Dense Complete Set For NP

21 October 2021, Version 5
This content is an early or alternative research output and has not been peer-reviewed by Cambridge University Press at the time of posting.

Abstract

A sparse language is a formal language such that the number of strings of length $n$ is bounded by a polynomial function of $n$. We create a class with the opposite definition, that is a class of languages that are dense instead of sparse. We define a dense language on $m$ as a formal language (a set of binary strings) where there exists a positive integer $n_{0}$ such that the counting of the number of strings of length $n \geq n_{0}$ in the language is greater than or equal to $2^{n - m}$ where $m$ is a real number and $0 < m \leq 1$. We call the complexity class of all dense languages on $m$ as $DENSE(m)$. We prove that there exists an $\textit{NP--complete}$ problem that belongs to $DENSE(m)$ for every possible value of $0 < m \leq 1$.

Keywords

complexity classes
complement language
sparse
completeness
polynomial time

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting and Discussion Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.