ZIP Code Versus Georeference

28 October 2021, Version 3

Abstract

When dealing with predictive modeling of credit-granting, different types of attributes are used: Cadastral, Behavioral, Business / Proposal, Credit Bureaux, in addition to Public, Private or Subsidiaries Sources. The Postal Address Code (Código de Endereçamento Postal CEP in Portuguese) in Brazil, in particular, has a unique contribution capacity (uncorrelated with most other attributes in general) and reasonably good predictive power. CEP is frequently used by truncating its numeric representation, considering the first d digits, for example. In this report, a preliminary methodology is proposed, aiming to elaborate clustering sets of CEPs by considering the information of clients' defaults over a period of time. Additionally, we tested the number of clusters obtained using the Information Value criterion. Promising solutions are obtained using statistical and optimizing approaches. Other methodologies are suggested and could be complementary with the principal methodology proposed.

Content

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.