Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It covers a wide range of numerical methods and topics, including both gradient-based and gradient-free algorithms, multidisciplinary design optimization, and uncertainty, with instruction on how to determine which algorithm should be used for a given application. It also provides an overview of models and how to prepare them for use with numerical optimization, including derivative computation. Over 400 high-quality visualizations and…
Review the options below to login to check your access.
Log in with your Cambridge Higher Education account to check access.
There are no purchase options available for this title.
If you believe you should have access to this content, please contact your institutional librarian or consult our FAQ page for further information about accessing our content.
AI generated results by Discovery for publishers [opens in a new window]
Online publication date: 25 October 2017