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2 Cheng et al.

Summary

This report describes work performed during SWI 2023 at the Univer-

sity of Groningen in relation with Problem 1 posed by the company

ASMPT.

ASMPT makes a very large number of different machines for manufac-

turing of electronic devices. They have detailed simulation software of

one of these machines and they compare the results of this with phys-

ical experimental results. There is a significant difference between the

simulated and measured data, and it is the goal of this work to study

how to estimate the parameters in the simulation model using the ex-

perimentally measured frequency response.

First, two toy models are studied to understand the challenges of pa-

rameter estimation in the frequency domain. Later, optimization meth-

ods are applied. Several different approaches of reducing the dimen-

sionality of the parameter space are explored, including determining

the parameter sensitivity. A suggestion for increasing the detail of the

model, specifically related to the machine base, is also outlined.

In the summary, we supply a discussion of the key insights we gained

during the week.

1 Introduction

With the increase in demand of electrical components the manufacturing has to be in-

creasingly efficient and reliable. ASMPT is a world spanning company that produces as

very large number of different machines for rapid manufacturing of electronic devices.

Among these are wire bonding machines, shown in Figure 1, used in chip manufacturing.

Wire bonding is the process of installing thin wires that connect internal chip areas to

external breakout pads, see Figure 2.

Crucial to the efficient operation of these machines is that they can operate at high

speed and hence they require control systems that will ensure vibrations generated in the

system do not degrade the quality of the operations. To enable this measurements are

taken where the machine is actively vibrated and its frequency response determined. In

addition a detailed simulations of the vibrations are generated based on the CAD design

of the machine. These simulations can then be used to enable high quality control of the

vibrations to be made.

2 Problem Description

The problem of interest is how to make the computational simulations replicate, as best

as possible, the measurements of the frequency response. To do this it is necessary to

identify the values for the numerous parameters in the model used for the simulations.

Some of these parameters can be measured by careful procedures (such as the mass of any

particular part) but other parameters cannot be measured independently and must be

identified by fitting the results of the model to the data. This report discusses procedures

for performing such fitting.
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Data-driven Parameters Tuning 3

Figure 1. An ASMPT

wire bonder machine.

Figure 2. “Gold wire ball-bonded on a silicon die” by Mister

rf, licensed under CC BY-SA 4.0.

Figure 3. Details of the CAD design.

An image of the CAD model can be seen in Figure 3. Here the large grey lower region

is the chassis, the green is the base, the red is the x-stage, which can move horizontally in

the x-direction, the purple is the y-stage, which can move horizontally in the y-direction,

and the blue is the z-stage (also called the θ-stage), which is a rotating arm that performs

the wire bonding. In addition to these main features the system has some small flexibility
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Figure 4. Outline of the data and simulations used in this report.

in the joints and guides that enable motion of each of the stages, out of their specific x-,

y-, or z-plane. This flexibility is described by “parasitic elements” in the model. Some

of these parasitic phenomena can be quantified by measurements, however there is great

uncertainty in these measurements and, in addition some parasitic behaviour cannot be

quantified independently in any easy manner.

The overall system that we are interested in can be summarised in Figure 4. Here the

measured data from experiments is given by D0, while S(p) denotes the full nonlinear

numerical model built in Simulink with the Simscape Multibody toolbox. The MATLAB

program linmod is applied to the S(p) to produce a linearised model Slin(p) which can

then generate D̂, the computed frequency response of the linearised system. Finally some

norm of the error between the simulated and measured data, D̂−D0 will be exploited to

determine how well a specific set of parameters p0 fits the measurements so that optimal

parameters values can be identified.

3 Approach

This report sets out the approaches that were considered for finding the optimal set of

parameters to make the data from the simulations fit the measured data. The full model

is very complicated and so we will start by considering two highly simplified models in

order to gain some insight into the difficulties that might arise in fitting parameters to

such models of oscillations. We will then look at possible cost functions that might be used

to assess the quality of the fit between the simulated and measured data. Subsequently

we focus our attention on how to seek optimal parameters conditions when the number

of parameters is very large, as this is a serious barrier to using conventional methods of

optimisation.

4 Modelling

In this section two toy models of the full dynamic model are investigated, and an alter-

native model for the machine base is considered.
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Figure 5. Diagram of simple one-mass oscillator.

4.1 Toy Models

We consider two very simple models of mass-spring-damper systems to see what type of

behaviour occurs and how parameters might be fit. Additional details and code for these

models can be found online1.

4.1.1 One-Mass Oscillator

A single point mass attached to a stationary structure by a single spring and damper is

studied. The mass can be subjected to some external force, and the position, x(t), of the

mass can be observed. This simple model is demonstrated in Figure 5.

The mass m1 is assumed to be attached to a reference frame with a spring with

spring constant k1 and damper with damping constant d1. The mass will thus oscillate

horizontally around its equilibrium point. We assume that the mass can be determined a-

priori using a scale. This allows us to reduce the design problem from three to two design

variables and to consider the scaled stiffness constant k1/m1 and the scaled damping

constant d1/m1.

The equation of motion is

m1ẍ(t) + d1ẋ+ k1x(t) = F (t), (4.1)

where F (t) is an external force. Initial conditions complete the problem.

In the following, we study the frequency response of the system. The response is the

ratio of the position to the forcing, and depends on the parameter values m1, k1 and d1.

The state-space representation of the mechanical system allows to determine the trans-

fer function. We therefore consider this representation here. The state-space representa-

tion is written in terms of the state vector X(t) defined as

X(t) =

(
x(t)

ẋ(t)

)
. (4.2)

The output and control are written as y(t) and u(t), respectively, where y(t) = x(t),

u(t) = F (t). Unlike in more realistic applications, the equation governing the motion of

the single point-mass is a linear ordinary differential equation. This allows us to recover

the classical results obtained using Laplace transforms. We furthermore consider to have

a single control variable only. This control parameter u has no part in the output. The

1 https://github.com/ziolai/software/blob/master/swi-groningen2023.ipynb
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state-space representation then reads

Ẋ = AX +Bu, (4.3)

y = CX +Du, (4.4)

where

A =

(
0 1

−k1/m1 −d1/m1

)
, B =

(
0

1

)
,

C =
(
1 0

)
, and D =

(
0

0

)
,

(4.5)

where u = F (t) is the external force exciting the system equally at all frequencies with

an amplitude F0.

The observability of the system depends on the rank of the matrix[
C

CA

]
=

(
1 0

0 1,

)
(4.6)

which in this case is equal to 2, and therefore the system is fully observable and control-

lable.

The transfer function of the system is defined in the Laplace domain with the variable

s, given by

H(s) =
1

m1 s2 + d1 s+ k1
. (4.7)

After setting s = j ω, where ω is the frequency, we obtain the transfer function in the

frequency domain

H(ω) =
1

−m1 ω2 + j d1 ω + k1
. (4.8)

A numerical example using the parameter values of the z-stage of the wire bonder machine

highlights the insight we may gain from the transfer function. The mass of the z-stage

was assumed as m1 = 0.1363 kg, the spring constant and damping with respect to the

connection to the y-stage was assumed as k1 = 1.4429 Nm/rad and d1 = 0.0031 Nms/rad.

Regarding the z-stage as a single mass-spring-damper system, we get the frequency re-

sponse displayed in Figure 6.

The graph in the frequency domain shows three characteristics. First, for small frequen-

cies we observe the limit case for ω → 0. This limit allows due to log(|H(ω)|) = log(1/k1)

to determine the spring constant k1.

Second, in the limit ω →∞ we haveH(ω) = −1/(m1ω
2). Thus in this limit log(|H(ω)|) =

log(1/(m1))− 2 log(ω). This limit allows to determine the value of m1, and we note the

slope is 40 dB per decade.

Finally, the value of the damping coefficient d1 can be determined from the value of

H(ω) at the resonant frequency ω0 =
√

k1

m1
, where

H(ω0) =
1

jd1
√
k1/m1

. (4.9)

The Bode plot for the amplitude therefore allows to determine all three parameters of

the single mass-oscillator.
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Figure 6. Bode diagram of simple one-mass oscillator using the parameter values of the

z-stage.

m1

x(t)
m2

y(t)

k1 k12

k2

d1 d12

d2

Figure 7. Diagram of simple two-mass oscillator.

Even though the transfer function is linear in forcing F0, it is non-linear in the pa-

rameters k1, d1 and m1. The optimization problem we wish to solve is thus non-linear in

these parameters.

4.1.2 Two-Mass Oscillator

The second toy model has a single point mass attached to a stationary structure by a

single spring and damper, which is subjected to some external force. However, we also

consider that there is a second point mass which is connected by springs and dampers,

both to the first mass and also to the stationary structure. The second mass and its

connections are an attempt to model the parasitic behaviour that occurs in the real

system. Hence our only observations are on the position, x(t) of the first mass, and the

response is the ratio of the motion of this first mass to its forcing.

We want to investigate the influence of adding more spring-dampers to a two masses

system. Therefore, we compare the behavior of the system in Figure 7 with the sys-
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tem behavior without the spring and damper connecting mass m2 with the stationary

structure.

The dynamical system reads

M

(
ẍ(t)

ÿ(t)

)
+D

(
ẋ(t)

ẏ(t)

)
+K

(
x(t)

y(t)

)
=

(
F (t)

G(t)

)
, (4.10)

with the diagonal mass matrix

M =

(
m1 0

0 m2

)
,

the stiffness matrix

K =

(
k1 + k12 −k12
−k12 k2 + k12

)
,

and the damping matrix

D =

(
d1 + d12 −d12
−d12 d2 + d21

)
.

We regard the spring k2 and damper d2 to be parasitic. In the following comparison we

investigate the cases k2 = d2 = 0 and k2, d2 > 0.

Transferring the ordinary differential equation in the frequency domain gives the rep-

resentation

F (ω) = Z(ω)X(ω) , (4.11)

where Z(ω) is the impedance matrix given by Z(ω) = −ω2M − j ωD + K. Solving for

the unknown displacement can thus be done as X(ω) = H(ω)F (ω), where

H(ω) = Z−1(ω) (4.12)

is the transfer function.

For our system, we can see that the influence of k2 and d2 affects the whole system

behavior. The transfer function then reads

H(ω) =
1

det(Z(ω))

(
H11 −(jωd12 − k12)

−(jωd12 − k12) H22

)
, (4.13)

where det(Z) depends on d2 and k2 in almost all coefficients of the monomials of ω and

the diagonal elements are

H11 = −ω2m2 − jω(d12 + d2) + k12 + k2, (4.14)

and

H22 = −ω2m1 − jω(d1 + d12) + k1 + k12. (4.15)

The change in the system behavior is displayed in Figure 8, where the external force acts

on mass m1, and Figure 9, where the external force acts on mass m2. The parameter

values are chosen accordingly to the y-stage and the z-stage of the wire bonder machine.

While the change in the system response by a force on mass m1 is negligible, the

dynamics of mass m1 on a force acting on mass m2 are larger. Figure 9 shows, for the

model with parasitic connections of mass m2 to the stationary structure, an oscillating
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Figure 8. Bode plot of the two-mass oscillator. Systems response of mass m1 on a force

on mass m1. Left: Additional connection with k2, d2 ̸= 0 to the stationary structure.

Right: No connection with k2, d2 = 0.

behavior for large frequencies. The decay of the magnitude is smaller for the model

including the additional parasitic spring and damper.

The two changes in the slope of the magnitude in Figure 9 roughly correspond to the

resonance frequencies of the single one-mass-system for the z-stage, see Figure 6, and the

y-stage.

4.2 Alternative Model of the Chassis

The chassis of the machine is currently described in the model by a single rigid body

at a fixed position with appropriate mass and inertial parameters. This is reasonable for

any part of the machine where the speed of wave propagation in the part is sufficient

that it moves quasi-statically. However, for the chassis, this might not be an adequate

approximation since it has dimensions of around 1 m and shear waves travel at around

3 km/s, so that frequencies of over 1 kHz may create waves that are as short as the part.

A more complex model of this could be created, using the finite element method (FEM)

for example, however here we describe an alternative approach that retains the simplicity

and number of parameters currently exploited in the rigid body model but accounts for

wave propagation.

We consider an idealised base consisting of a uniform block of elastic material of height

L. On top of the block the other parts of the machine are placed and these dictate a
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Figure 9. Bode plot of the two-mass oscillator. Systems response of mass m1 on a force

on mass m2. Left: Additional connection with k2, d2 ̸= 0 to the stationary structure.

Right: No connection with k2, d2 = 0.

known displacement in the horizontal plane x(t), y(t), and vertical displacement z(t). We

are interested in determining the response by quantifying how the resulting horizontal

and vertical forces acting on this surface depend on the displacements.

Our simplification will be that the motion of the block is uniform at each height z

and that the horizontal motion (u, v) induces shear waves and the vertical motion, w,

induces compressive waves. The bottom of the base is typically on legs and these are

quite weak so for the purposes of modelling it is adequate to assume the bottom surface

is stress-free. We now give details of the behaviour in the x direction but the other two

directions are similar.

The governing equation is

ρ
∂2u

∂t2
= µ

(
∂2u

∂z2
− ds

∂u

∂t

)
, (4.16)

where ρ is the material density, µ its shear modulus and ds the shear damping coefficient.

Note the equation for v is identical, and for w is the same except µ is replaced by λ+2mu,

where λ is the first Lame coefficient, and ds replaced by the compressive dissipation dc.

Boundary conditions for the problem are that

u(t, 0) = x(t) and µ
∂u

∂z
(t, L) = 0. (4.17)

If we move to frequency space, by either taking Fourier transforms or simply considering
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x(t) = xω exp(−jω) with u(t) = uω(z) exp(−jω) we can find that the solution is given

by

uω(t) = xω

exp
(
(2L/c)

√
ω2 − jdsω

)
1 + exp

(
(2L/c)

√
ω2 − jdsω

) , (4.18)

where c =
√
µ/ρ is the shear wave speed.

Finally we are interested in the relation between the displacement and the stress on

the top surface, so that we can incorporate it into the more general modelling framework.

Here we find

stress = µ
∂u

∂z

= xω

(
(2L/c)

√
ω2 − jdsω

)
·
1− exp

(
(2L/c)

√
ω2 − jdsω

)
1 + exp

(
(2L/c)

√
ω2 − jdsω

) .
(4.19)

We can therefore interpret this expression as giving a transfer function in the form

−

√
k

m(ω2 − jdsω)
coth

(√
mk
√
ω2 − jdsω

)
, (4.20)

where we have introduced a mass, m, and a stiffness, k. This puts the transfer function

in the same form as that for a single mass connected with stiffness and damping where

we would expect
1

−mω2 + jdω + k
, (4.21)

and observe that the two agree, with the frequency behaviour proportion to 1/(mω2),

when the frequency is low in the shear wave and high in the single mass.

Implementation of this model of the chassis may not be straightforward in SimScape.

An alternative approach would be to consider the chassis as a small number of individual

masses linked by springs and dampers that represent the elastic behaviour of the region.

Such a simplified model would go some way to describing the wave-like behaviour in the

region.

5 Measured Data

The system has been measured using three sources of excitation and three senors of

the motion with one of each on the x-stage, the y-stage and the z- (or θ-) stage. After

analysis this measured data consists of nine complex numbers (the xx, yy, zz, xy, xz

and yz representing the response, where mn corresponds to response in direction m due

to excitation in n) at each frequency. We denote the measured data by Ymes.xx and the

simulated data from models by Ysim.xx(θ) where θ is the vector of model parameters.

Experiment data was supplied by the project owner.

The data can be presented in the form of Bode plots where the magnitude (measured

typically in dB) of each response and the phase (measured typically in degrees, and
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12 Cheng et al.

restricted to the range [−180; 180]) of each response is plotted against the logarithm of

the frequency.

6 Optimization Methods

We considered the full model of the wire bonder as developed by ASMPT and explored

approaches to finding the parameter values that would fit the given data to the com-

putations of the full model. A first issue to address was what cost function should be

used to quantify the fit between the data and the computations. We discuss this is in

Section 6.1. Next we explore approaches that will allow optimal parameter values to be

estimated when the number of parameters is very large. Here we take two directions.

The first is to look at the sensitivity of the cost function to the entire parameter set.

Results for this are discussed in Section 6.2. The second approach was to do a limited

optimisation where part of the parameter set was considered to be fixed at its nominal

value while a smaller set was considered using an optimisation process. Three examples

of this are presented. Each example optimises different parts of the parameter space. The

first example studies the inertial parameters of the system, the second example we vary

the parasitic parameters for the complete system, and in the third example we study the

parasitic parameters in relation with the z-stage. These three examples are presented in

Section 6.3, 6.4, and 6.5, respectively.

In our examples we have concentrated on local optimisation methods but this problem

does require methods that will seek the global optimum amongst many local optima. A

discussion and overview of current state of derivative free global optimisation methods

can be found in [2] and [3].

6.1 Cost Function

The cost function is a crucial part of an optimization problem. Multiple error measures

can be considered.

One strategy is to concentrate on just the magnitude of the complex function and only

consider a small subset (e.g. just one) of the various responses. Hence one possible cost

function is:

Cmag(θ) =
1

2
20 log10

(
1

N

N∑
(|Ymes| − |Ysim(θ)|)2

)
dB, (6.1)

where N is the number of frequency bins. This function has the property that it is

dominated by those frequencies with large responses. For example the measured data

shows approx 100 dB variation across the expected frequency range so any fitting will

ignore large parts of the curve.

An alternative, that addresses the large variations, is to make the cost function directly

applicable to the typical response curve where we seek to minimize the distance between

the measured and simulated curves. This corresponds to taking

Cmag(θ) =

(
1

N

N∑
(20 log10 |Ymes| − 20 log10 |Ysim(θ)|)2

)1/2

dB. (6.2)
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A similar account of large variations can be made by normalising each simulated response

by the magnitude of the corresponding measured response. It is then possible to simply

consider the magnitude of the simulated response

Cmag(θ) =
1

N

N∑∣∣∣∣ Ymes

|Ymes|
− Ysim(θ)

|Ymes|

∣∣∣∣ . (6.3)

Note that this last cost function has the property that it does not significantly penalise

simulations that greatly under-predict (in the sense of dB) the magnitude of response of

the system but does penalise over-prediction of the magnitude.

The issue of the nine different responses can be addressed in a number of ways but

the vast difference in the size of the various responses (e.g. Ymes,xx is more than 50 dB

smaller than Ymes,zz) makes it preferable to extend the ideas in (6.2) and (6.3) but to

consider a sum across the nine different responses, perhaps with some weighting if certain

directions are perceived as being of greater physical importance.

It is worth noting here that the norms used in the expressions for the cost functions

have been assumed to be the L2-norm. However, there are benefits to considering the

L1-norm.

A general optimisation problem minimizing a cost function with respect to the param-

eters subject to bounds and constraints looks like:

min
θ

Cmag(θ),

s.t. θ ≤ θ ≤ θ̄,

mi > 0,

Ii ≻ 0,

(6.4)

where θ and θ̄ are the lower and upper parameter bound, respectively, mi is the ith stage

mass, and Ii its corresponding inertia matrix around the center of mass. The constraints

on the inertial parameters of each rigid body in a robotics arm are studied in [8]; the

so-called physical feasibility. We advise the company partner to incorporate this into a

solution.

6.2 Sensitivity Analysis

To reduce the dimensionality of the problem, we study which parameters affect the cost

function the most. Therefore, we conduct a sensitivity analysis on the parameters, which

provide an insight on how the change of parameter values affect the value of the cost

function. This is performed by changing one parameter at a time, comparing with the

experiment data, and computing variation to cost function. Each parameter has been

varied in the range of 50%−150% around its nominal value. For this sensitivity analysis

we have used the cost function given in (6.1), but these results could equally be generated

for the other cost functions described earlier.

In summary the important parameters appear to be the inertial parameters, especially

masses of x-stage and y-stage, while damper and spring parameters and masses of chassis

do not influence the cost much. Note that besides physical constraints on mass and inertia,
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the rigid body center of mass (CoM) could also be considered so that it remains in the

convex hull of the rigid body to be realistic.

The specific sensitivity procedure is described in Algorithm 1.

Algorithm 1 Sensitivity Analysis

Require: nominal values of parameters θ0 ∈ Rnθ ;

range [rl, ru], step size r∆
Ensure: cost function matrix C

θ ← θ0
for do i = 1, 2, ..., nθ ▷ traverse all parameters

j ← 1, r ← rl + jr∆
while r ̸= 1 and r ≤ ru do

θ ← θ0
θ(i)← θ(i)r

Compute Cmag(θ) of the cost function (6.1).

Cij ← Cmag(θ)

j ← j + 1, r = rl + jr∆
end while

end for

In this algorithm, we set ri = 0.5, ru = 1.5, and r∆ = 0.1. In each loop, only one

parameter is changing, while the others are fixed at their initial values. The values of

the cost function are computed with different parameter values, which is illustrated in

Figure 10. We can also evaluate the cost function in each direction x, y, and z, when

changing the parameter values. Then, Figure 11 shows the results for the cost function

for each direction.

Combining the data obtained from Algorithm 1 and the Figures 10, 11, 12, we have

the following observations.

• There are two significant parameters:

◦ The mass of the x- and the y-stage.

• There are other parameters that affect the cost function:

◦ The center of mass and inertia for the x-, the y-, and the z-stage, and the mass of

the z-stage.

• The rest of parameters do not affect the cost function; the parasitic spring and dampers

have little effect on the overall cost.

6.3 Experiment 1: Varying the Inertial Parameters

Sensitivity analysis suggests a prominent role of the masses in the model, which is re-

flected in a significant role in optimization. We will allow masses to deviate, perhaps

unrealistically, up to ±20% from the initial parameter values. Quite surprisingly, we see

that a better overall fit is obtained for masses close to the maximum deviation allowed.

The experiment details are as follows:
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mass_chassis

mass_X-stages

mass_Y-stages

mass_Base

mass_Z-stages

Stiffness and damping

Figure 10. Value of the cost function (6.1) as the 70 parameters vary in the range 50%

to 150%.

• Frequency-range: 200–2000 Hz

• Parameters varied (17 total):

◦ Inertial parameters of the x-stage; mass, center of mass, inertia.

◦ Parasitic torsional spring between the base and x-stage.

◦ Kinematic position of the joint between the base and the x-stage.

• Maximum deviation allowed: ±20% for masses, ±50% for all other parameters

• Optimization method: fmincon with numerically computed derivatives

• We restrict to fitting the Yxx-response of the x-stage

Overall, the optimization algorithm leads to a better fit. In particular, we obtain a

better fit of the 0.245 dip, see Figure 13.

However, we notice that the one optimized parameter, namely the mass of the x-stage,

coincides with the maximum value allowed. That is, a better fit has been obtained by

increasing the x-stage mass by 20%.

This shows that allowing masses to change leads to a better fit, but probably to an

unrealistic model. We suggest some possible causes: First, the “real” masses might not

correspond to the global minimum of the cost function; second, large deviations might

have brought us on a slope that minimizes the cost function but leads to a region of

non-physical parameters (see Section 6.1 for a possible solution); third, the algorithm in

use might not be suitable for the problem at hand.
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mass_chassis

mass_X-stage

mass_Y-stage

mass_Z-stage

mass_Base

Stiffness and 
damping 

Figure 11. Values of the cost functions computed for x-, y-, and z-directions as the 70

parameters vary in the range 50% to 150%.

Figure 12. The maximum change in the magnitude of the cost function vs. parameter

when the parameters are changed individually.

6.4 Experiment 2: Varying the Parasitic parameters

As the masses are quite accurately measured and the inertial parameters can be well

estimated from CAD drawings the full model was explored with these parameters set at

their nominal values. The parasitic behaviour of the system is much less well understood

and hence in this section we explore how the simulations fit to the data when only par-

asitic effects are altered. At the same frequency range we vary the parasitic parameters.

These are the details:
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Figure 13. Optimizing the mass gives a better fit of the 0.245 dip. The frequency range

was normalized by dividing with the Nyquist frequency.
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Figure 14. Decrease of the cost-functional during the optimization process. The conver-

gence process exhibits various plateaus.

• Frequency-range: 200–2000 Hz

• Parameters varied: Parasitic parameters

• Parameter bounds: θ > 0

• Optimization method: fmincon with numerically computed derivatives

• Objective: Minimize diagonal costs (related to Yxx, Yyy, Yzz)

In contrast to the case of masses, the optimization process here goes through many

plateaus, see Figure 14, taking a lot of time. The result is an overall better fit in the

relevant range 200–2000 Hz, see Figure 15.

Notice that one parameter, the parasitic torsional damping between the base and the

x-stage, is 40 times its original value, see Figure 16. This does not come as a huge
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Figure 15. Fx-response of x-stage with optimized parasitic parameters and original pa-

rameters. The frequency range was normalized by dividing with the Nyquist frequency.

surprise. Indeed, sensitivity analysis already shows that modifying these parameters in

the 50%–150% range has little to no effect on the system.

6.5 Experiment 3: Exploring the z-Stage

Instead of optimizing the complete cost of all three axes, in this simulation we only

optimize the behaviour in the z-axis. According to the project owner, the measurement

of the z-axis is more precise in the whole range from 1–4000 Hz than the other two axes.

We optimize 12 parameters characterising the parasitic joints between the three stages,

see Figure 17. The details are as follows:

• Frequency-range: 1–1000 Hz

• Parameters varied: Parasitic parameters

• Parameter bounds: θ > 0

• Optimization method: fmincon with numerically computed derivatives

• Objective: Minimize z-stage cost (related to Yzz)

Unsurprisingly, it can be seen that the two last parameters, the spring and damper

between the y- and the z-stage, change the most as a result of the optimization; around

30%, see Figure 17. The fit itself can be seen on Figure 18, where the fit of the bump at

∼ 12 Hz is better with the new parameters compared with the nominal model.

7 Some Ideas on Data Analysis

In this section, we discuss some issues related to inaccurate data, which can generate

incorrect models. Considering these factors may help to produce rich datasets, espe-

cially in low frequencies. Noticeably, discovering good datasets is important in system

identification.

• The effect of the noise on the training of models should be considered. In studies like
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Figure 16. Absolute relative difference in percentage for the parasitic spring and damper

coefficients before and after optimisation.

[9], [4], the effect of noisy data on the performance of the models trained on them is

shown. However, real-world datasets often contain a significant fraction of noisy labels

and uncertainties. In [4], the authors suggest robust training methods to learn from

noisy-labeled data.

• To identify a model for a system it is important to check ‘̀sufficient excitatioń’ con-

ditions. Persistent Excitation (PE) typically results from sufficiently rich reference

inputs, and parameter convergence is achieved only in the presence of PE. In [1], [6]

and [7], more information about PE conditions can be found.

• As studied in [5], Principal component analysis (PCA) is a technique for reducing

the dimensionality of such datasets, increasing interpretability but at the same time

minimizing information loss.

8 Discussion and Recommendations

The key insights in to the behaviour of the simulation model and how predictions might

be fitted to experimental measurements are as follows. The sensitivity of each parameter

depends on the frequency range being considered, i.e. dominant parameters change with

respect to different frequency ranges. In particular we observe that the low frequencies are

dominated by stiffness parameters, at near resonance frequencies the damping parameters
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Figure 17. Absolute relative change in percentage for the parasitic spring and damper

coefficients after optimization.

dominate, and at the high frequencies the inertial parameters dominate. Exploring a very

limited range of frequencies may allow improved estimation of parameters for starting

values for subsequent fitting to the large range of relevant frequencies.

The choice of the cost function has a great impact on the performance of the opti-

misation. Finding a global minimum is plagued by local minima, even in (very simple)

toy models. The scale of the discrepancy (measured in the L2 norm) in z-direction is

e50 orders of magnitude higher than those of the x− and y-directions and needs to be

accounted for carefully.

From our preliminary explorations we make the following recommendations. It may be

beneficial to extend the model to more carefully account for shear waves in the chassis.

This is because in the relevant frequency range the chassis may be larger than the shear

wave length and hence not well described by a single point mass. As a preliminary scoping

of parameters values it may be beneficial to focus on the local optimization of parameters

rather than global. It may also help to divide the frequency domain into a number of

smaller ranges and consider initially optimising in each range. Some parameters can be

kept constant, for example some damping parameters at low frequencies. The results of
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Figure 18. Frequency response of the z-stage. The frequency range was normalized by

dividing with the Nyquist frequency.

the sensitivity test results might guide which parameters to consider and which to hold

constant in the different frequencies ranges.

The sensitivity analysis in this report shows that the inertial parameters of the three

stages dominate the cost function. The problem with this is that these are typically

values are quite accurately known from independent measurements; these essentially

create the nominal model. Instead, the optimisation could initially only be performed on

the parasitic parts of the model. More work is needed to look at the sensitivities that

occur for different cost functions. It is necessary to adopt strategies that can overcome

the curse of dimensionality.

We suggest the following might be appropriate methods:

• Perform a sensitivity analysis for different frequency ranges separately,

• Optimize considering only the parasitic parameters as variables,

• Apply physical constraints to the inertial parameters of the rigid bodies including

considering them as constant,

• Apply model order reduction, methodology.

Because of the vast range of responses in the x, y, and θ directions these should either

be normalised or their logarithm taken when considering what cost function to use.

Because of the need to find global optimal, state-of-the-art global optimization software,

e.g. Py-BOBYQA, should be explored.
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signal sets. IEEE Transactions on Automatic Control, 60(5):1188–1203, 2014.

[7] Yongduan Song, Kai Zhao, and Miroslav Krstic. Adaptive control with exponential

regulation in the absence of persistent excitation. IEEE Transactions on Automatic

Control, 62(5):2589–2596, 2016.
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