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§1 Introduction

One of the most explored problems in the field of computer vision is the process of
accurately estimating the real-world depth of a pixel within a two-dimensional image.
The inference of three-dimensional information is done by using multiple two-dimensional
views of a scene, the process being deemed the name stereo vision.

§1.1 Applications

A common counter-argument to the practicality of stereo vision algorithms are the
presence of other sensors that do not make use of visual data such as ultrasonic or time
of flight distance sensors. While these sensors are not not impacted by factors that would
be detrimental to the accuracy of stereo vision algorithms such as the lack of adequate
lighting, “stereo vision has the advantage that it achieves the 3-D acquisition without
energy emission or moving parts” (CSIRO). Moreover, whereas traditional distance
sensors focus on a singular point in space, stereo vision algorithms are only limited by the
camera’s field of view, making the depth analysis of a large area far more straightforward
and cost effective. Finally, stereo vision algorithms are able to easily work in conjunction
with other computer vision techniques such as machine learning-based object detection
models, when compared to the previous depth estimation approaches as it operates under
the same image plane that a object detection model may be used on, eliminating the
need for sensor data conversion. These factors allow for a more streamlined analysis of
the various shapes and angles in an image leading to its usage in various fields.

Figure 1: Stereo Vision For Road Deformity
Detection (Rui)

A standard application of stereo vision
can be found in the quality management
process of industrial factories. Factories
must analyze each finished products for
deformities to maintain a standard of qual-
ity in their products. However, due to the
large amounts of product produced, man-
ual inspection of each product would be far
too expensive and inefficient considering
the large amounts of workers required. The
installation of multiple distance sensors
to analyze each square inch of a product
would also be far too expensive. However,
a factory is a controlled environment with
uniform lighting and contains objects of
known shape, the usage of a stereo vision algorithm would be ideal for the situation.
Indeed, many factories use this approach rather than spending large sums of money on
expensive sensors making use of the camera’s wide field of view.

Moreover, stereo algorithms hold value outside controlled environments. A paper by the
University of Bristol explores this by creating a deformity analysis algorithm to acquire
three-dimensional road data for autonomous cars, further displaying the capabilities of
stereo algorithms. The process that this algorithm follows is illustrated by figure above.

§1.2 Overview and Purpose

The essence of a successful stereo vision algorithm can be summarized in three key steps:
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Triangulation The Process of assigning depth values to each pixel in the image using
multiple two-dimensional views of a scene and the specific parameters from camera
hardware, the difference in the location of the cameras used, and the disparity in the
pixels from each view of the scene.

Calibration The process of correcting image distortion that is caused by the spherical
geometry of the camera lens and reifying the two-dimensional views of the scene such
that the views are displayed on the same image plane.

Pixel Correspondence In order to apply the triangulation process, the algorithm must
be able to match a pixel from one viewpoint of the scene to another viewpoint taken
from a separate camera also known as the disparity value of this pixel.

In modern research, the most studied step of the algorithm is the process of pixel
Correspondence, better known as stereo matching. As of now, researchers are attempting
to integrate optimization techniques with stereo matching in order to improve stereo
system performance. This paper seeks to provide an in-depth explanation of the stereo
vision process in general and find value in the application of optimization techniques to
stereo matching algorithms. In order to analyze and implement a sound stereo vision
algorithm as well as an optimized matching algorithm, scholarly sources involving stereo
vision and optimization techniques were studied. After implementing a standard stereo
matching algorithm and an algorithm that involves a famous optimization technique
known as Dynamic Programming, I found that there was a significant increase in both
accuracy and efficiency in the depth estimates provided by the algorithm.

§2 Triangulation

The core of every stereo vision algorithm is to find the depth of a pixel using multiple
two-dimensional views of the scene, more formally this process is known as the backward
projection of a camera from image coordinates into three-dimensional world coordinates.
In order to derive the formulas for the backward projection model of a camera, the
forward projection from scene to image point must be understood.

§2.1 Forward Projection Model

Formally defined, the forward projection model “describes the mathematical relationship
between the coordinates of a point in three-dimensional space and its projection onto
the image plane with a ideal pinhole camera, where the camera aperture is described as
a point and no lenses are used to focus light” (Maamir, 135). The usage of a pinhole
camera allows for the elimination of lens distortion when mapping to the image plane,
simplifying the formulas significantly.

Remark 2.1. The majority of cameras are used in stereo vision algorithms, including those
used in this paper, use lenses contradicting the pinhole camera model. However, because
researchers calibrate their camera’s to remove distortion from the images returned, the
pinhole camera model can still be applied.

The forward projection model of converting a 3D camera point into a 2D pixel coordinate
is defined using the formula below:
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Theorem 2.2 (Forward Projection Equation)

(u, v) = (fx ·
xc
zc

+ ox, fy ·
yc
zc

+ oy)

(u, v) two dimensional pixel coordinates fx focal length on x-axis
xc x position on scene coordinate frame fy focal length on y-axis
yc y position in scene coordinate frame ox image center on x-axis
zc depth of point in scene coordinate frame oy image center on y-axis

Equations found in source 5.

Whereas the other parameters of the equation are self-explanatory, the focal length (f)
requires further explanation. The focal length is “the distance between the lens and the
image sensor when the subject is in focus” (Berkenfeld). As such, using this information,
the forward projection equations essentially show how a ray from the camera to the scene
can be mapped to an image.

§2.2 Derivation of Backwards Projection Model

It is clear that deriving the depth of a pixel from manipulating the forward projection
equations is impossible given the inquality in depth measurements when using the x and
y pixels. Therefore it is evident that additional information is needed in order to infer
depth. This is where the usage of multiple viewpoints of a scene is needed.

Remark 2.3. Although many stereo vision systems use more than two viewpoints of a
scene, in order to simplify the implementation process a simple (binocular) stereo system
will be used.

Figure 2: Simple stereo system

As mentioned prior the forward projec-
tion equations essentially represent the
camera as projecting a ray from the im-
age into a scene point. Using this fact,
an additional camera which is calibrated
to be on the same plane as the original
camera may be used to project another
ray from the corresponding image point
onto the scene. By finding the intersection
of these two rays the depth of a pixel in
the scene may be found. Using the depth
measurement of a pixel, it is also possible
to derive (x, y) coordinates of a scene from
the image coordinate frame, giving the full
scene coordinate frame:
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Theorem 2.4 (Backward Projection Equations)

z =
b · fx

(ur − ul)
(1)

x =
z

fx
· (ul − ox) (2)

y =
z

fy
· (vl − oy) (3)

(ul, vl) pixel coordinates on left camera fx focal length on x-axis
(ur, vr) pixel coordinates on right camera fy focal length on y-axis
x x position on scene coordinate frame ox image center on x-axis
y y position in scene coordinate frame oy image center on y-axis
z depth of point in scene coordinate frame b baseline distance

Note that the pixel coordinates in the left and right camera point at the same
object in the scene. However, because the cameras are located b units away from
each other, the coordinates are not equal. The process of finding the corresponding
pixel in the right camera for every pixel in the left camera, is known as the stereo
correspondence problem. Equations found in source 6.

The two rays projected from the camera, along with the calibrated baseline measure-
ment, distance between the left and right cameras, form a triangle, allowing for the
derivations of the formulas shown above. However, to attain the parameters in these
formulas that are not immediately present in the image such as focal length and baseline
as well as correcting lens distortion, camera calibration is required. Moreover, to make
use of the ray projected from the additional viewpoint, the corresponding pixel from
the right camera must be found, this can be seen in the calculation of the depth as the
x value of the selected pixel in the right camera is subtracted by the x value of the
corresponding pixel of the left camera, this value is formally known as the disparity of a
pixel (ur − ul) and is essential to depth computation.

§3 Camera Calibration

For the triangulation formulas to apply all cameras in the stereo system must be calibrated
to match the pinhole camera model. This involves finding the hardware parameters of
the camera and correcting the images returned for lens distortion. Moreover, the images
must be transformed such that they are displayed parallel to each other.

§3.1 Intrinsic matrix

A key step in correcting for lens distortion and applying the triangulation formulas is
identifying the intrinsic parameters of both cameras. Formally explained, the intrinsic
parameters are the variables used in the forward projection equations to map 3D scene
coordinates into image coordinates, such as the focal length and optical center of the
image. The intrinsic parameters of a camera are mathematically contained in a 3 by 3
matrix known as the intrinsic matrix. The forward projection equation can be rewritten
in matrix form to show this:
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Theorem 3.1 (Forward Projection Equation Matrix Variation)u
v
w

 =

fx 0 ox
0 fy oy
0 0 1

XY
Z


(u, v) two dimensional pixel coordinates fx focal length on x-axis
X x position on scene coordinate frame fy focal length on y-axis
Y y position in scene coordinate frame ox image center on x-axis
Z depth of point in scene coordinate frame oy image center on y-axis

The parameters of the intrinsic matrix can be found by making use of the field of
view and resolution of the camera, typically stated in the hardware specifications of the
camera. The formulas are described below:

Theorem 3.2 (Intrinsic Matrix Calculation)

fx =
ox

tan
ax
2

(4)

fy =
oy

tan
ay
2

(5)

ox =
rx
2

(6)

oy =
ry
2

(7)

(8)

(ul, vl) pixel coordinates on left camera fx focal length on x-axis
(ur, vr) pixel coordinates on right camera fy focal length on y-axis
x x position on scene coordinate frame ox image center on x-axis
y y position in scene coordinate frame oy image center on y-axis
z depth of point in scene coordinate frame b baseline distance
ax horizontal field of view ay vertical field of view

Note that the pixel coordinates in the left and right camera point at the same
object in the scene. However, because the cameras are located b units away from
each other, the coordinates are unique creating the pixel correspondence problem.
Equations found in source 11.

§3.2 Extrinsic Parameters

The extrinsic parameters of a camera refer to the position and orientation of the camera
with respect to the world coordinate frame and corresponding cameras. In more complex
stereo systems an extrinsic matrix is required, detailing the translation of the camera in
the x, y, and z axis as well as the roll, pitch, and yaw angles of the cameras. However,
because a binocular stereo system is used, the two cameras are guaranteed to be pointing
in a straight line, while being on the same y and z axis leaving only a horizontal distance
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that can easily be manually computed. The baseline (b) is measured by finding the
distance between the centers of the left and rightmost camera.

Remark 3.3. Because a simple stereo is used, the cameras are guaranteed to be positioned
such the y position of the camera is identical, removing the need for additional calibration
beyond the manual baseline measurement. Equations found in source 11.

§3.3 Lens Distortion

The simple stereo model assumes that both cameras in use do not contain lenses. However,
in real-world situations lenses must be present in order to ensure pixel quality. This
results in two types of distortion, which must be accounted for when calibrating cameras.

Radial Distortion This variation of distortion causes “straight lines in images to appear
curved”. Moreover, as pixels begin to deviate from the image center, distortion increases
rapidly, causing significant drops in accuracy when querying depth (OpenCV).

Tangential Distortion As opposed to radial distortion, tangential distortion causes
some areas in the image to “appear closer than others due to the misalignment of the
lens from the image plane” (OpenCV).

[Radial] [Tangential]

Figure 3: Impacts of Distortion on the Image Plane (Steward)

§3.4 Accounting for distortion

The transformation process between raw and distorted pixels can be modelled using the
formulas found in the official OpenCV documentation below:

Theorem 3.4 (Radial Distortion Equations)

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6) (9)

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6) (10)
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Theorem 3.5 (Tangential Distortion Equations)

xdistorted = x+ [2p1xy + p2(r
2 + 2x2)] (11)

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy] (12)

As seen in the formulas the distortion is magnified through the following distortion
coefficients:

Distortion coefficients = (k1 k2 p1 p2 k3)

By finding these components and transforming the pixels accordingly, the cameras
are then completely calibrated. They are found by analyzing multiple images of known
geometry and comparing the pixels in the camera with the real-world coordinates of the
image. However, instead of completing this process manually, OpenCV, the framework
being used, automates this process through built-in functions, meaning only a conceptual
understanding of lens distortion is needed to proceed.

§4 Pixel Correspondence

As mentioned prior, the pixel correspondence problem is the most studied in the field of
stereo vision and by extension, the main focus of this paper. The correspondence problem
boils down to iterating through each pixel in the left camera and finding the corresponding
pixel in the right camera in an efficient and accurate manner. In this paper, two methods
will be analyzed: a standard window-based approach as well as a newer approach using
an optimization technique known as Dynamic Programming (DP) which in theory will
increase the program’s accuracy and run-time. After implementation, the two approaches
will both be tested using the same stereo system in order to reveal differences in accuracy
and speed in order to determine the value in the usage of optimization algorithms, such
as DP in stereo vision.

§4.1 Window Based SSD Disparity Estimation

This method of finding corresponding pixels in two cameras uses a window-based ap-
proach. Formally defined a window consists of a n by n grid of pixels. In order to find
the corresponding pixel in another camera, the algorithm creates a fixed window centered
around the chosen pixel. Then on the corresponding row of the second camera, another
window is created; however, this window is not fixed, rather the algorithm slides the
window over every other pixel on the row of the second image. The window that is most
similar to the fixed window of the first camera is noted at the corresponding pixel. This
process is then repeated for each pixel in the image in order to apply the triangulation
formulas and calculate the real-world depth of the scene.
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Rather than directly comparing individual pixels, the usage of a window of pixels is
less resistant to noise and has enough variation to form a pattern, especially when two
individual pixels may easily have the same value. The image below shows the window
iteration and comparison process described above:

Figure 4: Window Based Correspondence Illustration (Veksler)

Remark 4.1. Because the cameras have been calibrated, the two images are guaranteed to
lie on the same y-axis, therefore the window only needs be transformed in one direction.

Figure 5: Sample Window Cost Calcu-
lation (Veksler)

One segment of the algorithm that has not
been explained is how the similarity is measured
between two windows. First, the image must
be converted from the standard RGB format,
a full colored image with each pixel consisting
of three color channels: red, green, and blue,
into a grey-scale image. This is done such that
each pixel is normalized from a value between
0 and 255, representing the intensity of light
shining on each pixel, so that mathematical op-
erations can be performed easily without hav-
ing to worry about the additional complexity
created by accounting for three color channels.
After this, the algorithm makes use of a sum
of squared differences approach (SSD) to the
windows, in which the squared difference is
taken from each pixel in both windows. These
differences are then summed up and stored for
the pixel centered in the right camera window.
The pixel on the right camera with the minimum cost is marked as the corresponding
pixel for the pixel centered in the fixed window of the left camera. The cost computation
process between the two windows on the left and right images described above is shown
by the illustration on the right:
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The window iteration process and cost computation method are applied to each pixel
in the left image in order to attain a disparity map, a map linking each pixel in the left
image to the corresponding pixel in the right image, is created. This process can be seen
in the psuedocode below:

Remark 4.2. The psuedocode below assumes a 3 by 3 window size as the code that will be
used to analyze performance will utilize the same dimensions.

Window Based Stereo Matching 4.3

Input: image, rows, columns input
Output: disparityMap output
1: rows← rows− 1
2: columns← columns− 1
3: while rows ̸= 0 do
4: curCollumn← 1
5: while curCollumn ̸= columns do
6: minimmumCost←∞
7: correspondingP ixel← −1
8: slidingWindow ← 1
9: while slidingWindow ̸= columns do

10: cost← getCost(rows, slidingWindow, curCollumn)
11: if cost < minimmumCost then
12: minimmumCost← cost
13: correspondingP ixel← curCollumn
14: end if
15: end while
16: end while
17: disparityMap[rows][curCollumn] = correspondingP ixel − curCollumn
18: end while
19: return disparityMap

§4.1.1 Drawbacks

Figure 6: Window size compared to depth
map (darker pixel shade refers to
greater depth) (Olga)

While this algorithm is easy to implement
and offers a reasonable amount of accu-
racy, there are multiple shortcomings to
the usage of this method. Firstly, creating
multiple windows across images as well as
iterating through multiple windows may
take a significant amount of processing
time, especially as the resolution of the
input image increases. Moreover, making
use of windows creates a problem known
as the window sizing problem. Formally
defined, “the window problem states that
the window size must be large enough to
include enough intensity variation for reli-
able matching, but small enough to avoid
the effects of projective distortion” (Takaeo). This means that when the window size is
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too small, an inaccurate disparity measurement is given as the window does not account
for differences in lighting around the pixel which may have significant effects on the cost
function. On the other hand, when the window size is too large the disparity measurement
may become inaccurate as it ignores the finer details in images and only gives significance
to bigger features. The figure on the right displays the effects that a smaller or larger
window may have when estimating depth. Finally, there is no method to determine
whether a pixel being searched for is occluded or present in both images which may lead
to significant errors when computing depth.

§4.2 Dynamic Programming Based Disparity Estimation

As opposed to the previously described window-based SSD algorithm, the DP algorithm
makes use of a function that computes a “cost” of matching two pixels together. By
minimizing the sum of this cost function for each pixel in the image, the corresponding
pixel is found for every pixel in the image. The minimization process can be described
mathematically below:

Theorem 4.4 (Cost Function Minimization)

cost = (leftP ixel − rightP ixel)2 (13)

d =

N∑
leftP ixel=1

cost(leftP ixel, yP ixel, disparity) (14)

Note that the cost function can be arbitrarily assigned as the algorithm will always
minimize the function. In this paper, the cost function will be equal to the differences
between pixel intensities will be squared, the same method that the window-based
algorithm uses except with the operation being formed on a singular pixel.

It is known that the sum of the cost function in all pixels must be minimized, but how
can the algorithm efficiently approach this problem? This is where Dynamic Programming
(DP) must be used. DP is an optimization technique that increases run-time by breaking
a general problem into sub-problems. As mentioned previously, camera calibration
guarantees that the corresponding pixel in the left camera must be found in the same row
in the right image. This allows for the matching problem to transform into a well-known
weighted matching problem which is commonly solved by DP. Imagine forming a n by
n grid with n representing the vertical resolution of the pixel. This grid contains n2

columns with the cell in the ith row and the jth column containing the cost of matching
the ith pixel in the left image’s row with the jth pixel in the right image. By finding
the shortest path, the smallest sum of weights, from the bottom left corner to the top
right corner of the grid, the best possible matching configuration is found. DP solves
this shortest path problem by first solving the problem for smaller sub-rectangles of the
entire grid. Moreover, because the pixel matchings must be unique, “a feature in the left
image can match to no more than one feature in the right image”, and the ordering must
be monotonic, meaning that the path cannot move backward and must be moving in a
diagonal manner (Cox). The method by which the algorithm constructs the optimal path
by making use of previous path calculations from smaller sub-rectangles is shown below:

dp[i][j] =
{
max(dp[i− 1][j], dp[i][j − 1]), dp[i− 1][j − 1]) + intensity[i][j]

11
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Remark 4.5. Formally explained, the figure above states that given the last cell of the grid
is (i, j), the first cell is (1, 1), and the path must not have any discontinuities, the second to
last cell must be one of the following: (i− 1, j − 1) , (i, j − 1) , or (i− 1, j). These options
represent the optimal path from a sub-rectangle spanning from (0, 0) to the listed positions.
Thus by adding the value of cell (i, j) to the paths ending on the previously mentioned cells,
all possible paths ending on (i, j) are constructed. As such, this process of using optimal
paths of previous sub-rectangles motivates the statement above. By repeating this process
for every pixel in the grid, an optimal matching pattern for every pixel from (1, 1) to (n, n).

§4.2.1 Advantages

Figure 7: Example of optimal pixel matching
path found by DP algorithm (Cox)

There are many theoretical advantages
of implementing a DP based algorithm
over a window based algorithm. As pre-
viously mentioned, DP allows for the re-
duction of run-time from a polynomial
nx operations into a linear n operations
due to utilizing individual pixel intensi-
ties. Moreover, making use of individual
pixels allows for the circumvention of
the window sizing problems associated
with the SSD based algorithm, increas-
ing accuracy significantly. Finally, mak-
ing use of DP allows the algorithm to
recognize when a pixel has no reason-
able matches. This can be detected as
a valid path must be diagonal in nature;
therefore when the pixel with the low-
est cost forms a straight line with the
pixel in question, the pixel is marked
as occluded as including the pixel would lead to an unoptimal cost and by extension,
a unoptimal matching arrangement. The figure to the right illustrates the concept of
constructing an optimal path while detecting occlusions.

§5 Implementation

Now that the general components of the algorithm have been discussed, the implementa-
tion and testing process can be described.

§5.1 Tools

In order to create a rudimentary binocular stereo system, two Logitech C270 webcams will
be attached to a wooden apparatus 3 inches apart. The cameras will then be connected to
a laptop to execute the program. In regards to the software aspect of implementation, the
Python programming language will be used in conjunction with a widely used Computer
Vision framework known as OpenCV which allows the program to query image data from
both cameras. The overall structure of the code can be explained through the following
outline:
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§5.2 Testing

In order to test the algorithm, I created several varying scenes with variable surroundings
and lighting conditions in order to verify the speed and accuracy of which both corre-
spondence algorithms preformed when inferring the depth of all objects on the scene.
For this paper major objects are classified as objects which are of significant size such
that they are clearly distinct from the background of a image. The figure to the right
gives an example of a scene used in testing. The outline below illustrates how all of
the steps discussed in previous sections combine in order to measure performance of the
correspondence algorithms in question.

1. Query images from left and right cameras.

2. Calculate intrinsic and extrinsic parameters

3. Correct for Image Distortion

4. Start first timer

5. Start first window based stereo correspondence algorithm

6. End timer when correspondence algorithm is finished running and store time taken

7. Start second timer

8. Run DP based correspondence algorithm

9. End timer when algorithm is finished running and store time taken

10. Measure true accuracy rate compared with a purposefully placed object on the
scene to true depth.

11. Store time taken and accuracy rates for data analysis.

12. Repeat for all test cases.

§6 Results and Conclusion

After running the algorithms against 20 various scenes, the following results were produced:

Scene Window Correspondence Runtime (ms) DP Correspondance Runtime (ms)

1 1300 302
2 1173 341
3 1420 629
4 1912 640
5 1341 452
6 1119 501
7 1132 643
8 2016 751
9 1251 364
10 1762 704
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Scene Window Correspondance Error (in) DP Correspondance Error (in)

1 1.95 0.34
2 2.40 1.12
3 1.33 0.78
4 2.45 0.51
5 1.50 1.20
6 2.04 0.83
7 2.09 1.33
8 2.41 0.35
9 1.41 0.47
10 2.27 1.20

All in all, the results show that the DP-based algorithm offers significantly lower
runtimes while returning a more accurate depth measurement compared to the window-
based algorithm. The results align with the theoretical conclusion that a DP-based
approach is superior to the standard method. However, the DP solution did not eliminate
computation errors. These errors may have been caused by inaccuracies in measurement
when verifying the true distance or when manually entering extrinsic parameters such as
the baseline measurement. Another possible explanation of such error may be associated
with the issue of making use of a stereo algorithm in which variations of lighting cause
misinterpretations of the cost function. As such, additional questions regarding the
validity of stereo systems as a whole can be brought into question. There may be better
methods of estimating image depth such as matching external sensor data with image
pixels, such as cutting-edge LiDAR sensors. Regardless, stereo vision systems are able to
offer low-cost solutions to depth estimation in many situations and with the added value
of optimization techniques such as DP, stereo systems continue to be a feasible solution
for attaining 3D understanding from images.

§7 Appendix

§7.1 Query Image Data

# query image data

cam1 = cv2.VideoCapture(0)

cam2 = cv2.VideoCapture(1)

ret1, frame1 = cam1.read()

ret2, frame2 = cam2.read()

§7.2 Camera Calibration

# Returns intrinsic and extrinsic parameters along with undistorted images

def calibrateCamera(f, leftImg, rightImg, xResolution, yResolution):

calibrationResults = []

# Manually Computed Parameters

a_x = 45

a_y = 45

o_x = xResolution / 2

o_y = yResolution / 2

f_x = o_x / (math.tan(a_x / 2))

f_y = o_y / (math.tan(a_y / 2))

calibrationResults.append(f_x)
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calibrationResults.append(f_y)

calibrationResults.append(o_x)

calibrationResults.append(o_y)

# Following lines are from official OPENCV Documentation for Camera Calibration

# termination criteria

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)

objp = np.zeros((6 * 7, 3), np.float32)

objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2)

# Arrays to store object points and image points from all the images.

objpoints = [] # 3d point in real world space

imgpoints = [] # 2d points in image plane.

images = glob.glob('leftCam.jpg')

for fname in images:

img = cv2.imread(fname)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Find the chess board corners

ret, corners = cv2.findChessboardCorners(gray, (7, 6), None)

# If found, add object points, image points (after refining them)

if ret == True:

objpoints.append(objp)

corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

imgpoints.append(corners)

# Draw and display the corners

cv2.drawChessboardCorners(img, (7, 6), corners2, ret)

cv2.imshow('img', img)

cv2.waitKey(500)

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints,

gray.shape[::-1], None, None)

h, w = leftImg.shape[:2]

newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))

img = frame1

# Undistort

dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

# crop the image

x, y, w, h = roi

leftImageUndistorted = dst[y:y + h, x:x + w]

calibrationResults.append(leftImageUndistorted)

# Repeat for right camera image

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)

# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)

objp = np.zeros((6 * 7, 3), np.float32)

objp[:, :2] = np.mgrid[0:7, 0:6].T.reshape(-1, 2)

# Arrays to store object points and image points from all the images.

objpoints = [] # 3d point in real world space

imgpoints = [] # 2d points in image plane.

images = glob.glob('rightCam.jpg')
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for fname in images:

img = cv2.imread(fname)

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# Find the chess board corners

ret, corners = cv2.findChessboardCorners(gray, (7, 6), None)

# If found, add object points, image points (after refining them)

if ret == True:

objpoints.append(objp)

corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria)

imgpoints.append(corners)

# Draw and display the corners

cv2.drawChessboardCorners(img, (7, 6), corners2, ret)

cv2.imshow('img', img)

cv2.waitKey(500)

img = frame2

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints,

gray.shape[::-1], None, None)

h, w = leftImg.shape[:2]

newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w, h), 1, (w, h))

# Undistort

dst = cv2.undistort(img, mtx, dist, None, newcameramtx)

# crop the image

x, y, w, h = roi

rightImageUndistorted = dst[y:y + h, x:x + w]

calibrationResults.append(rightImageUndistorted)

# returns f_x, f_y, imagecenterx, imagecentery, undistorted left image,

#undistorted right image

return calibrationResults

§7.3 Depth Calculation

def getDepthMap(xResolution, yResolution, disparityMap, baseline, f_x, f_y):

output = []

new = []

# Initialize Depth Map

for i in range(1, xResolution):

for j in range(1, yResolution):

new.append(0)

output.append(new)

new = []

# Apply Triangulation Equations

for i in range(1, xResolution):

for j in range(1, yResolution):

output[i][j] = (baseline * f_x) / (disparityMap[i][j])

return output
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§7.4 Window Based Correspondence Algorithm

def windowCorrespondance(leftImg, rightImg, rows, columns):

disparityMap = []

new = []

# Initialize Depth Map

for i in range(1, rows):

for j in range(1, columns):

new.append(0)

disparityMap.append(new)

new = []

rows = rows - 1

columns = columns - 1

for i in range(1, rows):

for j in range(1, columns):

minCost = 1000000000

matchedPixel = -1

slidingWindowCenter = 1

fixedWindow = [[leftImg[i - 1][j - 1], leftImg[i - 1][j],

leftImg[i - 1][i + 1]],

[leftImg[i][j - 1], leftImg[i][j], leftImg[i][j + 1]],

[leftImg[i + 1][j - 1], leftImg[i + 1][j],

leftImg[i + 1][j + 1]]]

while slidingWindowCenter < columns:

slidingWindow = [

[rightImg[i - 1][slidingWindowCenter - 1],

rightImg[i - 1][slidingWindowCenter],

rightImg[i - 1][slidingWindowCenter + 1]],

[rightImg[i][slidingWindowCenter - 1],

rightImg[i][slidingWindowCenter],

rightImg[i][slidingWindowCenter + 1]],

[rightImg[i + 1][slidingWindowCenter - 1],

rightImg[i + 1][slidingWindowCenter],

rightImg[i + 1][slidingWindowCenter + 1]]]

cost = 0

for k in range(0, 2):

for l in range(0, 2):

cost += math.pow((fixedWindow[k][l] - slidingWindow[k][l]), 2)

if minCost > cost:

minCost = cost

matchedPixel = slidingWindowCenter

slidingWindowCenter += 1

disparityMap[i][j] = matchedPixel - j

return disparityMap
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§7.5 Dynamic Programming Based Correspondence Algorithm

Code Inspired From psuedocode provided in: Cox, Ingemar J., Sunita L. Hingorani, Satish
B. Rao, and Bruce M. Maggs. ”A maximum likelihood stereo algorithm.” Computer
vision and image understanding 63, no. 3 (1996): 542-567.

def DynamicProgrammingCorrespondance(leftImage, rightImage, rows, columns):

cost = np.zeros(rows, columns) # Fill with zeros

disparityMap = np.zeros(rows, columns)

pathTracker = np.zeros(rows, columns)

occ = 0.0009 # threshold to determine if pixel is occluded

for row in range(rows - 1):

# Initialize DP values to be occluded for now

for i in range(columns - 1):

cost[1][i] = i * occ

for i in range(columns - 1):

cost[i][1] = i * occ

# Find optimal path for every pixel through dynamic programming

for i in range(columns - 1):

for j in range(columns - 1):

curCost = math.pow(leftImage[row][i] - rightImage[row][j], 2)

# Find all possible path sums through dynamic programming

# by using previous answers from smaller rectangles.

# Invalid paths indicate occluded pixels

m1 = cost[i - 1][j - 1] + curCost # Valid diagonal path

m2 = cost[i - 1][j] + occ # Invalid Vertical Path

m3 = cost[i][j - 1] + occ # Invalid Horizontal Path

cost[i][j] = min(m1, m2, m3)

if m1 == cost[i][j]:

pathTracker[i][j] = 1 # Pixel can be matched

elif m2 == cost[i][j]:

pathTracker[i][j] = 2 # Pixel is occluded because the occlusion

# cost is lower than matching it

# with the most suitable pixel

else:

pathTracker[i][j] = 3 # Pixel is occluded because the occlusion

# cost is lower than matching it

# with the most suitable pixel

# Reconstruct the best possible path by working backwards,

# and match the pixels which are not occluded

# meaning pathtracker for the two pixels is equal = 1

i = columns - 1

j = columns - 1

while i >= 0 and j >= 0:

if pathTracker[i][j] == 1:

disparityMap[row][j] = abs(i - j) # Match both pixel to each other

disparityMap[row][i] = abs(i - j)

i -= 1 # Continue along the path

j -= 1

elif pathTracker[i][j] == 2:

disparityMap[row][j] = None # Pixel is occluded
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#(Path was marked as invalid)

i -= 1 # Continue along the path

else:

disparityMap[row][j] = None # Pixel is occluded

#(Path was marked as invalid)

j -= 1 # Continue along the path

# Reset cost and path tracker for subsequent rows

cost = np.zeros(rows, columns)

pathTracker = np.zeros(rows, columns)

return disparityMap
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