Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T22:52:56.711Z Has data issue: false hasContentIssue false

10 - Age-Related Sensory Deficits and Their Consequences

from Part II - Mechanisms of Cognitive Aging

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Changes in sensory systems are common as we get older and become more likely with increasing age. In the auditory system, age-related changes are seen in domains such as auditory sensitivity, temporal processing, and spatial localization, which have significant effects on speech understanding. In vision, age-related changes are seen in contrast sensitivity, scotopic processing, and visual processing speed, which have consequences for activities such as reading and driving. Aging is also associated with changes in smell, taste, and balance. Beyond simple perceptual processing, age-related sensory changes can increase cognitive demands, requiring greater involvement of domain-general cognitive processes during perception that reduce resources available for other operations. Capturing individual variability in sensory changes and their consequences is an important part of understanding normal and pathological aging.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 179 - 199
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, S. M., Giguère, C., Consoli, A., & Papsin, B. C. (2000). The effect of aging on horizontal plane sound localization. Journal of the Acoustical Society of America, 108(2), 743752. https://doi.org/10.1121/1.429607CrossRefGoogle ScholarPubMed
Adamsons, I., Rubin, G. S., Vitale, S., Taylor, H. R., & Stark, W. J. (1992). The effect of early cataracts on glare and contrast sensitivity: A pilot study. Archives of Ophthalmology, 110(8), 10811086. https://doi.org/10.1001/archopht.1992.01080200061025Google Scholar
Agrawal, Y., Carey, J. P., Della Santina, C. C., Schubert, M. C., & Minor, L. B. (2009). Disorders of balance and vestibular function in US adults: Data from the National Health and Nutrition Examination Survey, 2001–2004. Archives of Internal Medicine, 169(10), 938944. https://doi.org/10.1001/archinternmed.2009.66Google Scholar
Akutsu, H., Legge, G. E., Ross, J. A., & Schuebel, K. J. (1991). Psychophysics of reading – X. Effects of age-related changes in vision. Journal of Gerontology, 46(6), 325331. https://doi.org/10.1093/geronj/46.6.P325Google Scholar
Anderson, S. (2017). Clinical translation: Aging, hearing loss, and amplification. In Kraus, N., Anderson, S., White-Schwoch, T., Fay, R. R., & Popper, A. N. (Eds.), The frequency-following response (pp. 267294). Cham: Springer.Google Scholar
Anderson, S., Parbery-Clark, A., White-Schwoch, T., Drehobl, S., & Kraus, N. (2013). Effects of hearing loss on the subcortical representation of speech cues. Journal of the Acoustical Society of America, 133(5), 30303038. https://doi.org/10.1121/1.4799804CrossRefGoogle ScholarPubMed
Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. Journal of Neuroscience, 32(41), 1415614164. https://doi.org/10.1523/JNEUROSCI.2176-12.2012CrossRefGoogle ScholarPubMed
Artal, P., Guirao, A., Berrio, E., Piers, P., & Norrby, S. (2003). Optical aberrations and the aging eye. International Ophthalmology Clinics, 43(2), 6377. https://doi.org/10.1097/00004397-200343020-00008CrossRefGoogle ScholarPubMed
Attems, J., Walker, L., & Jellinger, K. A. (2015). Olfaction and aging: A mini-review. Gerontology, 61(6), 485490. https://doi.org/10.1159/000381619Google Scholar
Ball, K., Owsley, C., Sloane, M. E., Roenker, D. L., & Bruni, J. R. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Ophthalmology and Visual Science, 34(11), 31103123.Google Scholar
Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L., & Griggs, D. S. (1988). Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America A: Optics and Image Science, 5(12), 22102219. https://doi.org/10.1364/JOSAA.5.002210Google Scholar
Ball, K. K., Roenker, D. L., Wadley, V. G., et al. (2006). Can high‐risk older drivers be identified through performance‐based measures in a Department of Motor Vehicles setting? Journal of the American Geriatrics Society, 54(1), 7784. https://doi.org/10.1111/j.1532-5415.2005.00568.xGoogle Scholar
Barr, R. A. (1991). Recent changes in driving among older adults. Human Factors, 33(5), 597600. https://doi.org/10.1177/001872089103300510Google Scholar
Birren, J. E., & Shock, N. W. (1950). Age changes in rate and level of visual dark adaptation. Journal of Applied Physiology, 2(7), 407411. https://doi.org/10.1152/jappl.1950.2.7.407Google Scholar
Bolia, R. S., Nelson, W. T., Ericson, M. A., & Simpson, B. D. (2000). A speech corpus for multitalker communications research. Journal of the Acoustical Society of America, 107(2), 10651066. https://doi.org/10.1121/1.428288Google Scholar
Brown, L. A., Shumway-Cook, A., & Woollacott, M. H. (1999). Attentional demands and postural recovery: The effects of aging. Journals of Gerontology, Series A: Biomedical Sciences and Medical Sciences, 54(4), 165171. https://doi.org/10.1093/gerona/54.4.M165CrossRefGoogle ScholarPubMed
Buss, E., Hall, J. W. III, & Grose, J. H. (2004). Temporal fine-structure cues to speech and pure tone modulation in observers with sensorineural hearing loss. Ear and Hearing, 25(3), 242250. https://doi.org/10.1097/01.AUD.0000130796.73809.09CrossRefGoogle ScholarPubMed
Carlile, S., Delaney, S., & Corderoy, A. (1999). The localisation of spectrally restricted sounds by human listeners. Hearing Research, 128(1–2), 175189. https://doi.org/10.1016/S0378-5955(98)00205-6Google Scholar
Carr, C. E., & Konishi, M. (1990). A circuit for detection of interaural time differences in the brain stem of the barn owl. Journal of Neuroscience, 10(10), 32273246. https://doi.org/10.1523/JNEUROSCI.10-10-03227.1990Google Scholar
Chen, H. L. (1994). Hearing in the elderly: Relation of hearing loss, loneliness, and self-esteem. Journal of Gerontological Nursing, 20(6), 2228. https://doi.org/10.3928/0098-9134-19940601-07CrossRefGoogle ScholarPubMed
Cruickshanks, K. J., Wiley, T. L., Tweed, T. S., et al. (1998). Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin: The epidemiology of hearing loss study. American Journal of Epidemiology, 148(9), 879886. https://doi.org/10.1093/oxfordjournals.aje.a009713Google Scholar
Crundall, D., Underwood, G., & Chapman, P. (1999). Driving experience and the functional field of view. Perception, 28(9), 10751087. https://doi.org/10.1068/p281075Google Scholar
Curcio, C. A., Millican, C. L., Allen, K. A., & Kalina, R. E. (1993). Aging of the human photoreceptor mosaic: Evidence for selective vulnerability of rods in central retina. Investigative Ophthalmology and Visual Science, 34(12), 32783296.Google Scholar
Derefeldt, G., Lennerstrand, G., & Lundh, B. (1979). Age variations in normal human contrast sensitivity. Acta Ophthalmologica, 57(4), 679690. https://doi.org/10.1111/j.1755-3768.1979.tb00517.xGoogle Scholar
Dobreva, M. S., O’Neill, W. E., & Paige, G. D. (2011). Influence of aging on human sound localization. Journal of Neurophysiology, 105(5), 24712486. https://doi.org/10.1111/j.1755-3768.1979.tb00517.xGoogle Scholar
Doty, R. L. (2018). Age-related deficits in taste and smell. Otolaryngologic Clinics of North America, 51(4), 815825. https://doi.org/10.1016/j.otc.2018.03.014Google Scholar
Eckert, M. A., Cute, S. L., Vaden, K. I., Kuchinsky, S. E., & Dubno, J. R. (2012). Auditory cortex signs of age-related hearing loss. Journal of the Association for Research in Otolaryngology, 13(5), 703713.Google Scholar
Eckert, M. A., Teubner-Rhodes, S., & Vaden, K. I. Jr. (2016). Is listening in noise worth it? The neurobiology of speech recognition in challenging listening conditions. Ear and Hearing, 37(Suppl. 1), 101110. https://doi.org/10.1097/AUD.0000000000000300Google Scholar
Elliott, D. B., Gilchrist, J., & Whitaker, D. (1989). Contrast sensitivity and glare sensitivity changes with three types of cataract morphology: Are these techniques necessary in a clinical evaluation of cataract? Ophthalmic and Physiological Optics, 9(1), 2530. https://doi.org/10.1111/j.1475-1313.1989.tb00800.xGoogle Scholar
Evans, L. (1988a). Older driver involvement in fatal and severe traffic crashes. Journal of Gerontology, 43(6), S186S193. https://doi.org/10.1093/geronj/43.6.S186Google Scholar
Evans, L. (1988b). Risk of fatality from physical trauma versus sex and age. Journal of Trauma, 28(3), 368378. https://doi.org/10.1097/00005373-198803000-00013Google Scholar
Fitzgibbons, P. J., & Gordon-Salant, S. (2010). Behavioral studies with aging humans: Hearing sensitivity and psychoacoustics. In Gordon-Salant, S., Frisina, R. D., Popper, A. N., & Fay, R. R. (Eds.), The aging auditory system (pp. 111134). New York: Springer.Google Scholar
Gallun, F. J., Diedesch, A. C., Kampel, S. D., & Jakien, K. M. (2013). Independent impacts of age and hearing loss on spatial release in a complex auditory environment. Frontiers in Neuroscience, 7, p. 252. https://doi.org/10.3389/fnins.2013.00252Google Scholar
Gao, X., Levinthal, B. R., & Stine-Morrow, E. A. (2012). The effects of ageing and visual noise on conceptual integration during sentence reading. Quarterly Journal of Experimental Psychology, 65(9), 18331847.Google Scholar
Gao, X., Stine-Morrow, E. A., Noh, S. R., & Eskew, R. T. (2011). Visual noise disrupts conceptual integration in reading. Psychonomic Bulletin and Review, 18(1), 8388. https://doi.org/10.1080/17470218.2012.674146CrossRefGoogle ScholarPubMed
Gates, G. A., & Mills, J. H. (2005). Presbycusis. Lancet, 366(9491), 11111120. https://doi.org/10.1016/S0140-6736(05)67423-5Google Scholar
Gelfand, S. A., Ross, L., & Miller, S. (1988). Sentence reception in noise from one versus two sources: Effects of aging and hearing loss. Journal of the Acoustical Society of America, 83(1), 248256. https://doi.org/10.1121/1.396426Google Scholar
Gittings, N. S., & Fozard, J. L. (1986). Age related changes in visual acuity. Experimental Gerontology, 21(4–5), 423433. https://doi.org/10.1016/0531-5565(86)90047-1Google Scholar
Glyde, H., Buchholz, J. M., Dillon, H., Cameron, S., & Hickson, L. (2013). The importance of interaural time differences and level differences in spatial release from masking. Journal of the Acoustical Society of America, 134(2), EL147EL152. https://doi.org/10.1121/1.4812441Google Scholar
Goode, K. T., Ball, K. K., Sloane, M., et al. (1998). Useful field of view and other neurocognitive indicators of crash risk in older adults. Journal of Clinical Psychology in Medical Settings, 5(4), 425440. https://doi.org/10.1023/A:1026206927686Google Scholar
Gordon-Salant, S., Yeni-Komshian, G. H., Fitzgibbons, P. J., & Barrett, J. (2006). Age-related differences in identification and discrimination of temporal cues in speech segments. Journal of the Acoustical Society of America, 119(4), 24552466. https://doi.org/10.1121/1.2171527Google Scholar
Grose, J. H., & Mamo, S. K. (2012). Frequency modulation detection as a measure of temporal processing: Age-related monaural and binaural effects. Hearing Research, 294(1–2), 4954. https://doi.org/10.1016/j.heares.2012.09.007CrossRefGoogle ScholarPubMed
Guirao, A., Gonzalez, C., Redondo, M., et al. (1999). Average optical performance of the human eye as a function of age in a normal population. Investigative Ophthalmology and Visual Science, 40(1), 203213.Google Scholar
Haegerstrom-Portnoy, G., Schneck, M. E., & Brabyn, J. A. (1999). Seeing into old age: Vision function beyond acuity. Optometry and Vision Science, 76(3), 141158. http://doi.org/10.1097/00006324-199903000-00014Google Scholar
Heinrich, A., Schneider, B. A., & Craik, F. I. (2008). Investigating the influence of continuous babble on auditory short-term memory performance. Quarterly Journal of Experimental Psychology, 61(5), 735751. https://doi.org/10.1080/17470210701402372CrossRefGoogle ScholarPubMed
Hinds, J. W., & McNelly, N. A. (1981). Aging in the rat olfactory system: Correlation of changes in the olfactory epithelium and olfactory bulb. Journal of Comparative Neurology, 203(3), 441453. https://doi.org/10.1002/cne.902030308Google Scholar
Horowitz, A. (2004). The prevalence and consequences of vision impairment in later life. Topics in Geriatric Rehabilitation, 20(3), 185195.Google Scholar
Humes, L. E. (1996). Speech understanding in the elderly. Journal of the American Academy of Audiology, 7, 161167.Google Scholar
Humes, L. E., & Dubno, J. R. (2010). Factors affecting speech understanding in older adults. In Gordon-Salant, S., Frisina, R. D., Popper, A. N., & Fay, R. R. (Eds.), The aging auditory system (pp. 111134). New York: Springer.Google Scholar
Jackson, G. R., Owsley, C., Cordle, E. P., & Finley, C. D. (1998). Aging and scotopic sensitivity. Vision Research, 38(22), 36553662. https://doi.org/10.1016/S0042-6989(98)00044-3Google Scholar
Jackson, G. R., Owsley, C., & McGwin, G. P. Jr. (1999). Aging and dark adaptation. Vision Research, 39(23), 39753982. https://doi.org/10.1016/S0042-6989(99)00092-9Google Scholar
Johnsson, L. G. (1971). Degenerative changes and anomalies of the vestibular system in man. The Laryngoscope, 81(10), 16821694. https://doi.org/10.1288/00005537-197110000-00016Google Scholar
Kahneman, D., & Beatty, J. (1966). Pupil diameter and load on memory. Science, 154(3756), 15831585. https://doi.org/10.1126/science.154.3756.1583Google Scholar
Kline, D. W., Kline, T. J., Fozard, J. L., et al. (1992). Vision, aging, and driving: The problems of older drivers. Journal of Gerontology, 47(1), 2734. https://doi.org/10.1093/geronj/47.1.P27Google Scholar
Koeritzer, M. A., Rogers, C. S., Van Engen, K. J., & Peelle, J. E. (2018). The impact of age, background noise, semantic ambiguity, and hearing loss on recognition memory for spoken sentences. Journal of Speech, Language, and Hearing Research, 61(3), 740751. https://doi.org/10.1044/2017_JSLHR-H-17-0077Google Scholar
Kosnik, W., Winslow, L., Kline, D., Rasinski, K., & Sekuler, R. (1988). Visual changes in daily life throughout adulthood. Journal of Gerontology, 43(3), 6370. https://doi.org/10.1093/geronj/43.3.P63Google Scholar
Kramer, S. E., Kapteyn, T. S., Festen, J. M., & Kuik, D. J. (1997). Assessing aspects of auditory handicap by means of pupil dilatation. Audiology, 36(3), 155164. https://doi.org/10.3109/00206099709071969Google Scholar
Kujawa, S. G., & Liberman, M. C. (2015). Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing Research, 330, 191199. https://doi.org/10.1016/j.heares.2015.02.009CrossRefGoogle ScholarPubMed
Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry: A window to the preconscious? Perspectives on Psychological Science, 7(1), 1827. https://doi.org/10.1177/1745691611427305Google Scholar
Lamb, T. D., & Pugh, E. N. Jr. (2004). Dark adaptation and the retinoid cycle of vision. Progress in Retinal and Eye Research, 23(3), 307380. https://doi.org/10.1016/j.preteyeres.2004.03.001CrossRefGoogle ScholarPubMed
Lin, F. R., Metter, E. J., O’Brien, R. J., et al. (2011). Hearing loss and incident dementia. Archives of Neurology, 68(2), 214220. https://doi.org/10.1001/archneurol.2010.362Google Scholar
Lin, F. R., Yaffe, K., Xia, J., et al. (2013). Hearing loss and cognitive decline in older adults. JAMA Internal Medicine, 173(4), 293299. https://doi.org/10.1001/jamainternmed.2013.1868Google Scholar
Lipsitz, L. A., Jonsson, P. V., Kelley, M. M., & Koestner, J. S. (1991). Causes and correlates of recurrent falls in ambulatory frail elderly. Journals of Gerontology, 46(4), M114M122. https://doi.org/10.1093/geronj/46.4.M114Google Scholar
Lopez, I., Honrubia, V., & Baloh, R. W. (1997). Aging and the human vestibular nucleus. Journal of Vestibular Research, 7(1), 7785. https://doi.org/10.3233/VES-1997-7107Google Scholar
Lott, L. A., Schneck, M. E., Haegerström-Portnoy, G., et al. (2001). Reading performance in older adults with good acuity. Optometry and Vision Science, 78(5), 316324. https://doi.org/10.1097/00006324-200105000-00015CrossRefGoogle ScholarPubMed
Merchant, S. N., & Nadol, J. B. (2010). Schuknecht’s pathology of the inner ear, 3rd ed. Shelton, CT: People’s Publishing House.Google Scholar
Mick, P., Kawachi, I., & Lin, F. R. (2014). The association between hearing loss and social isolation in older adults. Otolaryngology – Head and Neck Surgery, 150(3), 378384. https://doi.org/10.1177/0194599813518021Google Scholar
Middlebrooks, J. C. (1992). Narrow‐band sound localization related to external ear acoustics. Journal of the Acoustical Society of America, 92(5), 26072624. https://doi.org/10.1121/1.404400CrossRefGoogle ScholarPubMed
Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42(1), 135159. https://doi.org/10.1146/annurev.ps.42.020191.001031Google Scholar
Moore, B. C., Peters, R. W., & Glasberg, B. R. (1992). Detection of temporal gaps in sinusoids by elderly subjects with and without hearing loss. Journal of the Acoustical Society of America, 92(4), 19231932. https://doi.org/10.1121/1.405240Google Scholar
Owsley, C. (2016). Vision and aging. Annual Review of Vision Science, 2, 255271. https://doi.org/10.1146/annurev-vision-111815-114550Google Scholar
Owsley, C., Sekuler, R., & Siemsen, D. (1983). Contrast sensitivity throughout adulthood. Vision Research, 23(7), 689699. https://doi.org/10.1016/0042-6989(83)90210-9Google Scholar
Owsley, C., & Sloane, M. E. (1987). Contrast sensitivity, acuity, and the perception of “real-world” targets. British Journal of Ophthalmology, 71(10), 791796. http://dx.doi.org/10.1136/bjo.71.10.791Google Scholar
Ozmeral, E. J., Eddins, A. C., Frisina, D. R. Sr., & Eddins, D. A. (2016). Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity. Neurobiology of Aging, 43, 7278. https://doi.org/10.1016/j.neurobiolaging.2015.12.024Google Scholar
Peelle, J. E. (2018). Listening effort: How the cognitive consequences of acoustic challenge are reflected in brain and behavior. Ear and Hearing, 39(2), 204214. https://doi.org/10.1097/AUD.0000000000000494Google Scholar
Peelle, J. E., Troiani, V., Grossman, M., & Wingfield, A. (2011). Hearing loss in older adults affects neural systems supporting speech comprehension. Journal of Neuroscience, 31(35), 1263812643. https://doi.org/10.1523/JNEUROSCI.2559-11.2011Google Scholar
Peelle, J. E., & Wingfield, A. (2016). The neural consequences of age-related hearing loss. Trends in Neurosciences, 39(7), 486497. https://doi.org/10.1016/j.tins.2016.05.001Google Scholar
Pichora-Fuller, M. K., Kramer, S. E., Eckert, M. A., et al. (2016). Hearing impairment and cognitive energy: The framework for understanding effortful listening (FUEL). Ear and Hearing, 37(Suppl. 1), 527. https://doi.org/10.1097/AUD.0000000000000312Google Scholar
Pichora‐Fuller, M. K., Schneider, B. A., & Daneman, M. (1995). How young and old adults listen to and remember speech in noise. Journal of the Acoustical Society of America, 97(1), 593608. https://doi.org/10.1121/1.412282Google Scholar
Pichora-Fuller, M. K., & Souza, P. E. (2003). Effects of aging on auditory processing of speech. International Journal of Audiology, 42(Suppl.2), 1116. https://doi.org/10.3109/14992020309074638Google Scholar
Rabbitt, P. M. (1968). Channel-capacity, intelligibility and immediate memory. Quarterly Journal of Experimental Psychology, 20(3), 241248. https://doi.org/10.1080/14640746808400158Google Scholar
Richter, M. (2016). The moderating effect of success importance on the relationship between listening demand and listening effort. Ear and Hearing, 37(Suppl.1), 111117. https://doi/org/10.1097/AUD.0000000000000295Google Scholar
Rodd, J. M., Davis, M. H., & Johnsrude, I. S. (2005). The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cerebral Cortex, 15(8), 12611269. https://doi.org/10.1093/cercor/bhi009CrossRefGoogle ScholarPubMed
Rosen, S. (1992). Temporal information in speech: Acoustic, auditory and linguistic aspects. Philosophical Transactions of the Royal Society B: Biological Sciences, 336(1278), 367373. https://doi.org/10.1098/rstb.1992.0070Google ScholarPubMed
Rubin, G. S., Adamsons, I. A., & Stark, W. J. (1993). Comparison of acuity, contrast sensitivity, and disability glare before and after cataract surgery. Archives of Ophthalmology, 111(1), 5661. https://doi.org/10.1001/archopht.1993.01090010060027CrossRefGoogle ScholarPubMed
Ryan, E. B., Anas, A. P., Beamer, M., & Bajorek, S. (2003). Coping with age-related vision loss in everyday reading activities. Educational Gerontology, 29(1), 3754. https://doi.org/10.1080/713844234Google Scholar
Sanders, A. F. (1970). Some aspects of the selective process in the functional visual field. Ergonomics, 13(1), 101117. https://doi.org/10.1080/00140137008931124Google Scholar
Schiffman, S. S. (1997). Taste and smell losses in normal aging and disease. JAMA, 278(16), 13571362. https://doi.org/10.1001/jama.1997.03550160077042Google Scholar
Schiffman, S. S. (2018). Influence of medications on taste and smell. World Journal of Otorhinolaryngology – Head and Neck Surgery, 4(1), 8491. https://doi.org/10.1016/j.wjorl.2018.02.005CrossRefGoogle ScholarPubMed
Schneider, B. A., Pichora‐Fuller, M. K., Kowalchuk, D., & Lamb, M. (1994). Gap detection and the precedence effect in young and old adults. Journal of the Acoustical Society of America, 95(2), 980991. https://doi.org/10.1121/1.408403Google Scholar
Sergeyenko, Y., Lall, K., Liberman, M. C., & Kujawa, S. G. (2013). Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. Journal of Neuroscience, 33(34), 1368613694. https://doi.org/10.1523/JNEUROSCI.1783-13.2013CrossRefGoogle ScholarPubMed
Skoe, E., & Kraus, N. (2010). Auditory brainstem response to complex sounds: A tutorial. Ear and Hearing, 31(3), 302324. https://doi.org/10.1097/AUD.0b013e3181cdb272CrossRefGoogle ScholarPubMed
Snell, K. B. (1997). Age-related changes in temporal gap detection. Journal of the Acoustical Society of America, 101(4), 22142220. https://doi.org/10.1121/1.418205Google Scholar
Spear, P. D. (1993). Neural bases of visual deficits during aging. Vision Research, 33(18), 25892609. https://doi.org/10.1016/0042-6989(93)90218-LGoogle Scholar
Stine-Morrow, E. A., Miller, L. M. S., & Hertzog, C. (2006). Aging and self-regulated language processing. Psychological Bulletin, 132(4), 582606. https://dx.doi.org/10.1037/0033-2909.132.4.582Google Scholar
Sturnieks, D. L., St. George, R., & Lord, S. R. (2008). Balance disorders in the elderly. Neurophysiologie Clinique/Clinical Neurophysiology, 38(6), 467478. https://doi.org/10.1016/j.neucli.2008.09.001Google Scholar
Summala, H., Nieminen, T., & Punto, M. (1996). Maintaining lane position with peripheral vision during in-vehicle tasks. Human Factors, 38(3), 442451. https://doi.org/10.1518/001872096778701944Google Scholar
Tang, Y., Lopez, I., & Baloh, R. W. (2001). Age-related change of the neuronal number in the human medial vestibular nucleus: A stereological investigation. Journal of Vestibular Research, 11(6), 357363.CrossRefGoogle ScholarPubMed
Tun, P. A., & Wingfield, A. (1999). One voice too many: Adult age differences in language processing with different types of distracting sounds. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 54(5), 317327. https://doi.org/10.1093/geronb/54B.5.P317CrossRefGoogle ScholarPubMed
Van Engen, K. J., & McLaughlin, D. J. (2018). Eyes and ears: Using eye tracking and pupillometry to understand challenges to speech recognition. Hearing Research, 369, 5666. https://doi.org/10.1016/j.heares.2018.04.013Google Scholar
Velayudhan, L. (2015). Smell identification function and Alzheimer’s disease: A selective review. Current Opinion in Psychiatry, 28(2), 173179. https://doi.org/10.1097/YCO.0000000000000146Google Scholar
Walton, J. P. (2010). Timing is everything: Temporal processing deficits in the aged auditory brainstem. Hearing Research, 264(1–2), 6369. https://doi.org/10.1016/j.heares.2010.03.002Google Scholar
Ward, C. M., Rogers, C. S., Van Engen, K. J., & Peelle, J. E. (2016). Effects of age, acoustic challenge, and verbal working memory on recall of narrative speech. Experimental Aging Research, 42(1), 97111. https://doi.org/10.1080/0361073X.2016.1108785Google Scholar
Wayne, R. V., & Johnsrude, I. S. (2015). A review of causal mechanisms underlying the link between age-related hearing loss and cognitive decline. Ageing Research Reviews, 23, 154166. https://doi.org/10.1016/j.arr.2015.06.002Google Scholar
Wingfield, A., Tun, P. A., & McCoy, S. L. (2005). Hearing loss in older adulthood: What it is and how it interacts with cognitive performance. Current Directions in Psychological Science, 14(3), 144148. https://doi.org/10.1111/j.0963-7214.2005.00356.xCrossRefGoogle Scholar
Wolfe, B., Dobres, J., Rosenholtz, R., & Reimer, B. (2017). More than the useful field: Considering peripheral vision in driving. Applied Ergonomics, 65, 316325. https://doi.org/10.1016/j.apergo.2017.07.009Google Scholar
Worden, F. G., & Marsh, J. T. (1968). Frequency-following (microphonic-like) neural responses evoked by sound. Clinical Neurophysiology, 25(1), 4252. https://doi.org/10.1016/0013-4694(68)90085-0Google Scholar
Zekveld, A. A., & Kramer, S. E. (2014). Cognitive processing load across a wide range of listening conditions: Insights from pupillometry. Psychophysiology, 51(3), 277284. https://doi.org/10.1111/psyp.12151Google Scholar
Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2010). Pupil response as an indication of effortful listening: The influence of sentence intelligibility. Ear and Hearing, 31(4), 480490. https://doi.org/10.1097/AUD.0b013e3181d4f251Google Scholar
Zekveld, A. A., Kramer, S. E., & Festen, J. M. (2011). Cognitive load during speech perception in noise: The influence of age, hearing loss, and cognition on the pupil response. Ear and Hearing, 32(4), 498510. https://doi.org/10.1097/AUD.0b013e31820512bbCrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×