Slide Presentation on the Riemann Hypothesis Submitted For Short Communications Satellite 2022

Frank Vega, CopSonic France

vega.frank@gmail.com

June 19, 2022

Frank Vega, CopSonic France (vega.frank@gmail.com) [Slide Presentation on the Riemann Hypothesis](#page-33-0) June 19, 2022 1 / 34

K ロ ▶ K 何 ▶

Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Patrick Solé and Michel Planat stated a new criterion for the Riemann Hypothesis. We prove the Riemann Hypothesis is true using this criterion.

Keywords

Riemann Hypothesis, Prime numbers, Chebyshev function, Riemann zeta function.

∢ ロ ▶ - ∢ 何 ▶ - ∢

The Chebyshev function $\theta(x)$ is given by

$$
\theta(x) = \sum_{p \leq x} \log p
$$

with the sum extending over all prime numbers p that are less than or equal to x , where log is the natural logarithm. We provide a proof for the Riemann Hypothesis using the properties of the Chebyshev function.

∍

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Say Dedekind (q_n) holds provided

$$
\prod_{q\leq q_n} \left(1+\frac{1}{q}\right) > \frac{e^\gamma}{\zeta(2)} \times \log \theta(q_n)
$$

where the constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant, q_n is the nth prime number and $\zeta(x)$ is the Riemann zeta function.

Theorem 1

Dedekind(q_n) holds for all prime numbers $q_n > 3$ if and only if the Riemann Hypothesis is true (Solé and Planat, 2011).

Theorem 2

If the Riemann Hypothesis is false, then there are infinitely many prime numbers q_n for which Dedekind (q_n) do not hold.

→ K B

4 ロ ▶ 4 何 ▶ 4

We know the Riemann Hypothesis is false, if there exists some natural number $x_0 \geq 5$ such that $g(x_0) > 1$ or equivalent $\log g(x_0) > 0$ (Solé and Planat, 2011):

$$
g(x) = \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(x) \times \prod_{q \leq x} \left(1 + \frac{1}{q}\right)^{-1}
$$

.

We know the bound (Solé and Planat, 2011):

$$
\log g(x) \geq \log f(x) - \frac{2}{x}
$$

where f is introduced in the Nicolas paper [\(Nicolas, 1983\)](#page-33-2):

$$
f(x) = e^{\gamma} \times \log \theta(x) \times \prod_{q \leq x} \left(1 - \frac{1}{q}\right).
$$

目

 Ω

イロト イ押 トイヨト イヨ

Remark

We know when the Riemann Hypothesis is false, then there exists a real number $b < \frac{1}{2}$ and there are infinitely many natural numbers x such that log $f(x)=\Omega_+(x^{-b})$ [\(Nicolas,](#page-33-2) [1983\)](#page-33-2).

€

According to the Hardy and Littlewood definition, this would mean that

$$
\exists k > 0, \forall y_0 \in \mathbb{N}, \exists y \in \mathbb{N}, y > y_0: \log f(y) \geq k \times y^{-b}.
$$

That inequality is equivalent to $\log f(y)\geq \left(k\times y^{-b}\times\sqrt{y}\right)\times\frac{1}{\sqrt{y}},$ but we know that

$$
\lim_{y \to +\infty} \left(k \times y^{-b} \times \sqrt{y} \right) = +\infty
$$

for every possible positive value of k when $b < \frac{1}{2}$.

目

K ロ ▶ K 何 ▶ K

In this way, this implies that

$$
\exists k > 0, \forall y_0 \in \mathbb{N}, \exists y \in \mathbb{N}, y > y_0: \log f(y) \geq \frac{1}{\sqrt{y}}.
$$

Hence, if the Riemann Hypothesis is false, then there are infinitely many natural numbers x such that log $f(x)\geq\frac{1}{\sqrt{x}}.$ Since $\frac{2}{x}=o(\frac{1}{\sqrt{x}}),$ then it would be infinitely many natural numbers x_0 such that $\log g(x_0) > 0$ (Solé and Planat, 2011).

∢ ロ ▶ - ∢ 何 ▶ - ∢

In addition, if $\log g(x_0) > 0$ for some natural number $x_0 \geq 5$, then $\log g(x_0) = \log g(q_n)$ where q_n is the greatest prime number such that $q_n \leq x_0$. In fact,

$$
\prod_{q\leq \varkappa_0}\left(1+\frac{1}{q}\right)^{-1}=\prod_{q\leq q_n}\left(1+\frac{1}{q}\right)^{-1}
$$

and

$$
\theta(x_0)=\theta(q_n)
$$

according to the definition of the Chebyshev function. ■

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

目

 Ω

We define $H = \gamma - B$ such that $B \approx 0.2614972128$ is the Meissel-Mertens constant [\(Choie et al., 2007\)](#page-33-3). We know from the constant H, the following formula:

Theorem 3

We have that [\(Choie et al., 2007\)](#page-33-3):

$$
\sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k-1}) - \frac{1}{q_k} \right) = \gamma - B = H.
$$

∋⊳⊣

∢ ロ ▶ - ∢ 何 ▶ - ∢

We know this value of the Riemann zeta function:

Theorem 4

It is known that [\(Edwards, 2001\)](#page-33-4):

$$
\zeta(2) = \prod_{k=1}^{\infty} \frac{q_k^2}{q_k^2 - 1} = \frac{\pi^2}{6}.
$$

目

つへへ

イロト イ御 トイミトイ

Theorem 5

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - \log(1 + \frac{1}{q_k}) \right) = \log(\zeta(2)) - H.
$$

メロメ オ御 ドメ 重 ドメ 重 ドー

ミー 299 We obtain that

$$
\log(\zeta(2)) - H = \log\left(\prod_{k=1}^{\infty} \frac{q_k^2}{q_k^2 - 1}\right) - H
$$

=
$$
\sum_{k=1}^{\infty} \left(\log\left(\frac{q_k^2}{(q_k^2 - 1)}\right)\right) - H
$$

=
$$
\sum_{k=1}^{\infty} \left(\log\left(\frac{q_k^2}{(q_k - 1) \times (q_k + 1)}\right)\right) - H
$$

=
$$
\sum_{k=1}^{\infty} \left(\log\left(\frac{q_k}{q_k - 1}\right) + \log\left(\frac{q_k}{q_k + 1}\right)\right) - H
$$

 $A \cup B$ $A \cup B$ $B \cup A \cup B$ $B \cup A \cup B$

Ε

$$
= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \log(\frac{q_k + 1}{q_k}) \right) - H
$$

\n
$$
= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \log(1 + \frac{1}{q_k}) \right) - \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \frac{1}{q_k} \right)
$$

\n
$$
= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \log(1 + \frac{1}{q_k}) - \log(\frac{q_k}{q_k - 1}) + \frac{1}{q_k} \right)
$$

\n
$$
= \sum_{k=1}^{\infty} \left(\frac{1}{q_k} - \log(1 + \frac{1}{q_k}) \right)
$$

and the proof is done. ■

Ε

 299

メロメメ 倒 メメ きょくきょう

Theorem 6

Dedekind(q_n) holds for all prime numbers $q_n > 3$ if and only if the inequality

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x:~x>q_n\}}(q_k)) \times \log(1+\frac{1}{q_k}) \right) > B + \log \log \theta(q_n)
$$

is satisfied for all prime numbers $q_n > 3$, where the set $S = \{x : x > q_n\}$ contains all the real numbers greater than q_n and χ_S is the characteristic function of the set S (This is the function defined by $\chi_S(x) = 1$ when $x \in S$ and $\chi_S(x) = 0$ otherwise).

イロト イ押 トイヨ トイヨト

When Dedekind(q_n) holds, we apply the logarithm to the both sides of the inequality:

$$
\log(\zeta(2)) + \sum_{q \leq q_n} \log(1 + \frac{1}{q}) > \gamma + \log \log \theta(q_n)
$$

$$
\log(\zeta(2)) - H + \sum_{q \leq q_n} \log(1 + \frac{1}{q}) > B + \log \log \theta(q_n)
$$

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - \log(1 + \frac{1}{q_k})\right) + \sum_{q \leq q_n} \log(1 + \frac{1}{q}) > B + \log \log \theta(q_n).
$$

Let's distribute the elements of the inequality to obtain that

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x:~x>q_n\}}(q_k)) \times \log(1+\frac{1}{q_k}) \right) > B + \log \log \theta(q_n)
$$

when Dedekind(q_n) holds. The same happens in the reverse implication. \blacksquare

 4 ロ) 4 \overline{m}) 4 \overline{m}) 4 \overline{m}) 4

目

Theorem 7

The Riemann Hypothesis is true if the inequality

$$
\theta(q_n)^{1+\frac{1}{q_n}} \geq \theta(q_{n+1})
$$

is satisfied for all sufficiently large prime numbers q_n .

K ロ ▶ K 個 ▶ K

э \rightarrow \rightarrow \rightarrow €

つへへ

The inequality

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x:~x > q_n\}}(q_k)) \times \log(1+\frac{1}{q_k}) \right) > B + \log \log \theta(q_n)
$$

is satisfied when

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x:\ x \geq q_n\}}(q_k)) \times \log(1+\frac{1}{q_k}) \right) > B + \log \log \theta(q_n)
$$

is also satisfied, where the set $S = \{x : x \ge q_n\}$ contains all the real numbers greater than or equal to q_n .

目

K ロ ▶ K 個 ▶ K

э

 299

In the inequality

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x \geq q_n\}}(q_k)) \times \log(1+\frac{1}{q_k}) \right) > B + \log \log \theta(q_n)
$$

only change the values of

$$
\log(1+\frac{1}{q_n})+\log\log\theta(q_n)
$$

and

 $\log \log \theta(q_{n+1})$

between the consecutive primes q_n and q_{n+1} . It is enough to show that

$$
\log(1+\frac{1}{q_n})+\log\log\theta(q_n)\geq\log\log\theta(q_{n+1})
$$

for all sufficiently large prime numbers q_n .

目

4 ロ ト 4 何 ト 4

 299

Indeed, the inequality

$$
\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: x \geq q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log \log \theta(q_n)
$$

is the same as

$$
\sum_{k=1}^{\infty}\left(\frac{1}{q_k}-(\chi_{\{x:\;x\geq q_{n+1}\}}(q_k))\times \log(1+\frac{1}{q_k})\right)\\>B+\log\log\theta(q_{n+1})+\log(1+\frac{1}{q_n})+\log\log\theta(q_n)-\log\log\theta(q_{n+1})
$$

where q_n and q_{n+1} are consecutive primes.

É

K ロ ⊁ K 倒 ≯ K

If the Riemann Hypothesis is false, then

$$
\log(1+\frac{1}{q_n})+\log\log\theta(q_n)\geq\log\log\theta(q_{n+1})
$$

must be violated for infinitely many n's, since Dedekind (q_{n+1}) will not hold for infinitely many q_{n+1} 's. By contraposition, the Riemann Hypothesis should be true when the previous inequality is satisfied for all sufficiently large prime numbers q_n .

 Ω

K ロ ▶ - K 同 ▶ - K ヨ ▶ - K

This is

$$
\log\left((1+\frac{1}{q_n})\times\log\theta(q_n)\right)\geq\log\log\theta(q_{n+1}).
$$

That is equivalent to

$$
\log\log\theta(q_n)^{1+\frac{1}{q_n}}\geq\log\log\theta(q_{n+1}).
$$

To sum up, the Riemann Hypothesis is true when

$$
\theta(q_n)^{1+\frac{1}{q_n}} \geq \theta(q_{n+1})
$$

is satisfied for all sufficiently large prime numbers q_n .

4 ロト 4 何 ト 4

э **Service** 299

目

Theorem 8

For all $n \geq 2$, we have [\(Ghosh, 2019\)](#page-32-0):

$$
\frac{\theta(q_n)}{\log q_{n+1}} \ge n \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n}).
$$

Theorem 9

For every $x \ge 19035709163$ [\(Axler, 2018\)](#page-32-1):

$$
\theta(x) > (1 - \frac{0.15}{\log^3 x}) \times x.
$$

メロメメ 倒 メメ ミメメ ヨメー

目

 298

We define the prime counting function $\pi(x)$ as

$$
\pi(x)=\sum_{\rho\leq x}1.
$$

We also know this property for the prime counting function:

Theorem 10

For every $x \ge 19027490297$ [\(Axler, 2018\)](#page-32-1):

 $\pi(x) > \eta_x$

where

$$
\eta_x = \frac{x}{\log x} + \frac{x}{\log^2 x} + \frac{2 \times x}{\log^3 x} + \frac{5.85 \times x}{\log^4 x} + \frac{23.85 \times x}{\log^5 x} + \frac{119.25 \times x}{\log^5 x} + \frac{715.5 \times x}{\log^7 x} + \frac{5008.5 \times x}{\log^8 x}.
$$

目

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Theorem 11

The Riemann Hypothesis is true.

メロトメ 伊 トメ ミトメ ミト

重

 299

The Riemann Hypothesis is true when

$$
\theta(q_n)^{1+\frac{1}{q_n}} \geq \theta(q_{n+1})
$$

is satisfied for all sufficiently large prime numbers q_n . That is the same as

$$
\begin{aligned}\theta(q_n)^{1+\frac{1}{q_n}} &\geq \theta(q_n)+\log(q_{n+1})\\ \theta(q_n)^{\frac{1}{q_n}} &\geq 1+\frac{\log(q_{n+1})}{\theta(q_n)}\end{aligned}
$$

after dividing both sides of the inequality by $\theta(q_n)$.

4 ロト 4 何 ト 4

目

つへへ

Using the known results, we only need to show that

$$
\frac{\theta(q_n)}{\log q_{n+1}} \ge n \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n})
$$

>
$$
\eta_{q_n} \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n})
$$

>
$$
\frac{q_n}{\log q_n + \log(1 - \frac{0.15}{\log^3 q_n})}
$$

for a sufficiently large prime number q_n where

$$
\eta_{q_n} = \frac{q_n}{\log q_n} + \frac{q_n}{\log^2 q_n} + \frac{2 \times q_n}{\log^3 q_n} + \frac{5.85 \times q_n}{\log^4 q_n} + \frac{23.85 \times q_n}{\log^5 q_n} + \frac{119.25 \times q_n}{\log^5 q_n} + \frac{715.5 \times q_n}{\log^7 q_n} + \frac{5008.5 \times q_n}{\log^8 q_n}.
$$

Frank Vega, CopSonic France (vega.frank@gmail.com) [Slide Presentation on the Riemann Hypothesis](#page-0-0) June 19, 2022 28 / 34

メロトメ 伊 トメ ミトメ ミト

É

As q_n increases, $(1-\frac{1}{\log n}+\frac{\log\log n}{4\times\log^2 n})$ gets closer to 1 and η_{q_n} starts to become much greater than $\frac{q_n}{\log q_n + \log(1 - \frac{0.15}{\log^3 q_n})}$. However, this implies that

$$
\frac{\log(1-\frac{0.15}{\log^3 q_n})+\log q_n}{q_n}>\frac{\log(q_{n+1})}{\theta(q_n)}
$$

which is equal to

$$
1+\frac{\log\bigl(1-\frac{0.15}{\log^3 q_n}\bigr)+\log q_n}{q_n}>1+\frac{\log\bigl(q_{n+1}\bigr)}{\theta(q_n)}
$$

for a sufficiently large prime number q_n .

 Ω

It is also a known result that

$$
\theta(q_n)^{\frac{1}{q_n}} > (1 - \frac{0.15}{\log^3 q_n})^{\frac{1}{q_n}} \times q_n^{\frac{1}{q_n}}
$$

for a sufficiently large prime number q_n . In this way, we deduce that

$$
\theta(q_n)^{\frac{1}{q_n}} \geq 1 + \frac{\log(q_{n+1})}{\theta(q_n)}
$$

when the inequality

$$
(1 - \frac{0.15}{\log^3 q_n})^{\frac{1}{q_n}} \times q_n^{\frac{1}{q_n}} \ge 1 + \frac{\log(1 - \frac{0.15}{\log^3 q_n}) + \log q_n}{q_n}
$$

is satisfied for every sufficiently large prime number q_n .

活

 Ω

K ロ ト K 何 ト

We have that:

$$
\frac{\log(1-\frac{0.15}{\log^3 q_n})+\log q_n}{q_n}\geq \log(1+\frac{\log(1-\frac{0.15}{\log^3 q_n})+\log q_n}{q_n})
$$

since

$$
\frac{\log(1-\frac{0.15}{\log^3 q_n})+\log q_n}{q_n} > -1
$$

for every sufficiently large prime number q_n . Certainly, if $x > -1$, then $x \geq \log(1+x)$ [\(Kozma, 2022\)](#page-32-2). We know that

$$
\frac{\log(1 - \frac{0.15}{\log^3 q_n}) + \log q_n}{q_n} = \frac{\log\left((1 - \frac{0.15}{\log^3 q_n}) \times q_n\right)}{q_n}
$$

$$
= \log\left((1 - \frac{0.15}{\log^3 q_n})^{\frac{1}{q_n}} \times q_n^{\frac{1}{q_n}}\right)
$$

by the properties of the logarithm.

活

K ロ ▶ K 何 ▶ K

This implies that

$$
\log((1-\frac{0.15}{\log^3 q_n})^{\frac{1}{q_n}} \times q_n^{\frac{1}{q_n}}) \geq \log(1+\frac{\log(1-\frac{0.15}{\log^3 q_n}) + \log q_n}{q_n})
$$

which is equivalent to

$$
(1 - \frac{0.15}{\log^3 q_n})^{\frac{1}{q_n}} \times q_n^{\frac{1}{q_n}} \ge 1 + \frac{\log(1 - \frac{0.15}{\log^3 q_n}) + \log q_n}{q_n}
$$

for every sufficiently large prime number q_n . Putting all together yields the proof of the Riemann Hypothesis. ■

 298

K ロ ▶ K 何 ▶ K

э. \rightarrow \rightarrow \rightarrow

- Christian Axler. New Estimates for Some Functions Defined Over Primes. Integers, 18, 2018. URL <http://math.colgate.edu/~integers/s52/s52.pdf>.
- Aditya Ghosh. An asymptotic formula for the Chebyshev theta function. Notes on Number Theory and Discrete Mathematics, 25(4):1–7, 2019. URL <https://nntdm.net/papers/nntdm-25/NNTDM-25-4-001-007.pdf>.
- László Kozma. Useful Inequalities.

http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf, 2022. Accessed on June 2022.

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ..

- Harold M. Edwards. Riemann's Zeta Function. Dover Publications, 2001. URL <https://www.book-info.com/isbn/0-486-41740-9.htm>.
- YoungJu Choie, Nicolas Lichiardopol, Pieter Moree, and Patrick Solé. On Robin's criterion for the Riemann hypothesis. Journal de Théorie des Nombres de Bordeaux, 19 (2):357–372, 2007. URL

<https://jtnb.centre-mersenne.org/item/10.5802/jtnb.591.pdf>.

- Jean-Louis Nicolas. Petites valeurs de la fonction d'Euler. Journal of number theory, 17 (3):375–388, 1983. URL [https://doi.org/10.1016/0022-314X\(83\)90055-0](https://doi.org/10.1016/0022-314X(83)90055-0).
- Patrick Solé and Michel Planat. Extreme values of the Dedekind ψ function. Journal of Combinatorics and Number Theory, 3(1):33–38, 2011. arXiv URL <https://arxiv.org/pdf/1011.1825.pdf>.

Þ

イロト イ何 ト イヨ ト イヨ トー