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Summary

Fluorescence microscopy can be used for evaluating the distribution of

medical compounds in animal tissue. Fluorescence intensity decays in

time and due to scanning, but correcting for this can improve accuracy.

We present a mixed-effects model for fluorescence microscopy intensity

reconstruction. Model parameters are estimated via maximum likeli-

hood estimation, taking into account biological variability between an-

imals and measurement uncertainty. The initial fluorescence intensity

is reconstructed by decay correction.

The model is tested using different data sets. When estimating initial

intensities from intensities measured on samples subjected to chemi-

cal degradation, decay rate estimates are found to be robust against

variation in the ratio of measurement-induced variance to biological

variance. Photobleaching rates are found to have only modest signifi-

cance.

A synthetic data set consistent with previously determined parameters

is generated, and a forward model is applied; the maximum likelihood

estimates accurately recover the parameters, demonstrating the consis-

tency of the model.

1 Introduction

In vivo distribution studies aim to quantify how a given compound, e.g. medication, is

distributed in various types of tissue. A method to measure the compound in vitro is

fluorescence microscopy. Here a fluorescent label, or fluorophore, is conjugated to the

compound, and activated by laser excitation during microscopy. Activation causes a

delayed emission of light at a particular wavelength from the fluorophore. Measuring this

light facilitates mapping of the distribution of the fluorophore, and thus of the compound

of interest to which the fluorophore is conjugated.

The fluorescent labels chemically degrade over time, and the microscopy process ad-

ditionally degrades them through photobleaching. This may introduce large variation

which interferes with the interpretation of the biological variation between samples.

The goal of the present work is to model both modes of degradation such that a cor-

rection can be applied to measured intensities, yielding estimates of what the intensities

would be in the absence of degradation.

The microscope captures two different sources of fluorescence, the autofluorescence

channel and the specific channel. The former registers wavelengths outside the fluores-

cence band of the fluorescent label, where the spectrum is dominated by natural fluores-

cence from the tissue. This signal is independent of the medication given to the subject.

The latter channel captures the spectral band where the fluorescent signal emitted by the-

fluorescent label distributed in the tissue dominates. The light intensity in both channels

is subject to degradation.
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2 Data

Data set 1 (see Figure 1) displays the intensity1 of the specific channel in a location

of the microscope image where the fluorescent intensity is highest. This is taken for six

different groups (batches) of mice, each consisting of five or six individual mice. Tissue

from each mouse was scanned (and thereby photobleached) exactly once. The medical

compound varies among batches, and the time, ti, of the microscopy event (where t = 0

is the time of sample creation) generally varies among the mice.

Group 1 of this data set is a control group, and the mice in this group have had no

fluorescent substance injected.
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Figure 1. Data set 1. Horizontal axes are number of days in storage before imaging, vertical
axes are the maximum fluorescence intensity in each image.

Data set 2 (see Figure 2) also contains the intensity of the specific channel in a location

of the microscope image where the fluorescence intensity is highest. Here, however, the

intensities are given for only two different mice. These have been injected with compounds

labeled with the fluorophores Lectin and Cy5, respectively. Each sample was then imaged

(and photobleached) 300 times. Each imaging lasts approximately five seconds, and the

time between scans is approximately 1 second2. Thus, the total time between the first

and last scan is approximately half an hour.

1 considered a dimensionless quantity throughout this work.
2 Casper G. Salinas, Gubra; private communication.
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Figure 2. Data set 2. Horizontal axes are number of scans (photobleachings), vertical axes are
the maximum fluorescence intensity in each image.

Lastly, in the absence of data sets for tissue samples scanned more than once over

an extended period of time, and thus being subject to both chemical degradation and

photobleaching, we generated such a data set synthetically, as shown in Figure 3. This

data set is similar to data set 1, except that the generated data set contains intensities

from numerous tissue samples that have been scanned more than once. The process

behind the generation of this data is explained in Section 3.4.

3 Models

3.1 Simple Exponential Degradation Model

A newly acquired sample of animal tissue containing a fluorescence-labeled compound

may be stored for some time, during which the fluorescent label will be exposed to

chemical degradation. Each fluorescence scan imparts further degradation through pho-

tobleaching.

A deterministic forward model which describes both the chemical degradation and the

photobleaching is needed to analyze the problem, and a corresponding backward model

can then be used to reconstruct the theoretical fluorescence intensity at time zero from

an actual intensity measured at a later time.

To make the simplest possible model that can account for chemical decay and photo-

bleaching, we assume the following throughout this work:
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Figure 3. Synthetic data set. Horizontal axis is number of days in storage, vertical axis is the
maximum fluorescence intensity in each image. Each point corresponds to a photobleaching
scan. Some samples have been scanned more than once, as indicated by colors. The connections
between scans from the same sample (at different times) are not shown.

(1) Chemical degradation causes the intensity to exponentially decay with a rate con-

stant, α, which does not vary in time nor among individual animals, but may

depend on the specific compound and fluorescent label.

(2) A fixed fraction, e−κ (with κ ≥ 0; this definition will be useful later), of the

fluorescent label present at the beginning of each scan remains after the scan, with

the fraction 1− e−κ being lost to photobleaching. The value of κ may depend on

the specific compound and fluorescent label. However, we assume that scanning

parameters such as scan time and intensity of the scanning laser do not vary

between scans.

(3) The intensity obtained in a scan is proportional to the amount of labeled compound

remaining at the start of the scan.

Due to different uptakes and biochemical differences, the fluorescent intensity, I(t),

at time t, will differ between mice (biological variance) and between different medical

substances (compound variance). Further variation in the measured intensity is brought

about by measurement variance caused by the sensor. In principle, α might also differ

between mice. However as stated in assumption (1) this possibility is not considered in

this work.
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Assumptions (1) and (2) can be summarized in the following basic expression for the

intensity at time t for a sample having been exposed to M = M(t) scans:

I(t) = I0e−αt−Mκ. (3.1)

It follows that the initial intensity can be calculated from the intensity at time t, by the

following backward expression:

I0 = I(t)eαt+Mκ. (3.2)

On a side note, assumption (2) represents photobleaching as a discrete event. Photo-

bleaching might actually be modelled using different forms and combinations of expo-

nential decay[2]. If photobleaching is interpreted as a single exponential decay, one could

rewrite Equation (3.1) as I(t) = I0e−αt−Mβτ , where β and τ are respectively the decay

rate due to photobleaching and the duration of the microscopy event. However, since the

latter is (approximately) constant and very short (a sample is only exposed to the laser

for ∼ 5 s when scanned3) compared to the storage time of a sample (up to 60 days), we

choose to simply collapse the two constants β and τ into κ.

Taking the natural logarithm, letting J(t) = log(I(t)) and J0 = log(I0), Equations

(3.1) and (3.2) read

J(t) = J0 − αt−Mκ, (3.3)

and

J0 = J(t) + αt+Mκ, (3.4)

respectively. From these two equations it becomes apparent why it is advantageous to

work with log-intensities instead of directly with intensities: The effect of degradation

(α) and photobleaching (κ) becomes linear if we fix time (t).

In the following, the simple model (3.3) is refined by taking into account the stochastic

variance brought about by biological variance and measurement uncertainty.

3.2 A Statistical Model and Maximum Likelihood Estimation of the

Parameters

In this subsection, we build a simple statistical model and show how one can estimate

the parameters in the model. In a data set like data set 1 in Section 2, where each sample

is scanned only once, we can neglect photobleaching. Also, as we shall see in Section 4.2,

photobleaching might be a relatively weak effect, so it makes sense to first disregard this

effect, which effectively corresponds to setting κ = 0 in Equation (3.1).

3.2.1 Parameter estimation without photobleaching

In data set 1 each mouse has been scanned exactly once, and we need not take degradation

due to photobleaching into account for these mice. Setting κ = 0 in Equation (3.3) gives

J(t) = J0 − αt. (3.5)

3 Casper G. Salinas, Gubra; private communication.
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Table 1. List of symbols introduced for maximum likelihood parameter estimation.

Symbol Explanation

n Number of mice in the batch.
ti Time at which mouse i is scanned, where i = 1, 2, . . . , n.

J̃i Measured log-intensity for mouse i at time ti.
J0
i True log-intensity of mouse i at time 0.
J Expected log-intensity for the batch at time 0.
εi Log-measurement error of scan i.
σ2 Variance of log-measurement error.
σ2
J Biological variance of (true) J0

i within a batch.

Since each batch is treated separately we do not employ a batch index in the following.

We let ti denote the time at which sample i is scanned, and let J̃i denote log of the

measured intensity.

We take two stochastic effects into account in our model; firstly, that the different

samples are distinct, so that the starting intensities cannot be assumed to be equal, and

secondly, the measurement error occurring at each scan.

We assume that the log-intensities, J0
i , for all mice at t = 0 follow a normal distribution

with mean J and variance σ2
J , i.e., J0

i ∼ N (J , σ2
J ). In other words, we assume that

J0
i = J + ui, where ui ∼ N (0, σ2

J ) is the random effect of the sample tissue (the mice)

being distinct.

We also assume that the stochastic log-measurement errors follow a normal distribution

with mean zero and variance σ2, i.e., εi ∼ N (0, σ2). Our statistical model is then

J̃i = Ji(ti) + εi = J0
i − αti + εi = J − αti + ui + εi. (3.6)

Finally we assume that the stochastic variables J0
i , εi, i = 1, . . . , n are all independent.

Table 1 summarizes the different symbols used.

We now turn to estimating the parameters θ := [J0
1 , . . . , J

0
n,J , α]. The estimators ob-

tained using the maximum likelihood method are the parameter values that maximize the

likelihood function L, i.e., the joint probability density function (PDF) of the stochastic

variables, J0
i and εi, for i = 1, . . . , n. Since we have assumed the latter to be independent,

the joint PDF can be computed as the product of the PDFs for the individual stochastic

variables:

L = PDF(ε1, . . . , εn, J
0
1 , . . . , J

0
n, α,J ) =

n∏
i=1

PDF(J0
i ) · PDF(εi), (3.7)

PDF(J0
i ) =

1√
2πσ2

J

exp

(
−
(
J0
i − J

)2
2σ2
J

)
, (3.8)

PDF(εi) =
1√

2πσ2
exp

−
(
J0
i − αti − J̃i

)2

2σ2

 . (3.9)

This yields an expression for the likelihood function L where normalization factors have
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been omitted as they do not alter the solution to the subsequent optimization problem:

L =

n∏
i=1

exp

(
−
(
J0
i − J

)2
2σ2
J

)
exp

−
(
J0
i − αti − J̃i

)2

2σ2

 . (3.10)

We take the negative logarithm of the likelihood function to turn the maximization

problem into a simpler minimization problem:

− logL =
1

2

n∑
i=1

(J0
i − J

)2
σ2
J

+

(
J0
i − αti − J̃i

)2

σ2

 . (3.11)

We define ρ2 :=
σ2

σ2
J

and multiply the expression by σ2 (this does not alter the solution

to the optimization problem) to discard the denominator in the second term, such that

ρ2 acts as a weight in the optimization problem. This yields the following minimization

problem for estimating the parameters:

θ̂ = arg min
θ

1

2

n∑
i=1

(
ρ2(J0

i − J )2 + (J0
i − αti − J̃i)2

)
, (3.12)

where θ̂ denotes the vector of maximum likelihood estimates of the parameters. This is an

unconstrained least squares problem which can be solved by differentiating and solving a

linear system of equations, or simply by calling a minimization routine such as fminunc in

MATLAB. Introducing the constraint α > 0, we get a constrained optimization problem

that can be solved with routines such as fmincon in MATLAB.

The parameter ρ2 represents the ratio of the variance due to measurement to the

biological variance and is thus a measure of the relative importance of these sources

of variation among data points. While ρ2 is not known a priori, we can try different

educated guesses to adjust the weighing of each term in the optimization.

We need to supply the measured log-transformed intensities, J̃i, measurement times,

ti, and a value for ρ2. From this we acquire the maximum likelihood estimates for the

initial log-intensity, J0
i , for each mouse i, the mean log-intensity, J , and the chemical

degradation rate, α. These parameter values can then be used to backtrack and plot

the chemical degradation estimates as a function of time. These estimates ought to be

applied separately for each group of mice tested on different labeled compounds, or for

different batches of samples.

3.2.2 Parameter estimation with photobleaching

Assuming that each sample can be scanned more than once during its storage time, we

denote the number of times sample i has been scanned by the variable µ(i). If sample i

has been scanned three times (µ(i) = 3), we will have three measurements, J̃i1, J̃i2, and

J̃i3 at times ti1, ti2, and ti3, and similarly for other values of µ(i).

In data set 1, each sample was scanned only once (µ(i) = 1, for all 1 ≤ i ≤ n). This

led us to consider a method for generating an artificial data set with µ(i) ≥ 1, which
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statistically resembles the original data (see Section 3.4). A model which takes both

chemical degradation and photobleaching into account has an additional exponential

factor as follows:

Ii(tij) = I0
i e
−αtij

(
e−κ

)j−1
. (3.13)

We have chosen the convention j − 1 in the exponent of the photobleaching term to

signify that the photobleaching takes place right after scan j has started. When using

logarithmic intensities, the model becomes linear in α and κ:

Ji(tij) = J0
i − αtij − (j − 1)κ. (3.14)

As before, it is assumed that the log-intensities for all mice at t = 0 follow a normal

distribution, J0
i ∼ N (J , σ2

J ), and similarly for the measurement error term, except for

the addition of an index j designating the scan number of each sample, εij ∼ N (0, σ2).

The stochastic variables are then given as follows:

J̃ij = Ji(tij) + εij , (3.15)

εij = J̃ij − Ji(tij) = J̃ij − J0
i + αtij + (j − 1)κ. (3.16)

We again assume that the stochastic variables, J0
i and εij , are independent which lets

us express the joint PDF as product of each PDF for J0
i for i = 1, . . . , n and εij for

i = 1, . . . , n and j = 1, . . . , µ(i). We will ignore the normalization constant of each PDF

as this does not change the solution to the optimization problem. The likelihood function

in this case becomes:

L =

n∏
i=1

PDF(J0
i ) ·

µ(i)∏
j=1

PDF(εij)


=

n∏
i=1

exp

(
−
(
J0
i − J

)2
2σ2
J

)
·
µ(i)∏
j=1

exp

−
(
J̃ij −

(
J0
i − αtij − (j − 1)κ

))2

2σ2


 , (3.17)

where the second equality sign is understood to mean “equal up to multiplication by a

positive constant”. Applying the negative logarithm gives:

− logL =
1

2

n∑
i=1

(J0
i − J

)2
σ2
J

+

µ(i)∑
j=1

(
J̃ij −

(
J0
i − αtij − (j − 1)κ

))2

σ2

 , (3.18)

and the minimization problem becomes:

θ̂ = arg min
θ

1

2

n∑
i=1

ρ2
(
J0
i − J

)2
+

1

2

n∑
i=1

µ(i)∑
j=1

(
J̃ij −

(
J0
i − αtij − (j − 1)κ

))2

 , (3.19)

where θ = [J0
1 , . . . , J

0
n,J , α, κ]. Given measured intensities and corresponding times,

{(tij , J̃ij)}, and a value for ρ2, we can solve this minimization problem in the manner

discussed in the previous section. This yields parameter estimates θ̂ in the model that

takes both chemical degradation and photobleaching into account.
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3.3 Casting the Model as a Mixed-effects Model

While we have derived the model and estimators from first principles, the model fits into

the framework of linear mixed-effects models. Indeed, for each i, j

J̃ij = J + ui − αtij − (j − 1)κ+ εij ,

where we have written J0
i = J + ui. So the model depends both linearly on the vector

of fixed effects β = (J , α, κ), and random effects u = (u1, . . . , un). In particular, there

exists matrices X and Z so the model is written

J̃ = Xβ + Zu + ε.

In practical terms, R and Python libraries can be used for estimating the parameters,

and the properties of the estimators are well understood, see e.g. [4].

3.4 Generation of Synthetic Data

Since data set 1 does not contain enough data points for a reliable estimation, and the

samples lack a history of both chemical degradation and photobleaching, we instead test

the method proposed in the previous section using a synthetic data set. The artificial

data are generated using the assumptions stated in Section 3.1, and the parameters in

the model are held fixed.

We generate 2000 independent subjects, each with its own initial intensity drawn from a

log-normal distribution, such that the log-intensities are normally distributed. For subject

i, we then simulate ki measurements, with ki being discrete and i.i.d. stochastic variables

between 1 and 5 with uniform probability. The time between measurements for a single

subject is exponentially distributed, with a mean of 15 days between measurements.

When measuring at time t′, the model is applied along with the chosen parameters to

get the current intensity of subject i at time t′ based on the previous intensity.

Measurement noise is multiplied onto the values before the values are saved. After a

value has been saved, the photobleaching effect is simulated by multiplying the intensity

with a constant factor. To summarize, we perform the following steps for each subject:

(1) Initialize an intensity value by sampling from a log-normal distribution.

(2) Randomly decide number of scans to perform on the subject (1 ≤ ki ≤ 5).

(3) Sample time point of next imaging event, tnext event.

(4) Forward time to next event and scale intensity value by e−α∆t,

where ∆t = tnext event − tnow.

(5) Apply measurement noise to the intensity value and save it4.

(6) Apply photobleaching by multiplying with known constant.

(7) If another image is taken, repeat from (3).

4 The measurement noise only affects the saved values and hence does not affect later mea-
surements.
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Table 2. Estimated parameters where ρ2 = 0.01. Groups 2 and 6 contain only five ob-

servations each.

Group α̂ Ĵ Ĵ0
1 Ĵ0

2 Ĵ0
3 Ĵ0

4 Ĵ0
5 Ĵ0

6

1 0.0076 5.3721 5.3913 5.4270 5.3719 5.3783 5.3498 5.3144
2 0.0400 9.8139 9.2198 10.3299 10.2738 10.0215 9.2245 NA
3 0.0500 8.9859 8.9673 9.3040 10.1789 9.2171 7.7028 8.5453
4 0.0562 8.2881 8.3320 7.9539 8.4539 8.1021 8.0109 8.8758
5 0.0014 8.2317 9.0082 7.8910 6.5811 8.2911 8.9944 8.6242
6 0.0352 8.7075 8.6780 8.8225 9.2974 8.5840 8.1554 NA
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Figure 4. Intensity vs. time modelled using maximum likelihood estimates α̂, Ĵ and Ĵ0
i

listed in Table 2. Measured values (Ĩi = exp(J̃i)) and estimated initial values (Î0
i =

exp(Ĵ0
i )) are shown as red resp. blue points.

4 Results

4.1 Chemical Degradation

We perform the optimization using Equation (3.12) with the fluorescent specific data for

the six different groups using MATLAB’s fmincon function with an interior-point algo-

rithm. Results acquired for ρ2 = 0.01 are summarized in Table 2, and the corresponding

plots of intensity vs. time are shown in Figure 4.
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Figure 5. Similar to Figure 4, plots showing Group 2 and varying values of ρ2.

The sensitivity of results on the choice of ρ2 is examined by repeating this analysis for

Group 2 with different values of ρ2. The results are shown in Figure 5. We note that the

estimates α̂ and Ĵ seem to be very robust against variations in ρ.

The estimation of the initial intensity of each mouse enables the correction and compar-

ison of samples with different histories as seen in Figur 6, where the observed intensity

is compared with the corrected intensity, i.e. the estimated initial intensity. This has

been done for each individual mouse in each group. We observe that the corrections

made appear reasonable, and that the corrected intensities generally tend to be of larger

magnitude than the observed intensities, as one would expect due to the degradation.

However, the standard deviation of the observed intensities (at multiple different times)

and the standard deviation of the predicted intensities at time t = 0 is roughly the same

in all cases. Thus, our corrections have not reduced the standard deviation of the samples

(see the discussion in Section 5.2). Lastly, it is seen from group 1 (the control group) that

there is no significant difference between the corrected intensities and the observed in-

tensities, while there seems to be a distinct difference for the other groups (except group

5), as desired. The exception of group 5 is likely due to the specific compound used for

this group.
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Figure 6. A comparison of the intensity of each mouse in group 1-6 before (left) and

after corrections (right). The corrections are acquired by estimating the initial intensity

of each mouse with the proposed model.
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Table 3. Best fit parameters and residual spread for photobleaching data using the model

in Equation (4.1).

Chemical Compound κ̂ ĉ b̂ σresid

Lectin 7.227 · 10−3 3170.1 2403.4 86.4
Cy5 1.536 · 10−2 4153.8 3426.6 161.6

4.2 Photobleaching

In data set 2, the time span between the first and last data point is very small compared

to data set 1, so we can neglect chemical degradation. We therefore fitted the data with

the model

I(n) = c · e−κn + b, (4.1)

i.e., an exponential decay with constant background intensity, as shown in Figure 7.

The inclusion of a constant background intensity as an extra parameter was found to

dramatically improve the fit compared to the model with no background. The fitting

parameters yielding the best fits using the model with background are summarized in

Table 3, along with the residual spreads.
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Figure 7. Top row: data set 2, measured intensity vs. number of scans (dots), and best

fit (lines) using the model given in Equation (4.1) for the fluorophores Lectin (left) and

Cy5 (right). Bottom row: residuals and their 20-point moving averages.



15

0 20 40 60 80 100 120

Day

0

2000

4000

6000

8000

10000

12000

14000

16000
In

te
ns

ity

Figure 8. Intensity vs. time modelled using maximum likelihood estimates α̂, Ĵ and Ĵ0
i

for the first 5 mice of the artificially generated data set. Synthesized measurement values

(Ĩi = exp(J̃i)) and estimated initial values (Î0
i = exp(Ĵ0

i )) are shown as red resp. blue

points. The true synthesized initial values are shown as cyan crosses.

4.3 Artificially Generated Data

We have also applied Equation (3.19) to the artificially generated data. The results of

(some of) this optimization can be seen in Figure 8. From this figure, we notice that

the predicted initial values lie very close to the true generated initial values. This is true

not only for the first 5 mice but for all 2000 mice in the data set. The average relative

deviation between the true generated initial values and the estimated initial values, i.e.

the difference between the true I0
i s and the estimated I0

i s, is 0.3907%, and the largest

relative deviation is 2.4933%.

5 Discussion

5.1 Discussion of Assumptions

The model contains multiple assumptions (see Section 3.1) worth discussing. Firstly, we

assume that the chemical degradation can be described by an exponential decay in the

intensity. This corresponds to a first order decay of the fluorescent labels and is one of

the simplest possible reactions we can imagine. The experiments performed in [1] also

suggest that the fluorescence decay over time can be modelled as a first order exponential.

One could consider using a more complex reaction type assumption, but to justify this

one would need more data. With the currently available data, we cannot say much about

the reaction type, and have for this reason chosen this very simple model for intensity

decay.

The second assumption of the model is that only a fixed fraction of the fluorescent
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label survives each scan due to photobleaching. This is another simplifying assumption.

In reality, the effect of photobleaching is far more complex than simply removing a set

fraction of the molecules. It could e.g. be a single-exponential decay or even more complex

than this [2]. However, as the samples are only scanned for a few seconds and typically

only 1, 2 or 3 times5 during a storage period lasting from several days to a few weeks,

the total time of photobleaching of each sample is very small compared to the time scale

of chemical degradation. Thus, we can approximate the behavior of the fluorescent labels

in these short time intervals of photobleaching by simply removing a set fraction of the

intensity.

The third assumption of the model is that the intensity obtained in a scan depends

only on the amount of labeled compound remaining at the start of the scan. Thus, no

other compounds, lighting or other effects contribute to the measured intensities. This is

once again a simplifying assumption, as some effects might influence the measurements

in reality. However, if the measurements are made in a controlled environment, we expect

these effects to be quite small, and therefore the assumption might hold to a large extent.

Additionally, we assume that the log-intensities for all mice at t = 0 follow a normal

distribution with mean J and variance σ2
J , i.e., J0

i ∼ N (J , σ2
J ), and that the log-

measurement errors also follow a normal distribution, this time with mean zero and

variance σ2, i.e., εi ∼ N (0, σ2). These assumptions are very practical as they lead to

simpler equations when finding the maximum likelihood estimates of the parameters,

compared to other possible distributions. Once again the data is very limited, and it is

therefore very difficult to test if these assumptions are reasonable. For example, we have

no data for the mice at day 0, and thus we cannot know whether the assumption on the

initial log-intensities is reasonable. To assess this assumption, we need more data.

However, we can discuss the assumption on the measurement error. We expect the

microscope to measure the correct value on average, though the measured values of

course vary on each measurement. We also assume that the variance of the measurement

errors is constant. Though this is a very convenient assumption, it is probably not correct.

As the fluorophores decay, measuring intensities accurately becomes more difficult, and

information is lost as intensities decay below the sensitivity threshold of the microscope.

Thus, the measurement errors increase over time. This could be incorporated into the

model (see Section 6), but we have not had the time to do so.

5.2 Discussion of Results

5.2.1 Biological variance and measurement variance

We find that estimates of initial intensities J0
i depend strongly on the parameter ρ2,

whereas the chemical decay rate α is rather robust against variations in ρ2. This is to

be expected; when ρ2 is increased, we force the values of J0
i to have less variance in the

optimization problem in Equation (3.12), and vice versa.

While an estimate for ρ2 could be made given data that allowed for estimates of both

σ2 and σ2
J , all we can do with the data available to us is to describe the behavior of

the solutions acquired by the model for different values of ρ2. As ρ2 → ∞, σ2
J becomes

5 Casper G. Salinas, Gubra; private communication.
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smaller compared to σ2. This corresponds to the extreme case where “all mice are created

equal”, i.e., there is no biological variation, and all mice have exactly the same intensity

at time t = 0 (and thus also at all later times). In this case, all variance observed in

measured intensities can be ascribed to the measurement error. The other extreme case

is ρ2 → 0, where σ2
J becomes much larger than σ2. This is the case when there is no or

very little uncertainty associated with measurements, and all variance in measurements

can be ascribed to biological variance.

The truth lies somewhere between these two extremes; the problem is finding out

where. σ2 is likely easier to estimate than σ2
J . For instance, as mentioned, in data set 2

we neglect chemical degradation and we can easily correct for photobleaching. There is

also no biological variance since data points from this series of repeated scans come from

the same sample. Sensor noise therefore dominates the remaining variation in the data,

and the variance of the residuals of the model given by Equation (4.1) in data set 2 (cf.

Table 3) might be a first step towards estimates of σ2. This approach presupposes that

the residuals are dominated by noise, or equivalently, that the model with which the data

are fitted accurately captures the relevant dynamics.

The residual plots in Figure 7 suggest that the exponential decay with constant back-

ground models the data set for Lectin very well, as the residuals are small and randomly

distributed. Larger residuals displaying a non-random distribution with clear undulations

are found for Cy5, implying that there is an additional effect apart from the exponential

decay in the model. Deviations from the model appear to oscillate with a period of about

100 scans, corresponding to about 10 minutes. While we do not have a definite expla-

nation for this, it is possible that the scanning conditions (duration, temperature, laser

intensity, etc.) shifted during the recording of this data set to produce a non-constant

decay rate, or some (possibly periodic) external error source may have been at play.

These observations suggest that σ2 can be reliably estimated for Lectin based on the

data available, whereas estimates of σ2 for Cy5 would be more questionable. Estimating

σ2
J is more difficult. To do this, we would need measurements of many samples on day

0 with the only source of variation being the samples coming from different mice. De-

termining ρ2 requires both σ2 and σ2
J to be known (or estimated), which is not possible

based on the available data. Indeed, this would require a batch where there are multiple

samples and where at least one sample is scanned more than once. However, in data

set 1, each batch was scanned only once, and in data set 2, there was only one sample

(for each fluorophore).

Overall, we would expect the biological variance to be much larger than the variance of

the measurement errors. Thus, unless otherwise noted, we have used a value of ρ2 = 0.01

in this report.

5.2.2 Initial intensity estimates

Inspecting Figure 6, we see that we were able to reorder the observed intensities into the

order of the predicted intensities at time t = 0. We note that with our choice of ρ2 = 0.01,

the standard deviation of the observed intensities (at multiple different times) and the

standard deviation of the predicted intensities at time t = 0 is roughly the same in all

cases. This should not be interpreted to mean that the initial intensities given by the
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model are not more accurate than using the measured intensities directly. Using a small

value of ρ2 means assuming that the biological variance is large compared to variance

due to measurement errors. In the case of data set 1, this turns out to mean that the

model predicts that the variance in the data is due to biological variance. Since biological

degradation and photobleaching both lower fluorescence, using the measured intensities

as estimators of initial intensities would systematically underestimate intensity, and these

estimators would therefore be biased. The estimators given by the model do not signif-

icantly reduce the variance (as it is ascribed to biological variance), but should remove

the bias. The benefit of the estimates (in the particular case of data set 1, with ρ quite

small) thus lies in removing bias, not in reducing variance.

As previously discussed, ρ2 determines the standard deviation and variance of our esti-

mates of the initial intensities. Therefore, the reduction in variance between the observed

intensities and the predicted intensities at time t = 0 depends crucially on the value of

ρ2. A larger value of ρ2 will lead to a greater reduction in variance, and vice versa.

As previously discussed, the assumption that the measurement errors on the loga-

rithmic scale are of the same variance, independent of time, is quite dubious. When

the fluorescence from the label has low intensity, ambient fluorescence may drown out

the signal, causing the relative measurement uncertainty to increase with time. Thus, a

more realistic assumption would be that measurement errors are on the same order of

magnitude on the absolute scale. We can correct for this by making the variance of the

measurement errors larger with time, which would mean that earlier data points a given

greater weight than the later data points. We have not had the time to implement this

at this point. Additionally, we can likely get better results by having access to more data

and better estimates of the parameters in the model.

5.2.3 Synthetic data

The results obtained from applying the model to the synthetic data (see Section 4) are

likely to be overly optimistic. The generated data behaves exactly as we assume in the

model, and thus the model ought to give a good fit to the data. Thus, testing the model

on the artificially generated data does not tell us if the model actually works on real

data, but it does act as a sanity check, showing that the model works if the data behaves

as we assume.

5.2.4 Impact of photobleaching

The estimation of the decay of the fluorescent labels due to photobleaching shows that

only a very small percentage of the intensity is lost at each scan for the two chemicals

Lectin and Cy5. Since each sample is only scanned a few times in practice, the overall

effect of photobleaching is minor for both Lectin and Cy5. If the same is true for other

fluorescent labels, the effect of photobleaching might be negligible. However, we once

again need more data and testing to state this with certainty.
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6 Future Work

Assuming that the signal on a given pixel in a picture (e.g. from a microscope) is not

fully extinguished by degradation, and neglecting the quantization effects, an estimate

of its original intensity should be possible to do well by reversing the scaling. However,

to improve the estimates, we would need more data. Ideal data should be similar to the

synthetic data where many subjects have been measured several times such that both

the chemical degradation and photobleaching parameters can be estimated. This would

then allow for also testing the model assumptions, and if they are incorrect or lacking, a

new model could be proposed.

Additionally, it would make sense to estimate the influence of the measurement error

vs. the biological variance in an isolated manner. To estimate the variance σ2 of the

sensor, a data set like data set 2, but with more subjects and more chemical compounds,

would be helpful. As for the biological variation, σ2
J , between the mice, this could best be

estimated with a large number of of measurements of the intensity at day 0 with different

subjects injected the same compound. This would allow a better estimate of ρ2.

The objects, being photographs, represent real objects, and therefore there is a corre-

lation with respect to the intensity value in neighbouring pixels. Assuming data is not

an issue, it would then be possible to design a neural network which, given an image of a

sample that has degraded and been affected by photobleaching, could recreate how the

images would have looked on day 0. Work by Gao et al. demonstrates a neural network

which restores vintage photographs [3].

This would require images of the relevant tissue at day 0 and at various later points

for several subjects. It would here be important that the images are aligned such that a

pixel in an image from day 0 corresponds to the same point in the tissue in later images

of that subject.

Both the chemical degradation and the photobleaching will, as time progresses, end up

degrading the fluorescence label to a degree where it will not be possible to distinguish

the intensity of the fluorescence from the background. This means that the model will

tend to undershoot as time progresses, hence have intensity values of smaller magnitude

than of what is actually the case. We therefore propose that a more sophisticated model

be developed which takes this into account, for instance by introducing a weight term.

For the models presented in this report one should also investigate how certain the

parameter estimates are, quantifying how much we would expect the parameters esti-

mated using the new data to deviate from the parameters estimated using the original

data, given that the experiment in its entirety was repeated. Depending on the model,

one may do this using bootstrapping.

7 Conclusion

From the above conducted analysis and results, we conclude that the developed models

enabled the estimation of the initial intensity value of each fluorescent label for each

mouse.

Due to the nature of data available to us, we could not estimate the value of ρ2. It

is necessary to have an idea of ρ2 to estimate the initial intensity values. We observed
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that the value of ρ2 had a large influence on the individual estimated initial intensity

values, J0
i , but a much smaller effect on the estimate of the expected initial intensity of

the sample, J , and decay rate, α.

Furthermore, we conclude that the effect of the photobleaching may be negligible as

its effect upon the degradation of the fluorescence is minor.

All in all, we have found and applied a model that takes into account both the chemical

degradation of the fluorescent labels as well as the degradation due to photobleaching,

thus permitting the correction and comparison of samples with different histories.
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