Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
	00000000	000000	00000000	

Basic concepts in viscous flow

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic

Adapted from Chapter 1 of A Physical Introduction to Suspension Dynamics Cambridge Texts in Applied Mathematics

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

A Physical Introduction to Suspension Dynamics

イロト イヨト イヨト イヨト

The fluid dynamic equations 00000000

Properties of Stokes flow

Three Stokes-flow theorems Reference

- 1 The fluid dynamic equations
 - Navier-Stokes equations
 - Dimensionless numbers
 - Stokes equations
 - Buoyancy and drag
 - Boundary conditions
- 2 Properties of Stokes flow
 - Linearity
 - Reversibility
 - Instantaneity
- 3 Three Stokes-flow theorems
 - Minimum dissipation
 - Uniqueness
 - Reciprocity

References

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

icrohydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
	00000000	000000	00000000	

- The fluid dynamic equations
 - Navier-Stokes equations
 - Dimensionless numbers
 - Stokes equations
 - Buoyancy and drag
 - Boundary conditions
- 2 Properties of Stokes flow
 - Linearity

Mig

- Reversibility
- Instantaneity
- 3 Three Stokes-flow theorems
 - Minimum dissipation
 - Uniqueness
 - Reciprocity

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
	00000000	0000000	00000000	

Microhydrodynamics, a term coined by G. K. Batchelor in the 1970s, deals with processes occurring in fluid flow when the characteristic length of the flow field is of the order of one micron

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

イロト イヨト イヨト イヨト

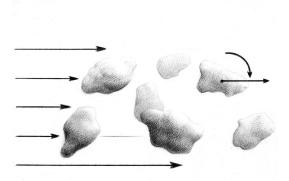
М	icr	oh	vdr	od	vna	am	ics	
			<i>,</i>		J			

The fluid dynamic equations 00000000

Properties of Stokes flow

Three Stokes-flow theorems References

Many particles in a flow



「ヨト + ヨト ヨー つへで

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

The fluid dynamic equations

Properties of Stokes flow

Three Stokes-flow theorems Reference

- 1 The fluid dynamic equations
 - Navier-Stokes equations
 - Dimensionless numbers
 - Stokes equations
 - Buoyancy and drag
 - Boundary conditions
- 2 Properties of Stokes flow
 - Linearity
 - Reversibility
 - Instantaneity
- 3 Three Stokes-flow theorems
 - Minimum dissipation
 - Uniqueness
 - Reciprocity

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow <ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

The fluid dynamic equations

Properties of Stokes flow 0000000

Three Stokes-flow theorems References

Navier-Stokes equations

Equations for an incompressible fluid

Continuity equation for an incompressible fluid

$$abla \cdot \mathbf{u} = \mathbf{0}$$

Equation for conservation of momentum

$$\rho[\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}] = \mathbf{f} + \nabla \cdot \boldsymbol{\sigma}^{\mathbf{a}}$$
$$= \mathbf{f} - \nabla \boldsymbol{\rho}^{\mathbf{a}} + \mu \nabla^{2} \mathbf{u}$$

The superscript a indicates an absolute pressure and a corresponding absolute stress tensor. The term 'absolute stress' is used to indicate the actual stress (with the absolute pressure being the true pressure) rather than a modified stress to be defined in slide 12 in which the hydrostatic pressure is removed.

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Navier-Stokes equation	IS			

Newtonian fluid

Constitutive equation for a Newtonian fluid

$$\sigma^{a}_{ij} = -p^{a}\delta_{ij} + 2\mu e_{ij}$$

Symmetric stress tensor

$$\sigma^{a}_{ij} = \sigma^{a}_{ji}$$

Symmetric rate-of-strain tensor

$$e_{ij} = e_{ji} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

3

イロト イロト イヨト

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
	00000000	000000	00000000	

Navier-Stokes equations

Navier-Stokes equations

Incompressibility

$$\nabla\cdot {\bm u}=0$$

Momentum equation

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \mathbf{f} - \nabla \rho^{a} + \mu \nabla^{2} \mathbf{u}$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

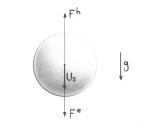
3

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Dimensionless number	s			

Reynolds number

$${\it Re} = rac{|
ho(\mathbf{u}\cdot
abla)\mathbf{u}|}{|\mu
abla^2\mathbf{u}|} = rac{UL}{
u}$$

For sedimenting (spherical) grain of sand of size $L \sim 1 \mu m$ settling in water at velocity $U \sim 1 \mu m/s$, $Re \sim 10^{-6}$



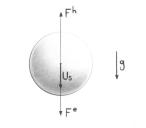
Sar

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Dimensionless number	5			

Stokes number

$$St = rac{|
ho \partial \mathbf{u} / \partial t|}{|\mu \nabla^2 \mathbf{u}|} = rac{L^2}{T
u}$$

Sphere of radius $a=1\mu$ m sedimenting in water at stationary regime when time $T\gg a^2/
u\sim 10^{-6}$ s



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow Sar

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Stokes equations				

Stokes equations

Stokes equations:
$$Re \ll 1$$
 and $St \ll 1$
 $\nabla \cdot \mathbf{u} = 0$
 $\nabla \cdot \boldsymbol{\sigma}^a = -\nabla p^a + \mu \nabla^2 \mathbf{u} = \mathbf{f}$
Homogeneous Stokes equations: $\mathbf{f} = \rho \, \mathbf{g} \Rightarrow p = p^a - \rho \, \mathbf{g} \cdot \mathbf{x}$
 $\nabla \cdot \mathbf{u} = 0$
 $\nabla \cdot \boldsymbol{\sigma} = -\nabla p + \mu \nabla^2 \mathbf{u} = 0$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

590

Ξ

イロト イヨト イヨト イヨト

							CS	

The fluid dynamic equations

Properties of Stokes flow 0000000

Three Stokes-flow theorems References

Stokes equations

Other expressions for Stokes equations

Stress tensor σ

$$\sigma_{ij} = \sigma_{ji} = -p\delta_{ij} + 2\mu e_{ij}$$

Rate-of-strain tensor e

$$e_{ij} = e_{ji} = \frac{1}{2}(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i})$$

Stokes equations

$$abla \cdot \mathbf{u} = 0 \text{ or } e_{ii} = 0$$
 $abla \cdot \mathbf{\sigma}^a = \mathbf{f} \text{ or } \frac{\partial \sigma^a_{ij}}{\partial x_j} = f_i$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

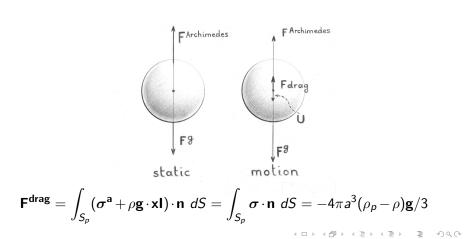
Sac

Э

イロト イポト イヨト イヨト

Microhydrodynamics	The fluid dynamic equations ○○○○○○●○	Properties of Stokes flow	Three Stokes-flow theorems	References
Buovancy and drag				

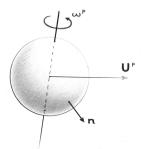
Buoyancy and drag



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

Microhydrodynamics	The fluid dynamic equations ○○○○○○○●	Properties of Stokes flow	Three Stokes-flow theorems	References
Boundary conditions				

Boundary conditions



No-slip boundary condition on the particles:

$$\mathsf{u}(\mathsf{x}) = \mathsf{U}^{\mathsf{p}} + \omega^{\mathsf{p}} imes (\mathsf{x} - \mathsf{x}_{\mathsf{p}})$$

at the surface of a particle with center of mass at \boldsymbol{x}_p

+ Outer boundary condition on a containing vessel or at infinity

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

・ロト ・ 四ト ・ ヨト・

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	Referer
	00000000	0000000	00000000	

- The fluid dynamic equations
 - Navier-Stokes equations
 - Dimensionless numbers
 - Stokes equations
 - Buoyancy and drag
 - Boundary conditions
- 2 Properties of Stokes flow
 - Linearity
 - Reversibility
 - Instantaneity
- 3 Three Stokes-flow theorems
 - Minimum dissipation
 - Uniqueness
 - Reciprocity

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Linearity				

Linearity

Linearity of the Stokes equations: no non-linear convective acceleration term $(\bm{u}\cdot\nabla)\bm{u}$

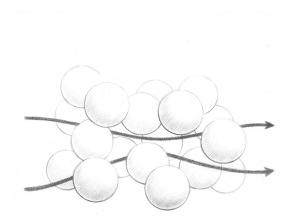
- Principle of superposition: by adding different solutions of the Stokes equations one obtains also a solution of the Stokes equations
- Reversibility: the motion is reversible in the driving force

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	Re
	00000000	000000	00000000	

Linearity

Streamlines in a porous medium

A doubling of the driving pressure gradient yields a doubling of the flow rate but no change to the streamlines



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

The fluid dynamic equations 00000000

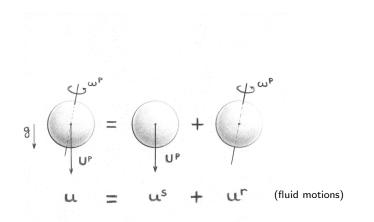
Properties of Stokes flow

Three Stokes-flow theorems References

Linearity

Principle of superposition

Summation of translation and rotation



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

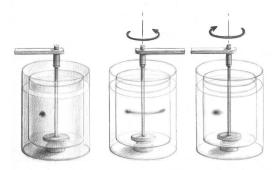
The fluid dynamic equations 000000000

Properties of Stokes flow

Three Stokes-flow theorems References

Reversibility

Description of G. I. Taylor film on reversibility



| 臣 ▶ ▲ 臣 ▶ ■ ● � � � �

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

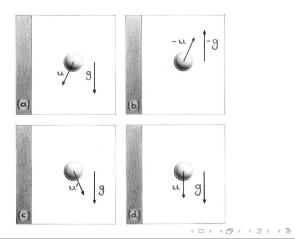
The fluid dynamic equations 000000000

Properties of Stokes flow

Three Stokes-flow theorems References

Reversibility

Reversibility argument for a sphere settling near a wall A spherical particle falling adjacent to a wall falls at constant distance, as shown by the reversibility principle depicted visually here



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

Micro		

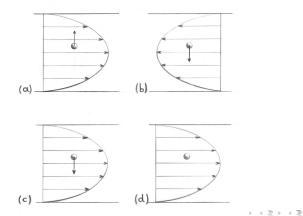
The fluid dynamic equations 000000000

Properties of Stokes flow

Reversibility

Reversibility argument for a sphere in a Poiseuille flow

A single neutrally-buoyant spherical particle in Poiseuille flow stays at a fixed distance from the wall, as shown by the reversibility principle depicted visually here



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow ○○○○○●	Three Stokes-flow theorems	References
Instantaneity				

Instantaneity

No history dependence $\partial \mathbf{u}/\partial t$

The flow is determined by the configuration given by the boundary conditions, coming both from the particle positions and outer boundaries

Information from boundary motion communicated to infinity instantly

- Divergence of the homogeneous momentum equation $\Rightarrow \nabla^2 p = 0.$
- Curl of the homogeneous momentum equation $\Rightarrow \nabla^2 \tilde{\omega} = 0$ with $\tilde{\omega} = \nabla \times \mathbf{u}$.
- Pressure p and vorticity $ilde{\omega}$ are harmonic

イロト イポト イヨト イヨト

		lyna	

The fluid dynamic equations 00000000

Properties of Stokes flow

Three Stokes-flow theorems Refere

- The fluid dynamic equations
 - Navier-Stokes equations
 - Dimensionless numbers
 - Stokes equations
 - Buoyancy and drag
 - Boundary conditions
- 2 Properties of Stokes flow
 - Linearity
 - Reversibility
 - Instantaneity
- 3 Three Stokes-flow theorems
 - Minimum dissipation
 - Uniqueness
 - Reciprocity

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow メロト < 団 ト < 豆 ト < 豆 ト 三 つへで</p>

Micro		

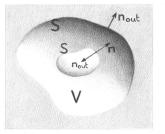
The fluid dynamic equations

Properties of Stokes flow

Three Stokes-flow theorems References

Minimum dissipation

Kinetic energy balance



Kinetic energy:

$$K = \int_{V} \rho \frac{\mathbf{u}^2}{2} dV$$

where V is the fluid volume

Calculation for unsteady Stokes case:

$$\rho \frac{\partial \mathbf{u}}{\partial t} = \mathbf{f} + \nabla \cdot \boldsymbol{\sigma}$$

$$\frac{\partial K}{\partial t} = \int_{V} \rho \, \mathbf{u} \cdot \frac{\partial \mathbf{u}}{\partial t} dV = \int_{V} f_{i} u_{i} dV + \int_{V} u_{i} \frac{\partial \sigma_{ij}}{\partial x_{j}} dV$$
$$= \int_{V} f_{i} u_{i} dV + \oint_{S} U_{i} \sigma_{ij} n_{j}^{out} dS - \int_{V} \frac{\partial u_{i}}{\partial x_{j}} \sigma_{ij} dV$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissipation				

Rate of energy dissipation

Rate of energy dissipation due to viscosity

$$\Phi = \int_{V} \frac{\partial u_{i}}{\partial x_{j}} \sigma_{ij} dV = \int_{V} e_{ij} \sigma_{ij} dV = \int_{V} 2\mu e_{ij} e_{ij} dV \ge 0$$

Steady Stokes flow
$$(\partial K/\partial t = 0)$$

$$\int_{V} \rho \mathbf{u} \cdot \frac{D \mathbf{u}}{D t} dV = \int_{V} f_{i} u_{i} dV + \oint_{S} U_{i} \sigma_{ij} n_{j}^{out} dS - \Phi = 0$$

Rate of energy dissipation = rate of working by external forces $\Phi = \int_{V} \mathbf{f} \cdot \mathbf{u} \, dV + \oint_{S} \mathbf{U} \cdot (\boldsymbol{\sigma} \cdot \mathbf{n}^{out}) dS$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

< □ > < □ > < □ > < □ > < □ > < □ >

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissipation				

Minimum dissipation theorem

Consider **u** and \mathbf{u}^{S} two velocity fields in the volume V such as

•
$$\nabla \cdot \mathbf{u} = \nabla \cdot \mathbf{u}^{S} = 0$$
 in the volume V

•
$$\mathbf{u} = \mathbf{u}^{S} = \mathbf{U}$$
 on the surface S limiting V

• **u**^S satisfying the homogeneous Stokes equations (no external force **f**)

The minimum dissipation theorem states that the Stokes flow corresponds to the least dissipation

$$2\mu\int_{V}e_{ij}^{S}e_{ij}^{S}dV\leq 2\mu\int_{V}e_{ij}e_{ij}dV$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

イロト イポト イヨト イヨト

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissipation				

• Writing $\delta \mathbf{u} = \mathbf{u} - \mathbf{u}^{S}$ and $\delta e_{ij} = e_{ij} - e_{ij}^{S}$ with boundary conditions $\delta \mathbf{u} = 0$

Difference between the two integrals

$$2\mu \int_{V} (e_{ij}e_{ij} - e_{ij}^{S}e_{ij}^{S})dV = 2\mu \int_{V} \delta e_{ij}(e_{ij} + e_{ij}^{S})dV$$
$$= \underbrace{2\mu \int_{V} \delta e_{ij}\delta e_{ij}dV}_{\geq 0} + \underbrace{4\mu \int_{V} \delta e_{ij}e_{ij}^{S}dV}_{=0}$$

Second integral

$$4\mu \int_{V} \delta e_{ij} e_{ij}^{S} dV = 2 \int_{V} \delta e_{ij} \sigma_{ij}^{S} dV \quad \text{using } \delta e_{kk} = 0$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissination				

• Writing $\delta \mathbf{u} = \mathbf{u} - \mathbf{u}^{S}$ and $\delta e_{ij} = e_{ij} - e_{ij}^{S}$ with boundary conditions $\delta \mathbf{u} = 0$

Difference between the two integrals

$$2\mu \int_{V} (e_{ij}e_{ij} - e_{ij}^{S}e_{ij}^{S})dV = 2\mu \int_{V} \delta e_{ij}(e_{ij} + e_{ij}^{S})dV$$
$$= \underbrace{2\mu \int_{V} \delta e_{ij}\delta e_{ij}dV}_{\geq 0} + \underbrace{4\mu \int_{V} \delta e_{ij}e_{ij}^{S}dV}_{=0}$$

Second integral

$$4\mu \int_{V} \delta e_{ij} e_{ij}^{S} dV = 2 \int_{V} \frac{\partial \delta u_{i}}{\partial x_{j}} \sigma_{ij}^{S} dV \quad \text{using } \sigma_{ij}^{S} = \sigma_{ji}^{S}$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissipation				

• Writing $\delta \mathbf{u} = \mathbf{u} - \mathbf{u}^{S}$ and $\delta e_{ij} = e_{ij} - e_{ij}^{S}$ with boundary conditions $\delta \mathbf{u} = 0$

Difference between the two integrals

$$2\mu \int_{V} (e_{ij}e_{ij} - e_{ij}^{S}e_{ij}^{S})dV = 2\mu \int_{V} \delta e_{ij}(e_{ij} + e_{ij}^{S})dV$$
$$= \underbrace{2\mu \int_{V} \delta e_{ij}\delta e_{ij}dV}_{\geq 0} + \underbrace{4\mu \int_{V} \delta e_{ij}e_{ij}^{S}dV}_{=0}$$

Second integral

$$4\mu \int_{V} \delta \mathbf{e}_{ij} \mathbf{e}_{ij}^{S} dV = -2 \int_{V} \delta u_{i} \frac{\partial \sigma_{ij}^{S}}{\partial x_{j}} dV + 2 \int_{V} \frac{\partial \delta u_{i} \sigma_{ij}^{S}}{\partial x_{j}} dV$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissipation				

• Writing $\delta \mathbf{u} = \mathbf{u} - \mathbf{u}^{S}$ and $\delta e_{ij} = e_{ij} - e_{ij}^{S}$ with boundary conditions $\delta \mathbf{u} = 0$

Difference between the two integrals

$$2\mu \int_{V} (e_{ij}e_{ij} - e_{ij}^{S}e_{ij}^{S})dV = 2\mu \int_{V} \delta e_{ij}(e_{ij} + e_{ij}^{S})dV$$
$$= \underbrace{2\mu \int_{V} \delta e_{ij}\delta e_{ij}dV}_{\geq 0} + \underbrace{4\mu \int_{V} \delta e_{ij}e_{ij}^{S}dV}_{=0}$$

Second integral

$$4\mu \int_{V} \delta e_{ij} e_{ij}^{S} dV = 2 \int_{S} \delta u_{i} \sigma_{ij}^{S} n_{j}^{out} dS \quad \text{using } \frac{\partial \sigma_{ij}^{S}}{\partial x_{j}} = 0$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Minimum dissipation				

• Writing $\delta \mathbf{u} = \mathbf{u} - \mathbf{u}^{S}$ and $\delta e_{ij} = e_{ij} - e_{ij}^{S}$ with boundary conditions $\delta \mathbf{u} = 0$

Difference between the two integrals

$$2\mu \int_{V} (e_{ij}e_{ij} - e_{ij}^{S}e_{ij}^{S})dV = 2\mu \int_{V} \delta e_{ij}(e_{ij} + e_{ij}^{S})dV$$
$$= \underbrace{2\mu \int_{V} \delta e_{ij}\delta e_{ij}dV}_{\geq 0} + \underbrace{4\mu \int_{V} \delta e_{ij}e_{ij}^{S}dV}_{=0}$$

Second integral

$$4\mu \int_V \delta e_{ij} e_{ij}^S dV = 0$$
 using boundary conditions $\delta \mathbf{u} = 0$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

Microhy	drodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References

Uniqueness of the Stokes equation

- (u⁽¹⁾, p⁽¹⁾) and (u⁽²⁾, p⁽²⁾) two solutions of the homogeneous Stokes equation satisfying the same boundary conditions u⁽¹⁾ = u⁽²⁾ = U on the surface S limiting the volume V
- $(\mathbf{u}^{(1)}, p^{(1)})$ Stokes flow $(\Rightarrow \Phi^{(1)} \le \Phi^{(2)})$ and $(\mathbf{u}^{(2)}, p^{(2)})$ Stokes flow $(\Rightarrow \Phi^{(2)} \le \Phi^{(1)}) \Rightarrow \Phi^{(1)} = \Phi^{(2)}$

•
$$\Phi^{(1)} = \Phi^{(2)} \Rightarrow e^{(1)}_{ij} = e^{(2)}_{ij}$$

- $e_{ij}^{(1)} = e_{ij}^{(2)} \Rightarrow \mathbf{u}^{(1)} \mathbf{u}^{(2)}$ solid body motion
- Boundary conditions $\mathbf{u}^{(1)} \mathbf{u}^{(2)} = \mathbf{0} \Rightarrow \mathbf{u}^{(1)} = \mathbf{u}^{(2)}$
- Homogeneous Stokes equations $\Rightarrow p^{(1)} p^{(2)} = \text{constant}$

200

イロト イポト イヨト イヨト

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Reciprocity				

Reciprocal theorem

- $(\mathbf{u}^{(1)}, \sigma^{(1)})$ and $(\mathbf{u}^{(2)}, \sigma^{(2)})$ Stokes flows driven respectively by the external forces $\mathbf{f}^{(1)}$ and $\mathbf{f}^{(2)}$ and by the boundary conditions $\mathbf{u}^{(1)} = \mathbf{U}^{(1)}$ and $\mathbf{u}^{(2)} = \mathbf{U}^{(2)}$ on the surface *S* limiting the fluid volume *V*
- The reciprocal theorem states that the rate of working by the flow u⁽²⁾ against the forces of flow u⁽¹⁾ (f⁽¹⁾ in the volume and σ⁽¹⁾ · n^{out} on the surface) is the same by interchanging (1) and (2)

$$\int_{V} f_{j}^{(1)} u_{j}^{(2)} dV + \oint_{S} \sigma_{ij}^{(1)} U_{j}^{(2)} n_{i}^{out} dS = \int_{V} f_{j}^{(2)} u_{j}^{(1)} dV + \oint_{S} \sigma_{ij}^{(2)} U_{j}^{(1)} n_{i}^{out} dS$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

イロト イポト イヨト イヨト

The fluid dynamic equations 000000000

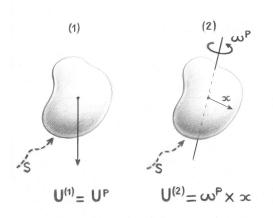
Properties of Stokes flow 0000000

Three Stokes-flow theorems

Reciprocity

Example of flows for a general shape body

Translation without rotation (left) and rotation without translation (right)



Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow 「臣▶▲臣▶ 臣 ∽へ⊙

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Reciprocity				

Proof of reciprocal theorem

Writing the left-hand side of equation with use of divergence theorem as

$$\begin{split} \int_{V} f_{j}^{(1)} u_{j}^{(2)} dV + \oint_{S} \sigma_{ij}^{(1)} U_{j}^{(2)} n_{i}^{out} dS &= \int_{V} (f_{j}^{(1)} u_{j}^{(2)} + \frac{\partial (\sigma_{ij}^{(1)} u_{j}^{(2)})}{\partial x_{i}}) dV \\ &= \int_{V} (f_{j}^{(1)} u_{j}^{(2)} + \frac{\partial \sigma_{ij}^{(1)}}{\partial x_{i}} u_{j}^{(2)} + \sigma_{ij}^{(1)} \frac{\partial u_{j}^{(2)}}{\partial x_{i}}) dV \\ &= \int_{V} \sigma_{ij}^{(1)} \frac{\partial u_{j}^{(2)}}{\partial x_{i}} dV \quad \text{using } \frac{\partial \sigma_{ij}^{(1)}}{\partial x_{i}} + f_{j} = 0 \\ &= \int_{V} \sigma_{ij}^{(1)} e_{ij}^{(2)} dV \quad \text{using } \sigma_{ij}^{(1)} = \sigma_{ji}^{(1)} \\ &= 2\mu \int_{V} e_{ij}^{(1)} e_{ij}^{(2)} dV \quad \text{using } e_{kk}^{(1)} = 0 \end{split}$$

which, being symmetric, is also equal to the right-hand side of equation

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

イロト イヨト イヨト イヨト

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
Decision city :				

Reciprocal theorem without external forces

Without external forces, the reciprocal theorem becomes

$$\oint_{S} \sigma_{ij}^{(1)} U_j^{(2)} n_i^{out} dS = \oint_{S} \sigma_{ij}^{(2)} U_j^{(1)} n_i^{out} dS$$

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow A Physical Introduction to Suspension Dynamics

イロト イヨト イヨト イヨト

/licrohydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
	00000000	0000000	00000000	

- The fluid dynamic equations
 - Navier-Stokes equations
 - Dimensionless numbers
 - Stokes equations
 - Buoyancy and drag
 - Boundary conditions
- 2 Properties of Stokes flow
 - Linearity
 - Reversibility
 - Instantaneity
- 3 Three Stokes-flow theorems
 - Minimum dissipation
 - Uniqueness
 - Reciprocity

Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Basic concepts in viscous flow <ロト 4 団 ト 4 豆 ト 4 豆 ト 三 つくの</p>

Microhydrodynamics	The fluid dynamic equations	Properties of Stokes flow	Three Stokes-flow theorems	References
	00000000	0000000	00000000	

Movie References

Taylor, G. I.

Low Reynolds Number Flows

1966 National Committee for Fluid Mechanics Films http://web.mit.edu/fluids/www/Shapiro/ncfmf.html http://media.efluids.com/galleries/ncfmf?medium=305

Homsy, G. M., et al. 2000 Multimedia Fluid Mechanics - CD-ROM 2004 Multilingual Version Cambridge University Press

< □ > < □ > < □ > < □ > < □ > < □ >