Littlewood definition, this would mean that

∃k > 0, ∀y0 ∈ N, ∃y ∈ N, y > y0 : log f (y) ≥ k × y−b.

That inequality is equivalent to log f (y) ≥
(
k × y−b ×√

y
)
× 1√

y
, but we know that

lim
y→+∞

(
k × y−b ×√

y
)
= +∞

for every possible positive value of k when b < 1
2
.
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In this way, this implies that

∃k > 0, ∀y0 ∈ N, ∃y ∈ N, y > y0 : log f (y) ≥ 1
√
y
.

Hence, if the Riemann Hypothesis is false, then there are infinitely many natural numbers
x such that log f (x) ≥ 1√

x
. Since 2

x
= o( 1√

x
), then it would be infinitely many natural

numbers x0 such that log g(x0) > 0 (Solé and Planat, 2011).
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In addition, if log g(x0) > 0 for some natural number x0 ≥ 5, then log g(x0) = log g(qn)
where qn is the greatest prime number such that qn ≤ x0. In fact,∏

q≤x0

(
1 +

1

q

)−1

=
∏
q≤qn

(
1 +

1

q

)−1

and
θ(x0) = θ(qn)

according to the definition of the Chebyshev function. ■
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Mertens constants

We define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens
constant (Choie et al., 2007). We know from the constant H, the following formula:

Theorem 3

We have that (Choie et al., 2007):

∞∑
k=1

(
log(

qk
qk − 1

)− 1

qk

)
= γ − B = H.
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The Basel Problem

We know this value of the Riemann zeta function:

Theorem 4

It is known that (Edwards, 2001):

ζ(2) =
∞∏
k=1

q2
k

q2
k − 1

=
π2

6
.
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A Key Theorem

Theorem 5

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
= log(ζ(2))− H.
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We obtain that

log(ζ(2))− H = log(
∞∏
k=1

q2
k

q2
k − 1

)− H

=
∞∑
k=1

(
log(

q2
k

(q2
k − 1)

)

)
− H

=
∞∑
k=1

(
log(

q2
k

(qk − 1)× (qk + 1)
)

)
− H

=
∞∑
k=1

(
log(

qk
qk − 1

) + log(
qk

qk + 1
)

)
− H

Frank Vega, CopSonic France (vega.frank@gmail.com) Slide Presentation on the Riemann Hypothesis June 19, 2022 14 / 34



=
∞∑
k=1

(
log(

qk
qk − 1

)− log(
qk + 1

qk
)

)
− H

=
∞∑
k=1

(
log(

qk
qk − 1

)− log(1 +
1

qk
)

)
−

∞∑
k=1

(
log(

qk
qk − 1

)− 1

qk

)

=
∞∑
k=1

(
log(

qk
qk − 1

)− log(1 +
1

qk
)− log(

qk
qk − 1

) +
1

qk

)

=
∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
and the proof is done. ■
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A New Criterion

Theorem 6

Dedekind(qn) holds for all prime numbers qn > 3 if and only if the inequality

∞∑
k=1

(
1

qk
− (χ{x : x>qn}(qk))× log(1 +

1

qk
)

)
> B + log log θ(qn)

is satisfied for all prime numbers qn > 3, where the set S = {x : x > qn} contains all the
real numbers greater than qn and χS is the characteristic function of the set S (This is
the function defined by χS(x) = 1 when x ∈ S and χS(x) = 0 otherwise).
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When Dedekind(qn) holds, we apply the logarithm to the both sides of the inequality:

log(ζ(2)) +
∑
q≤qn

log(1 +
1

q
) > γ + log log θ(qn)

log(ζ(2))− H +
∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn)

∞∑
k=1

(
1

qk
− log(1 +

1

qk
)

)
+

∑
q≤qn

log(1 +
1

q
) > B + log log θ(qn).

Let’s distribute the elements of the inequality to obtain that

∞∑
k=1

(
1

qk
− (χ{x : x>qn}(qk))× log(1 +

1

qk
)

)
> B + log log θ(qn)

when Dedekind(qn) holds. The same happens in the reverse implication. ■
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The Main Insight

Theorem 7

The Riemann Hypothesis is true if the inequality

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn.
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The inequality

∞∑
k=1

(
1

qk
− (χ{x : x>qn}(qk))× log(1 +

1

qk
)

)
> B + log log θ(qn)

is satisfied when

∞∑
k=1

(
1

qk
− (χ{x : x≥qn}(qk))× log(1 +

1

qk
)

)
> B + log log θ(qn)

is also satisfied, where the set S = {x : x ≥ qn} contains all the real numbers greater
than or equal to qn.
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In the inequality

∞∑
k=1

(
1

qk
− (χ{x : x≥qn}(qk))× log(1 +

1

qk
)

)
> B + log log θ(qn)

only change the values of

log(1 +
1

qn
) + log log θ(qn)

and
log log θ(qn+1)

between the consecutive primes qn and qn+1. It is enough to show that

log(1 +
1

qn
) + log log θ(qn) ≥ log log θ(qn+1)

for all sufficiently large prime numbers qn.
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Indeed, the inequality

∞∑
k=1

(
1

qk
− (χ{x : x≥qn}(qk))× log(1 +

1

qk
)

)
> B + log log θ(qn)

is the same as
∞∑
k=1

(
1

qk
− (χ{x : x≥qn+1}(qk))× log(1 +

1

qk
)

)

> B + log log θ(qn+1) + log(1 +
1

qn
) + log log θ(qn)− log log θ(qn+1)

where qn and qn+1 are consecutive primes.
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If the Riemann Hypothesis is false, then

log(1 +
1

qn
) + log log θ(qn) ≥ log log θ(qn+1)

must be violated for infinitely many n’s, since Dedekind(qn+1) will not hold for infinitely
many qn+1’s. By contraposition, the Riemann Hypothesis should be true when the
previous inequality is satisfied for all sufficiently large prime numbers qn.
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This is

log

(
(1 +

1

qn
)× log θ(qn)

)
≥ log log θ(qn+1).

That is equivalent to

log log θ(qn)
1+ 1

qn ≥ log log θ(qn+1).

To sum up, the Riemann Hypothesis is true when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. ■
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Known Results

Theorem 8

For all n ≥ 2, we have (Ghosh, 2019):

θ(qn)

log qn+1
≥ n × (1− 1

log n
+

log log n

4× log2 n
).

Theorem 9

For every x ≥ 19035709163 (Axler, 2018):

θ(x) > (1− 0.15

log3 x
)× x .
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We define the prime counting function π(x) as

π(x) =
∑
p≤x

1.

We also know this property for the prime counting function:

Theorem 10

For every x ≥ 19027490297 (Axler, 2018):

π(x) > ηx

where

ηx =
x

log x
+

x

log2 x
+

2× x

log3 x
+

5.85× x

log4 x

+
23.85× x

log5 x
+

119.25× x

log6 x
+

715.5× x

log7 x
+

5008.5× x

log8 x
.

Frank Vega, CopSonic France (vega.frank@gmail.com) Slide Presentation on the Riemann Hypothesis June 19, 2022 25 / 34



The Main Theorem

Theorem 11

The Riemann Hypothesis is true.
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The Riemann Hypothesis is true when

θ(qn)
1+ 1

qn ≥ θ(qn+1)

is satisfied for all sufficiently large prime numbers qn. That is the same as

θ(qn)
1+ 1

qn ≥ θ(qn) + log(qn+1)

θ(qn)
1
qn ≥ 1 +

log(qn+1)

θ(qn)

after dividing both sides of the inequality by θ(qn).

Frank Vega, CopSonic France (vega.frank@gmail.com) Slide Presentation on the Riemann Hypothesis June 19, 2022 27 / 34



Using the known results, we only need to show that

θ(qn)

log qn+1
≥ n × (1− 1

log n
+

log log n

4× log2 n
)

> ηqn × (1− 1

log n
+

log log n

4× log2 n
)

>
qn

log qn + log(1− 0.15
log3 qn

)

for a sufficiently large prime number qn where

ηqn =
qn

log qn
+

qn

log2 qn
+

2× qn

log3 qn
+

5.85× qn

log4 qn

+
23.85× qn

log5 qn
+

119.25× qn

log6 qn
+

715.5× qn

log7 qn
+

5008.5× qn

log8 qn
.
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As qn increases, (1− 1
log n

+ log log n
4×log2 n

) gets closer to 1 and ηqn starts to become much

greater than qn
log qn+log(1− 0.15

log3 qn
)
. However, this implies that

log(1− 0.15
log3 qn

) + log qn

qn
>

log(qn+1)

θ(qn)

which is equal to

1 +
log(1− 0.15

log3 qn
) + log qn

qn
> 1 +

log(qn+1)

θ(qn)

for a sufficiently large prime number qn.
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It is also a known result that

θ(qn)
1
qn > (1− 0.15

log3 qn
)

1
qn × q

1
qn
n

for a sufficiently large prime number qn. In this way, we deduce that

θ(qn)
1
qn ≥ 1 +

log(qn+1)

θ(qn)

when the inequality

(1− 0.15

log3 qn
)

1
qn × q

1
qn
n ≥ 1 +

log(1− 0.15
log3 qn

) + log qn

qn

is satisfied for every sufficiently large prime number qn.
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We have that:

log(1− 0.15
log3 qn

) + log qn

qn
≥ log(1 +

log(1− 0.15
log3 qn

) + log qn

qn
)

since
log(1− 0.15

log3 qn
) + log qn

qn
> −1

for every sufficiently large prime number qn. Certainly, if x > −1, then
x ≥ log(1 + x) (Kozma, 2022). We know that

log(1− 0.15
log3 qn

) + log qn

qn
=

log
(
(1− 0.15

log3 qn
)× qn

)
qn

= log

(
(1− 0.15

log3 qn
)

1
qn × q

1
qn
n

)
by the properties of the logarithm.
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This implies that

log((1− 0.15

log3 qn
)

1
qn × q

1
qn
n ) ≥ log(1 +

log(1− 0.15
log3 qn

) + log qn

qn
)

which is equivalent to

(1− 0.15

log3 qn
)

1
qn × q

1
qn
n ≥ 1 +

log(1− 0.15
log3 qn

) + log qn

qn

for every sufficiently large prime number qn. Putting all together yields the proof of the
Riemann Hypothesis. ■
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László Kozma. Useful Inequalities.
http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf, 2022. Accessed
on June 2022.

Frank Vega, CopSonic France (vega.frank@gmail.com) Slide Presentation on the Riemann Hypothesis June 19, 2022 33 / 34

http://math.colgate.edu/~integers/s52/s52.pdf
https://nntdm.net/papers/nntdm-25/NNTDM-25-4-001-007.pdf
http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf


Harold M. Edwards. Riemann’s Zeta Function. Dover Publications, 2001. URL
https://www.book-info.com/isbn/0-486-41740-9.htm.

YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, and Patrick Solé. On Robin’s
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