Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-01T18:35:55.342Z Has data issue: false hasContentIssue false

12 - Emerging nanophotonics

from Part II - Advances and challenges

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 380 - 428
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Berini, P. (2014). Surface plasmon photodetectors and their applications. Laser Photonics Rev, 8, 197220.CrossRefGoogle Scholar
Cornet, C., Léger, Y., and Robert, C. (2016). Integrated Lasers on Silicon. Elsevier.Google Scholar
Duan, G. H., Jany, C., Le Liepvre, A., et al. (2014). Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Select Topics Quantum Electronics, 20, 158170.CrossRefGoogle Scholar
Duarte, F. J. (2014). Quantum Optics for Engineers. CRC.Google Scholar
Enoch, S., and Bonod, N. (eds.) (2012). Plasmonics: From Basics to Advanced Topics, vol. 167. Springer.CrossRefGoogle Scholar
Gaponenko, S. V., Gaiduk, A. A., Kulakovich, O. S., et al. (2001). Raman scattering enhancement using crystallographic surface of a colloidal crystal. JETP Lett, 74, 309313.CrossRefGoogle Scholar
Gerasimos, K., and Sargent, E. H. (eds.) (2013). Colloidal Quantum Dot Optoelectronics and Photovoltaics. Cambridge University Press.Google Scholar
Khriachtchev, L. (2009). Silicon Nanophotonics: Basic Principles, Current Status and Perspectives. Pan Stanford Publishing.Google Scholar
Kira, M., and Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press.Google Scholar
Kneipp, J., Kneipp, H., and Kneipp, K. (2008). SERS: a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev, 37, 10521060.CrossRefGoogle Scholar
Kovalenko, M. V., Manna, L., Cabot, A., et al. (2015). Prospects of nanoscience with nanocrystals. ACS Nano, 9, 10121057.CrossRefGoogle ScholarPubMed
Le Ru, E., and Etchegoin, P. (2008). Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier.Google Scholar
Li, Z. Y. (2015). Optics and photonics at nanoscale: principles and perspectives. Europhysics Lett, 110, 14001.CrossRefGoogle Scholar
Liao, H., Nehl, C. L., and Hafner, J. H. (2006). Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 1, 201208.Google Scholar
Liu, A. Y., Zhang, C., Norman, J., et al. (2014). High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104.Google Scholar
Lu, T., Peng, W., Zhu, S., and Zhang, D. (2016). Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications. Nanotechnology, 27, 122001.CrossRefGoogle ScholarPubMed
Mayer, K. M., and Hafner, J. H. (2011). Localized surface plasmon resonance sensors. Chem Rev, 111, 38283857.CrossRefGoogle ScholarPubMed
Miller, D. A. B. (2017). Attojoule optoelectronics for low-energy information processing and communications: a tutorial review. J Lightwave Technol, 35, 346396.Google Scholar
Priolo, F., Gregorkiewicz, T., Galli, M., and Krauss, T. F. (2014). Silicon nanostructures for photonics and photovoltaics. Nature Nanotechn, 9, 1932.Google Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nat Methods, 5, 763775.Google Scholar
Sarychev, A. K., and Shalaev, V. M. (2007). Electrodynamics of Metamaterials. World Scientific.CrossRefGoogle Scholar
Shamirian, A., Ghai, A., and Snee, P. T. (2015). QD-based FRET probes at a glance. Sensors, 15, 1302813051.CrossRefGoogle ScholarPubMed
Starkey, T., and Vukusic, P. (2013). Light manipulation principles in biological photonic systems. Nanophotonics, 2, 289307.Google Scholar
Veselago, V. G. (2009). Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium. Physics-Uspekhi, 52, 649654.CrossRefGoogle Scholar
Yamamoto, Y., Tassone, F., and Cao, H. (2000). Semiconductor Cavity Quantum Electrodynamics. Springer.Google Scholar
Zenkevich, E., and von Borczyskowski, C. (eds.) (2016). Self-Assembled Organic–Inorganic Nanostructures: Optics and Dynamics. Pan Stanford Publishing.Google Scholar

References

Absil, P. P., Verheyen, P., De Heyn, P., et al. (2015). Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s. Optics Expr, 23, 93699378.CrossRefGoogle ScholarPubMed
Achtstein, A. W., Schliwa, A., Prudnikau, A., et al. (2012). Electronic structure and exciton–phonon interaction in two-dimensional colloidal CdSe nanosheets. Nano Lett, 12, 31513157.CrossRefGoogle ScholarPubMed
Achtstein, A. W., Prudnikau, A. V., Ermolenko, M. V., et al. (2014). Electroabsorption by 0D, 1D, and 2D nanocrystals: a comparative study of CdSe colloidal quantum dots, nanorods, and nanoplatelets. ACS Nano, 8, 76787686.Google Scholar
Artemyev, M. V., Bibik, A. I., Gurinovich, L. I., Gaponenko, S. V., and Woggon, U. (1999). Evolution from individual to collective electron states in a dense quantum dot ensemble. Phys Rev B, 60, 1504.CrossRefGoogle Scholar
Bae, W. K., Brovelli, S., and Klimov, V. I. (2013). Spectroscopic insights into the performance of quantum dot light-emitting diodes. MRS Bull, 38, 721730.Google Scholar
Borrelli, N. F., Hall, D. W., Holland, H. J., and Smith, D. W. (1987). Quantum confinement effects of semiconducting microcrystallites in glass. J Appl Phys, 61, 53995409.Google Scholar
Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 20132016.CrossRefGoogle ScholarPubMed
Brus, L. E. (1983). A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Physics, 79, 55665571.Google Scholar
Brus, L. E. (1984). Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys, 80, 44034409.Google Scholar
Busch, K., von Freymann, G., Linden, S., et al. (2007). Periodic nanostructures for photonics. Phys Rep, 444, 101202.Google Scholar
Bykov, V. P. (1972). Spontaneous emission in a periodic structure. Soviet Physics-JETP, 35 269273.Google Scholar
Bykov, V. P. (1993). Radiation of Atoms in a Resonant Environment. World Scientific.Google Scholar
Cai, W., and Shalaev, V. M. (2010). Optical Metamaterials, vol. 10. Springer.CrossRefGoogle Scholar
Chan, W. C. W., and Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 20162018.CrossRefGoogle ScholarPubMed
Chen, M., Shao, L., Kershaw, S. V., et al. (2014). Photocurrent enhancement of HgTe quantum dot photodiodes by plasmonic gold nanorod structures. ACS Nano, 8, 82088216.CrossRefGoogle ScholarPubMed
Chung, K., Yu, S., Heo, C.-J., et al. (2012). Flexible, angle-independent, structural color reflectors inspired by Morpho butterfly wings. Adv Mater, 24, 23752379.CrossRefGoogle ScholarPubMed
Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P. (1994). Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature, 357, 354357.Google Scholar
Dang, C., Lee, J., Breen, C., et al. (2012). Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat Nanotechnol, 7(5), 335339.Google Scholar
Demir, H. V., Nizamoglu, S., Erdem, T., et al. (2011). Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 6, 632647.Google Scholar
Deng, Z., Jeong, K. S., and Guyot-Sionnes, P. (2014). Colloidal quantum dots intraband photodetectors. ACS Nano, 8, 1170711714.Google Scholar
Dennis, A. M., Rhee, W. J., Sotto, D., Dublin, S. N., and Bao, G. (2012). Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano, 6, 29172924.Google Scholar
Docampo, P., and Bein, T. (2016). A long-term view on perovskite optoelectronics. Acc Chem Res, 49, 339346.CrossRefGoogle ScholarPubMed
Duarte, F. J. (2014). Quantum Optics for Engineers. CRC.Google Scholar
Efros, A. L., and Efros, A. L. (1982). Interband absorption of light in a semiconductor sphere. Soviet Physics Semiconductors-USSR, 16, 772775.Google Scholar
Ekimov, A. I., and Onushchenko, A. A. (1981). Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett, 34, 345349.Google Scholar
Ekimov, A. I., and Onushchenko, A. A. (1984). Size quantization of the electron energy spectrum in a microscopic semiconductor crystal. JETP Lett, 40, 11361139.Google Scholar
Ellingson, R. J., Beard, M. C., Johnson, J. C., et al. (2005). Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett, 5, 865871.Google Scholar
Erdem, T., and Demir, H. V. (2013). Color science of nanocrystal quantum dots for lighting and displays. Nanophotonics, 2, 5781.Google Scholar
Gaponenko, N. V. (2001). Sol-gel derived films in mesoporous matrices: porous silicon, anodic alumina and artificial opals. Synth Met, 124, 125130.Google Scholar
Gaponenko, S. V. (1998). Optical Properties of Semiconductor Nanocrystals. Cambridge University Press.Google Scholar
Gaponenko, S. V. (2010). Introduction to Nanophotonics. Cambridge University Press.Google Scholar
Gaponenko, S. V., and Guzatov, D. V. (2009). Possible rationale for ultimate enhancement factor in single molecule Raman spectroscopy. Chem Phys Lett, 477, 411414.Google Scholar
Gaponenko, S. V., Germanenko, I. N., Petrov, E. P., et al. (1994). Time-resolved spectroscopy of visibly emitting porous silicon. Appl Phys Lett, 64, 8587.Google Scholar
Gaponenko, S. V., Kapitonov, A. M., Bogomolov, V. N., et al. (1998). Electrons and photons in mesoscopic structures: quantum dots in a photonic crystal. JETP Lett, 68, 142147.Google Scholar
Goldman, E. R., Medintz, I. L., Whitley, J. L., et al. (2005). A hybrid quantum dot–antibody fragment fluorescence resonance energy transfer-based TNT sensor (2005). J Amer Chem Soc, 127, 67446751.Google Scholar
Gonzalez-Carrero, S., Galian, R. E., and Pérez-Prieto, J. (2016). Organic–inorganic and all-inorganic lead halide nanoparticles [Invited]. Opt Expr, 24, A285A301.Google Scholar
Gramotnev, D. K., and Bozhevolnyi, S. I. (2010). Plasmonics beyond the diffraction limit. Nat Photonics, 4, 8391.Google Scholar
Guha, B., Kyotoku, B. B., and Lipson, M. (2010). CMOS-compatible athermal silicon microring resonators. Opt Express, 18, 34873493.Google Scholar
Guzelturk, B., Martinez, P. L. H., Zhang, Q., et al. (2014a). Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser Photonics Rev, 8, 7393.CrossRefGoogle Scholar
Guzelturk, B., Kelestemur, Y., Olutas, M., Delikanli, S., and Demir, H. V. (2014b). Amplified spontaneous emission and lasing in colloidal nanoplatelets. ACS Nano, 8, 65996605.Google Scholar
He, L., Özdemir, S. K., Zhu, J., Kim, W., and Yang, L. (2011). Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat Nanotechnol, 6, 428432.Google Scholar
Jain, J. R., Hryciw, A., Baer, T. M., et al. (2012). A micromachining-based technology for enhancing germanium light emission via tensile strain. Nat Photonics, 6, 398405.CrossRefGoogle Scholar
Jain, P. K., and El-Sayed, M. A. (2007). Surface plasmon resonance sensitivity of metal nano-structures: physical basis and universal scaling in metal nanoshells. J Phys Chem C, 111, 1745117454.Google Scholar
Kamat, P. V. (2008). Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C, 112, 1873718753.Google Scholar
Kira, M., and Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press.Google Scholar
Klimov, V. I., Ivanov, S. A., Nanda, J., et al. (2007). Single-exciton optical gain in semiconductor nanocrystals. Nature, 447, 441446.Google Scholar
Klyachkovskaya, E., Strekal, N., Motevich, I., et al. (2011). Enhanced Raman scattering of ultramarine on Au-coated Ge/Si-nanostructures. Plasmonics, 6, 413418.Google Scholar
Kneipp, K., Kneipp, H., and Kneipp, J. (2006). Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc Chem Res, 39, 443450.Google Scholar
Knight, M. W., Sobhani, H., Nordlander, P., and Halas, N. J. (2011). Photodetection with active optical antennas. Science, 332, 702704.CrossRefGoogle ScholarPubMed
Kolle, M., Lethbridge, A., Kreysing, M., et al. (2013). Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv Mater, 25, 22392245.Google Scholar
Konstantatos, G., and Sargent, E. H. (2009). Solution-processed quantum dot photodetectors. Proceedings IEEE, 97, 16661683.Google Scholar
Kovalenko, M. V., Manna, L., Cabot, A., et al. (2015). Prospects of nanoscience with nanocrystals. ACS Nano9, 10121057.Google Scholar
Kulakovich, O. S., Shabunya-Klyachkovskaya, E. V., Matsukovich, A. S., et al. (2016). Nanoplasmonic Raman detection of bromate in waterOpt Expr24(2), A174A179.CrossRefGoogle ScholarPubMed
Kuo, Y. H., Lee, Y. K., Ge, Y., et al. (2005). Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature, 437, 13341336.Google Scholar
Lee, J. S., Kovalenko, M. V., Huang, J., Chung, D. S., and Talapin, D. V. (2011). Band-like transport, high electron mobility and high photoconductivity in all-inorganic nanocrystal arraysNat Nanotechnol6(6), 348353.Google Scholar
Lesnyak, V., Gaponik, N., and Eychmüller, A. (2013). Colloidal semiconductor nanocrystals: the aqueous approach. Chem Soc Rev, 42, 29052929.Google Scholar
Liao, H., Nehl, C. L., and Hafner, J. H. (2006). Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine, 1, 201208.Google Scholar
Liu, A. Y., Zhang, C., Norman, J., et al. (2014). High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 104, 041104.Google Scholar
Lodahl, P., Mahmoodian, R., and Stobbe, S. (2015). Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 87, 347400.Google Scholar
Lounis, B., and Orrit, M. (2005). Single-photon sources. Rep Progr Physics, 68, 11291179.CrossRefGoogle Scholar
Lounis, B., Bechtel, H. A., Gerion, D., Alivisatos, P., and Moerner, W. E. (2000). Photon antibunching in single CdSe/ZnS quantum dot fluorescence. Chem Phys Lett, 329, 399404.Google Scholar
Lu, T., Peng, W., Zhu, S., and Zhang, D. (2016). Bio-inspired fabrication of stimuli-responsive photonic crystals with hierarchical structures and their applications. Nanotechnology, 27, 122001.Google Scholar
Mahmoud, K. H., and Zourob, M. (2013). Fe3O4/Au nanoparticles/lignin modified microspheres as effectual surface enhanced Raman scattering (SERS) substrates for highly selective and sensitive detection of 2,4,6-trinitrotoluene (TNT). Analyst, 138, 27122719.Google Scholar
Mayer, K. M., and Hafner, J. H. (2011). Localized surface plasmon resonance sensors, Chem Rev, 111, 38283857.Google Scholar
Medintz, I. L., Uyeda, H. T., Goldman, E. R., and Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 4, 435446.Google Scholar
Miller, M. M., and Lazarides, A. A. (2005). Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment, J Phys Chem B, 109, 2155621565.Google Scholar
Mogilevtsev, D. S., and Kilin, S. Ya. (2007). Quantum Optics Methods of Structured Reservoirs. Belorusskaya Nauka. In Russian.Google Scholar
Mogilevtsev, D., Moreira, F., Cavalcanti, S. B., and Kilin, S. (2007). Field–emitter bound states in structured thermal reservoirs. Phys Rev A, 75, 043802.Google Scholar
Murray, C. B., Kagan, C. R., and Bawendi, M. G. (1995). Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science, 270, 13351338.CrossRefGoogle Scholar
Nizamoglu, S., Gather, M. C., and Yun, S. H. (2013). All-biomaterial laser using vitamin and biopolymers. Adv Mater, 25, 59435947.Google Scholar
Nudelman, S. (1962). The detectivity of infrared photodetectors, Appl Opt, 1, 627636.Google Scholar
Page, L. E., Zhang, X., Jawaid, A. M., and Snee, P. T. (2011). Detection of toxic mercury ions using a ratiometric CdSe/ZnS nanocrystal sensor. Chem Commun, 47, 77737775.CrossRefGoogle ScholarPubMed
Palui, G., Aldeek, F., Wang, W., and Mattoussi, H. (2015). Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem Soc Rev, 44, 193227.Google Scholar
Panarin, A. Yu, Khodasevich, I. A., Gladkova, O. L., and Terekhov, S. N. (2014). Determination of antimony by surface-enhanced Raman spectroscopy. Appl Spectr, 68, 297306.Google Scholar
Parker, A. R. (2000). 515 million years of structural color. J Optics A, 2, R15R28.Google Scholar
Pavesi, L., Gaponenko, S., and Dal Negro, L. (eds.) (2012). Towards the First Silicon Laser. Springer Science & Business Media.Google Scholar
Pendry, J. B. (2000). Negative refraction makes a perfect lens. Phys Rev Lett, 85, 39663969.CrossRefGoogle ScholarPubMed
Petrov, E. P., Bogomolov, V. N., Kalosha, I. I., and Gaponenko, S. V. (1998). Spontaneous emission of organic molecules in a photonic crystal. Phys Rev Lett, 81, 7780.Google Scholar
Pompa, P. P., Martiradonna, L., Della Torre, A., et al. (2006). Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale controlNat Nanotechnol1(2), 126130.Google Scholar
Reckmeier, C. J., Schneider, J., Susha, A. S., and Rogach, A. L. (2016). Luminescent colloidal carbon dots: optical properties and effects of doping [Invited]. Opt Express, 24, A312A340.Google Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T. (2008). Quantum dots versus organic dyes as fluorescent labels. Nat Methods, 5, 763775.Google Scholar
Roelkens, G., Abassi, A., Cardile, P., et al. (2015). III–V-on-silicon photonic devices for optical communication and sensing. Photonics, 2, 9691004.Google Scholar
Rumyantseva, A., Kostcheev, S., Adam, P. M., et al. (2013). Nonresonant surface-enhanced Raman scattering of ZnO quantum dots with Au and Ag nanoparticles. ACS Nano, 7, 34203426.Google Scholar
Sargent, E. H. (2012). Colloidal quantum dot solar cells. Nat Photonics, 6, 133135.Google Scholar
Schaller, R. D., and Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 92, 186601.Google Scholar
Shabunya-Klyachkovskaya, E., Kulakovich, O., Gaponenko, S., Vaschenko, S., and Guzatov, D. (2016). Surface enhanced Raman spectroscopy application for art materials identification. Eur J Sci Theol, 12, 211220.Google Scholar
Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulović, V. (2013). Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics, 7, 1323.Google Scholar
Smith, G., Gentle, A., Arnold, M., and Cortie, M. (2016). Nanophotonics-enabled smart windows, buildings and wearables. Nanophotonics, 5, 5573.Google Scholar
Srinivasarao, M. (1999). Nano-optics in the biological world: beetles, butterflies, birds, and moths Chem Rev, 99, 19351961.Google Scholar
Starkey, T., and Vukusic, P. (2013). Light manipulation principles in biological photonic systems. Nanophotonics, 2, 289307.Google Scholar
Stern, B., Zhu, X., Chen, C. P., et al. (2015). On-chip mode-division multiplexing switch. Optica, 2, 530535.Google Scholar
Su, L., Zhang, X., Zhang, Y., and Rogach, A. L. (2016). Recent progress in quantum dot based white light-emitting devices. Top Curr Chem, 374, 125.Google Scholar
Sun, Y., and Xia, Y. (2002). Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem, 74 52975305.Google Scholar
Talapin, D. V., Lee, J. S., Kovalenko, M. V., and Shevchenko, E. V. (2009). Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev, 110, 389458.Google Scholar
Tam, F., Moran, C., and Halas, N. (2004). Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment, J Phys Chem B, 108, 1729017294.Google Scholar
Tan, S. J., Campolongo, M. J., Luo, D., and Cheng, W. (2011). Building plasmonic nanostructures with DNA. Nat Nanotechnol, 6, 268276.CrossRefGoogle ScholarPubMed
Tang, Y., Yang, Q., Wu, T., et al. (2014). Fluorescence enhancement of cadmium selenide quantum dots assembled on silver nanoparticles and its application for glucose detection. Langmuir, 30, 63246330.Google Scholar
Törmä, P., and Barnes, W. L. (2015). Strong coupling between surface plasmon polaritons and emitters: a review. Rep Prog Phys, 78, 013901.Google Scholar
Turner-Foster, A. C., Foster, M. A., Levy, J. S., et al. (2010). Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides. Opt Express, 18, 35823591.Google Scholar
Veselago, V. G. (1968). The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi, 10, 509514.Google Scholar
Veselago, V. G., and Narimanov, E. E. (2006). The left hand of brightness: past, present and future of negative index materials. Nat Mater, 5, 759766.Google Scholar
Vogel, N., Weiss, C. K., and Landfester, K. (2012). From soft to hard: the generation of functional and complex colloidal monolayers for nanolithography. Soft Matter, 8, 40444061.Google Scholar
Vollmer, F., and Arnold, S. (2008). Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods, 5, 591596.Google Scholar
Vukusic, P., and Hooper, I. (2005). Directionally controlled fluorescence emission in butterfliesScience310(5751), 1151.Google Scholar
Wang, Y., Li, X., Song, J., et al. (2015). All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv Mater, 27, 71017108.Google Scholar
Werner, J., Oehme, M., Schmid, M., et al. (2011). Germanium–tin p–i–n photodetectors integrated on silicon grown by molecular beam epitaxy. Appl Phys Lett, 98, 061108.Google Scholar
Woggon, U. (1997). Optical Properties of Semiconductor Quantum Dots. Springer.Google Scholar
Wood, V., and Bulović, V. (2010). Colloidal quantum dot light-emitting devices. Nano Rev, 1, 52025210.Google Scholar
Yakunin, S., Protesescu, L., Krieg, F., et al. (2015). Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat Commun, 6, 80568060.Google Scholar
Yamamoto, Y., Tassone, F., and Cao, H. (2000). Semiconductor Cavity Quantum Electrodynamics. Springer.Google Scholar
Zenkevich, E. I., Gaponenko, S. V., Sagun, E. I., and Borczyskowski, C. V. (2013). Bioconjugates based on semiconductor quantum dots and porphyrin ligands: properties, exciton relaxation pathways and singlet oxygen generation efficiency for photodynamic therapy applications. Rev Nanosci Nanotechnol, 2, 184207.Google Scholar
Zheludev, N. I., and Kivshar, Y. S. (2012). From metamaterials to metadevices. Nat Mater, 11, 917924.Google Scholar
Zhmakin, A. I. (2011). Enhancement of light extraction from light emitting diodes. Phys Rep, 498, 189241.Google Scholar
Zhu, J., Zhang, F., Li, J., and Zhao, J. (2013). Optimization of the refractive index plasmonic sensing of gold nanorods by non-uniform silver coating, Sens Actuators, B: Chem, 183, 143150.Google Scholar
Zhukovsky, S. V., Ozel, T., Mutlugun, E., et al. (2014). Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocompositesOpt Express22(15), 1829018298.Google Scholar
Zimin, L. G., Gaponenko, S. V., Lebed, V. Y., Malinovskii, I. E., and Germanenko, I. N. (1990). Nonlinear optical absorption of CuCl and CdSxSe1-x microcrystallites under quantum confinement. J Luminescence, 46, 101107.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×