Soient $r$ et $p$ deux nombres premiers distincts, soit
$K\,=\,\mathbb{Q}(\cos \,\frac{2\pi }{r})$
, et soit $\mathbb{F}$ le corps résiduel de $K$ en une place au-dessus de $p$. Lorsque l’image de
$(2\,-\,2\,\cos \,\frac{2\pi }{r})$
dans $\mathbb{F}$ n’est pas un carré, nous donnons une construction géométrique d’une extension réguliere de $K\left( t \right)$ de groupe de Galois
$\text{PS}{{\text{L}}_{2}}(\mathbb{F})$
. Cette extension correspond à un revêtement de
${{\mathbb{P}}^{1}}/k$
de « signature $\left( r,\,p,\,p \right)$ » au sens de [3, sec. 6.3], et son existence est prédite par le critère de rigidité de Belyi, Fried, Thompson et Matzat. Sa construction s’obtient en tordant la representation galoisienne associée aux points d’ordre $p$ d’une famille de variétés abéliennes à multiplications réelles par $K$ découverte par Tautz, Top et Verberkmoes [6]. Ces variétés abéliennes sont définies sur un corps quadratique, et sont isogènes à leur conjugué galoisien. Notre construction généralise une méthode de Shih [4], [5], que l’on retrouve quand $r\,=\,2$ et $r\,=\,3$.