Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include:Calculus of random processes in linear systemsKalman and Wiener filteringHidden Markov models for statistical inferenceThe estimation maximization (EM) algorithmAn introduction to martingales and concentration inequalities.Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
This engaging introduction to random processes provides students with the critical tools needed to design and evaluate engineering systems that must operate reliably in uncertain environments. A brief review of probability theory and real analysis of deterministic functions sets the stage for understanding random processes, whilst the underlying measure theoretic notions are explained in an intuitive, straightforward style. Students will learn to manage the complexity of randomness through the use of simple classes of random processes, statistical means and correlations, asymptotic analysis, sampling, and effective algorithms. Key topics covered include:Calculus of random processes in linear systemsKalman and Wiener filteringHidden Markov models for statistical inferenceThe estimation maximization (EM) algorithmAn introduction to martingales and concentration inequalities.Understanding of the key concepts is reinforced through over 100 worked examples and 300 thoroughly tested homework problems (half of which are solved in detail at the end of the book).
Build a firm foundation for studying statistical modelling, data science, and machine learning with this practical introduction to statistics, written with chemical engineers in mind. It introduces a data–model–decision approach to applying statistical methods to real-world chemical engineering challenges, establishes links between statistics, probability, linear algebra, calculus, and optimization, and covers classical and modern topics such as uncertainty quantification, risk modelling, and decision-making under uncertainty. Over 100 worked examples using Matlab and Python demonstrate how to apply theory to practice, with over 70 end-of-chapter problems to reinforce student learning, and key topics are introduced using a modular structure, which supports learning at a range of paces and levels. Requiring only a basic understanding of calculus and linear algebra, this textbook is the ideal introduction for undergraduate students in chemical engineering, and a valuable preparatory text for advanced courses in data science and machine learning with chemical engineering applications.
Build a firm foundation for studying statistical modelling, data science, and machine learning with this practical introduction to statistics, written with chemical engineers in mind. It introduces a data–model–decision approach to applying statistical methods to real-world chemical engineering challenges, establishes links between statistics, probability, linear algebra, calculus, and optimization, and covers classical and modern topics such as uncertainty quantification, risk modelling, and decision-making under uncertainty. Over 100 worked examples using Matlab and Python demonstrate how to apply theory to practice, with over 70 end-of-chapter problems to reinforce student learning, and key topics are introduced using a modular structure, which supports learning at a range of paces and levels. Requiring only a basic understanding of calculus and linear algebra, this textbook is the ideal introduction for undergraduate students in chemical engineering, and a valuable preparatory text for advanced courses in data science and machine learning with chemical engineering applications.
This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.
This definitive textbook provides a solid introduction to discrete and continuous stochastic processes, tackling a complex field in a way that instils a deep understanding of the relevant mathematical principles, and develops an intuitive grasp of the way these principles can be applied to modelling real-world systems. It includes a careful review of elementary probability and detailed coverage of Poisson, Gaussian and Markov processes with richly varied queuing applications. The theory and applications of inference, hypothesis testing, estimation, random walks, large deviations, martingales and investments are developed. Written by one of the world's leading information theorists, evolving over twenty years of graduate classroom teaching and enriched by over 300 exercises, this is an exceptional resource for anyone looking to develop their understanding of stochastic processes.
This book is a mathematically accessible and up-to-date introduction to the tools needed to address modern inference problems in engineering and data science, ideal for graduate students taking courses on statistical inference and detection and estimation, and an invaluable reference for researchers and professionals. With a wealth of illustrations and examples to explain the key features of the theory and to connect with real-world applications, additional material to explore more advanced concepts, and numerous end-of-chapter problems to test the reader's knowledge, this textbook is the 'go-to' guide for learning about the core principles of statistical inference and its application in engineering and data science. The password-protected solutions manual and the image gallery from the book are available online.
This book is a mathematically accessible and up-to-date introduction to the tools needed to address modern inference problems in engineering and data science, ideal for graduate students taking courses on statistical inference and detection and estimation, and an invaluable reference for researchers and professionals. With a wealth of illustrations and examples to explain the key features of the theory and to connect with real-world applications, additional material to explore more advanced concepts, and numerous end-of-chapter problems to test the reader's knowledge, this textbook is the 'go-to' guide for learning about the core principles of statistical inference and its application in engineering and data science. The password-protected solutions manual and the image gallery from the book are available online.