Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-08T14:59:21.130Z Has data issue: false hasContentIssue false

3 - Lichens and industrial pollution

Published online by Cambridge University Press:  05 June 2012

Ole William Purvis
Affiliation:
Department of Botany, Natural History Museum, London, United Kingdom
Lesley C. Batty
Affiliation:
University of Birmingham
Kevin B. Hallberg
Affiliation:
University of Wales, Bangor
Get access

Summary

Introduction

Lichens are composite organisms including at least one fungus (mycobiont) and an alga or cyanobacterium (photobiont) living in a mutualistic symbiosis (Hawksworth & Honegger 1994). The lichen symbiosis may involve multiple and different bionts, especially photobionts, at various stages of its life history (Hawksworth 1988; Jahns 1988). Lichenised fungi are ecologically obligate biotrophs acquiring carbon from their photobionts (Honegger 1997). Lichens colonize bark, rocks, soil and various other substrata, and occur in all terrestrial ecosystems, covering more than 6% of the Earth's land surface. They are dominant in Arctic and Antarctic tundra regions where they form the key component of ecosystem processes, as a part of global biogeochemical cycles and also the food chain. Arctic and sub-Arctic lichen heaths are readily visible from space using remote sensing techniques and the effects of ‘point source’ smelters in creating ‘industrial barrens’ and emission reductions leading to recovery of Cladonia-rich heaths are well-documented (Tømmervik et al. 1995, 1998, 2003).

Lichens play a major role in plant ecology and the cycling of elements, such as C, N, P, heavy metals and radionuclides (Knops et al. 1991; Nash 1996b) and are extremely tolerant of ionising radiation (Brodo 1964). Lichens contribute to soil formation and stabilization (Jones 1988). Lichenized fungi may well be ancestral to fruit-body forming ascomycetes (Eriksson 2005). There are around 13,500 known species and 18,000–20,000 estimated worldwide (Sipman & Aptroot 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharius, E. (1798) Lichenographiae svecicae Prodromus. Björn, Linköping.CrossRefGoogle Scholar
Ahti, T. (1965) Notes on the distribution of Lecanora conizaeoides. Lichenologist 3, 91–92.CrossRefGoogle Scholar
Aikin, A. (1797) Article 7. An account of the great copper works in the Isle of Anglesey. A Journal of Natural Philosophy, Chemistry, and the Arts 1, 367–372.Google Scholar
Alstrup, V. (1982) A comparative study of Acarospora isortoquensis and A. undata. Lichenologist 16, 205–206.CrossRefGoogle Scholar
Aptroot, A. and Herk, C. M. (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environmental Pollution 146, 293–298.CrossRefGoogle ScholarPubMed
Ashmore, M. R. (2002) Effects of oxidants at the whole plant and community level. In: Air Pollution and Plant Life (ed. Bell, J. N. B. and Treshow, M. M), pp. 88–118. John Wiley and Sons, Chichester, UK.Google Scholar
Asta, J., Erhardt, W., Ferretti, M.et al. (2002) Mapping lichen diversity as an indicator of environmental quality. In: Monitoring with Lichens – Monitoring Lichens7 (eds. Scheidegger, P. L. C. and Wolseley, P. A.), pp. 273–279. Kluwer Academic, Dordrecht.CrossRefGoogle Scholar
Bailey, E. H. (1968) Lecanora conizaeoides in Iceland. Lichenologist 4, 73.CrossRefGoogle Scholar
Bargagli, R. (1998) Trace Elements in Terrestrial Plants: an Ecophysiological Approach to Biomonitoring and Biorecovery. Berlin, Springer.Google Scholar
Bates, J. W., Bell, J. N. B. and Farmer, A. M. (1990) Epiphyte recolonization of oaks along a gradient of air-pollution in South-East England, 1979–1990. Environmental Pollution 68, 81–99.CrossRefGoogle Scholar
Bates, J. W., Bell, J. N. B. and Massara, A. C. (2001) Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in SE England over 21 years with declining SO2 concentrations. Atmospheric Environment 35, 2557–2568.CrossRefGoogle Scholar
Beck, A. (1999) Photobiont inventory of a lichen community growing on heavy-metal-rich rock. Lichenologist 31, 501–510.CrossRefGoogle Scholar
Bell, J. N. B. (2002) Conclusions and future directions. In: Air Pollution and Plant Life. 2nd edn (eds. Bell, J. N. B. and Treshow, M.), pp. 455–458. John Wiley and Sons, Chichester, UK.Google Scholar
Bell, J. N. B. and Treshow, M. (2002) Historical perspectives. In: Air Pollution and Plant Life (eds. Bell, J. N. B. and Treshow, M.), pp. 5–21. John Wiley and Sons, Chichester, UK.Google Scholar
Bell, J. N. B., Davies, L. and Honour, S. (2004) Air pollution research in London. In: Urban Air Pollution, Bioindication and Environmental Awareness (eds. Klumpp, A., Ansel, W. and Klumpp, G.), pp. 3–16. Cuvillier, Göttingen.Google Scholar
Bennett, J. P. (1995) Abnormal chemical element concentrations in lichens of Isle Royale National Park. Environmental and Experimental Botany 35, 259–277.CrossRefGoogle Scholar
Bennett, J. P. and Wetmore, C. M. (1997) Chemical element concentrations in four lichens on a transect entering Voyageurs-National Park. Environmental and Experimental Botany 37, 173–185.CrossRefGoogle Scholar
Blackhurst, R. L., Jarvis, K. and Grady, M. (2004) Biologically–induced elemental variations in Antarctic sandstones: a potential test for Martian micro-organisms. International Journal of Astrobiology 3, 97–106.CrossRefGoogle Scholar
Blake, L. and Goulding, K. W. T. (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant and Soil 240, 235–251.CrossRefGoogle Scholar
Blake, L., Goulding, K. W. T., Mott, C. J. B. and Johnston, A. E. (1999) Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK. European Journal of Soil Science 50, 401–412.CrossRefGoogle Scholar
Branquino, C. (2008) UNECE Ammonia Workshop, Edinburgh, December 2006.Google Scholar
Brightman, F. H. (1982) Erasmus Darwin claims the earliest mention of lichens and air pollution (1790). Bulletin of the British Lichen Society 51, 18.Google Scholar
Brimblecombe, P. (1987/88) The Big Smoke. Methuen, London.Google Scholar
Brodo, I. M. (1964) Field studies of the effects of ionizing radiation on lichens. The Bryologist 67, 76–87.CrossRefGoogle Scholar
Callahan, D. L., Baker, A. J. M., Kolev, S. D. and Wedd, A. G. (2006) Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry 11, 2–12.CrossRefGoogle ScholarPubMed
Cape, J. N., Tang, Y. S., Dijk, N., Love, L., Sutton, M. A. and Palmer, S. C. F. (2004) Concentrations of ammonia and nitrogen dioxide at roadside verges, and their contribution to nitrogen deposition. Environmental Pollution 132, 469–478.CrossRefGoogle ScholarPubMed
Ceburnis, D. and Steinnes, E. (2000) Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmospheric Environment 34, 4265–4271.CrossRefGoogle Scholar
Chisholm, J. E., Jones, G. C. and Purvis, O. W. (1987) Hydrated copper oxalate, moolooite, in lichens. Mineralogical Magazine 51, 715–718.CrossRefGoogle Scholar
Clauzade, G., Roux, C. and Wirth, V. (1982) Acarospora undata sp. nov. Bulletin du Musée d'Histoire Naturelle de Marseille 41, 35–39.
Coppins, B. J. and Purvis, O. W. (1987) A review of Psilolechia. Lichenologist 19, 29–42.CrossRefGoogle Scholar
Coppins, B. J., Hawksworth, D. L. and Rose, F. (2002) Lichens. In: The Changing Wildlife of Great Britain and Ireland. The Systematics Association Special Volume Series 62 (ed. Hawksworth, D. L.), pp. 126–147. Taylor & Francis, London.Google Scholar
Crespo, A., Bridge, P. D., Hawksworth, D. L., Grube, M. and Cubero, O. F. (1999) Comparison of rRNA genotype frequencies of Parmelia sulcata from long-established and recolonizing sites following sulphur dioxide amelioration. Plant Systematics and Evolution 217, 177–183.CrossRefGoogle Scholar
Crewe, A. T., Purvis, O. W. and Wedin, M. (2006) Molecular phylogeny of Acarosporaceae (Ascomycota) with focus on the proposed genus Polysporinopsis. Mycological Research 110, 521–526.CrossRefGoogle ScholarPubMed
Czehura, S. J. (1977) A lichen indicator of copper mineralization, Lights Creek District, Plumas County, California. Economic Geology 72, 796–803.CrossRefGoogle Scholar
Davies, L. (2005) A study of the lichens of London under contemporary atmospheric conditions. Unpublished PhD thesis, Department of Environmental Science and Technology, Imperial College London, University of London, London.Google Scholar
Davies, L., Bates, J. W., Bell, J. N. B., James, P. W. and Purvis, O. W. (2007) Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution 146, 299–310.CrossRefGoogle Scholar
Bruin, M. and Hackenitz, E. (1986) Trace element concentrations in epiphytic lichens and bark substrate. Environmental Pollution 11, 153–160.Google Scholar
,DEFRA (2002) Effects of NOx and NH3 on lichen communities and urban ecosystems. A pilot study. In: Air Pollution Research in London (A.P.R.I.L.) Network. Imperial College London and Natural History Museum, London.
Douglas, G. E., John, D. M. and Purvis, O. W. (1995) The identity of phycobionts from lichens in the Acarosporion sinopicae alliance. The Phycologist 40, 33.Google Scholar
Elix, J. A. (1996) Biochemistry and secondary metabolites. In: Lichen Biology (ed. Nash, I. T. H.), pp. 154–180. Cambridge University Press, Cambridge, UK.Google Scholar
Eriksson, O. (2005) Ascomyceternas ursprung och evolution – Protolichenes-hypotesen. Svensk Mykologisk Tidskrift 26, 22–33.Google Scholar
Farmer, A. (1995) Reducing the Impact of Air Pollution on the Natural Environment. Joint Nature Conservation Committee, Peterborough, UK.Google Scholar
Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L. (1973) Air Pollution and Lichens. Athlone Press, London.Google Scholar
Fowler, D., Pitcairn, C. E. R., Sutton, M. A.et al. (1998) The mass budget of atmospheric ammonia within 1 km of livestock buildings. Environmental Pollution (Nitrogen Conference Special Issue) 102 (S1), 343–348.Google Scholar
Frati, L., Santoni, S., Nicolardi, V.et al. (2007) Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution 146, 311–316.CrossRefGoogle ScholarPubMed
Friedmann, I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053.CrossRefGoogle ScholarPubMed
Garty, J. (2001) Biomonitoring atmospheric heavy metals with lichens: theory and application. Critical Reviews in Plant Sciences 20, 309–371.CrossRefGoogle Scholar
Gilbert, O. L. (1965) Lichens as indicators of air pollution in the Tyne Valley. In: Ecology and the Industrial Society (eds. Goodman, G., Edwards, R. W. and Lambert, J. M.), pp. 35–47. Blackwell Scientific Publications, Oxford, UK.Google Scholar
Gilbert, O. L. (1968) Biological estimation of air pollution. In: Plant Pathologist's Pocketbook (ed. Institute, C. M.), pp. 206–207. Commonwealth Mycological Institute, Kew, UK.Google Scholar
Gilbert, O. L. (1969) The effect of SO2 on lichens and bryophytes around Newcastle upon Tyne. Air Pollution, Proceedings of the first European Congress on the Influence of Air Pollution on Plants and Animals, April 22–27, 1968. Centre for Agricultural Publishings and Documentation, Wageningen, the Netherlands, pp. 223–233.Google Scholar
Gilbert, O. L. (1970) A biological scale for the estimation of sulphur dioxide pollution. New Phytologist 69, 629–634.CrossRefGoogle Scholar
Gilbert, O. L. (1971) Studies along the edge of a lichen desert. Lichenologist 5, 11–17.CrossRefGoogle Scholar
Gilbert, O. L. (1974) An air pollution survey by school children. Environmental Pollution 6, 175–180.CrossRefGoogle Scholar
Gilbert, O. L. (1976) An alkaline dust effect on epiphytic lichens. Lichenologist 8, 173–178.CrossRefGoogle Scholar
Gilbert, O. L. (1980a) Effect of land-use on terricolous lichens. Lichenologist 12, 117–124.CrossRefGoogle Scholar
Gilbert, O. L. (1980b) A lichen flora of Northumberland. Lichenologist 12, 325–395.CrossRefGoogle Scholar
Gilbert, O. L. (1986) Lichens return to central London. British Lichen Society Bulletin 58, 28–29.Google Scholar
Gilbert, O. L. (1990) The lichen flora of urban wasteland. Lichenologist 22, 87–101.CrossRefGoogle Scholar
Gilbert, O. L. (1992) Lichen reinvasion with declining air pollution. In: Bryophytes and Lichens in a Changing Environment (eds. Bates, J. W. and Farmer, A. M.), pp. 159–177. Clarendon Press, Oxford, UK.Google Scholar
,Greater London Authority (GLA) (2002) Cleaning London's Air. The Mayor's Air Quality Strategy. Greater London Authority, London.
Gorbushina, A. A. (2006) Fungal activities in subaereal rock-inhabiting microbial communities. In: Fungi in Biogeochemical Cycles. (ed. Gadd, G. M.), pp. 344–376. Cambridge University Press, Cambridge, UK.Google Scholar
Griffith, J. L. (1966) Some aspects of the effect of atmospheric pollution on the lichen flora to the west of Consett, Durham, C.. University of Durham, Durham, UK.Google Scholar
Grime, J. P. (1979) Plant Strategies and Vegetation Processes. John Wiley and Sons, Chichester, UK.Google Scholar
Grube, M. and Hawksworth, D. L. (2007) Trouble with lichen: the re-evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycological Research 111, 1116–1132.CrossRefGoogle ScholarPubMed
Gunn, J., Keller, W., Negusanti, J., Potvin, R., Beckett, P. and Winterhalder, K. (1995) Ecosystem recovery after emission reductions: Sudbury, Canada. Water Air and Soil Pollution 85, 1783–1788.CrossRefGoogle Scholar
Haas, J. R. and Purvis, O. W. (2006) Lichen biogeochemistry. In: Fungi in Biogeochemical Cycles (ed. Gadd, G. M.), pp. 344–376. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Hauck, M. and Runge, M. (1999) Occurrence of pollution-sensitive epiphytic lichens in woodlands affected by forest decline: a new hypothesis. Flora 194, 159–168.CrossRefGoogle Scholar
Hauck, M., Hesse, V., Jung, R., Zöller, T. and Runge, M. (2001) Long-distance transported sulphur as a limiting factor for the abundance of Lecanora conizaeoides in montane spruce forests. Lichenologist 33, 267–269.CrossRefGoogle Scholar
Hauck, M., Huneck, S., Elix, J. A. and Paul, A. (2007) Does secondary chemistry enable lichens to grow on iron-rich substrates?Flora 202, 471–478.CrossRefGoogle Scholar
Hauck, M., Jurgens, S. R., Brinkmann, M. and Herminghaus, S. (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Annals of Botany 101, 531–539.CrossRefGoogle ScholarPubMed
Hawksworth, D. L. (1973a) 3, Mapping Studies. In: Air Pollution and Lichens (eds. Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L.), pp. 38–76. Athlone Press, London.Google Scholar
Hawksworth, D. L. (1973b) Ecological factors and species delimitation in the lichens. In: Taxonomy and Ecology. Systematics Association Special Volume No. 5 (ed. Heywood, V. H.), pp. 31–69. Academic Press, London.Google Scholar
Hawksworth, D. L. (1988) The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Botanical Journal of the Linnean Society 96, 3–20.CrossRefGoogle Scholar
Hawksworth, D. L. (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research 95, 641–656.CrossRefGoogle Scholar
Hawksworth, D. L. (2006) Mycology and mycologists. In: 8th International Mycological Congress, Cairns (Australia), August 20–25, 2006 (eds. Meyer, W. and Pierce, C.), pp. 65–72. Medimond, Bolonga.Google Scholar
Hawksworth, D. L. and Honegger, R. (1994) The lichen thallus: a symbiotic phenotype of nutritionally specialized fungi and its response to gall producers. In: Plant Galls: Organisms, Interactions, Populations (ed. Williams, M. A. J.), pp. 77–98. Clarendon Press, Oxford, UK.Google Scholar
Hawksworth, D. L. and McManus, M. (1989) Lichen recolonisation in London under conditions of rapidly falling sulphur dioxide levels, and the concept of zone skipping. Botanical Journal of the Linnean Society 100, 99–109.CrossRefGoogle Scholar
Hawksworth, D. L. and McManus, P. M. (1992) Changes in the lichen flora on trees in Epping Forest through periods of increasing and then ameliorating sulphur dioxide air pollution. Epping Naturalist 71, 92–101.Google Scholar
Hawksworth, D. L. and Rose, F. (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227, 145–148.CrossRefGoogle ScholarPubMed
Hawksworth, D. L. and Rose, F. (1976) Lichens as Pollution Monitors. Edward Arnold, London.Google Scholar
Hawksworth, D. L. and Seaward, M. R. D. (1977) Lichenology in the British Isles 1568–1975. An Historical and Bibliographical Survey. Richmond Publishing, Richmond, UK.Google Scholar
Hawksworth, D. L., Hitch, C. J. B. and Purvis, O. W. (2001) Lichens of West Brompton Cemetery. British Lichen Society Bulletin 88, 19–22.Google Scholar
Hilitzer, A. (1923) Les lichens des rochers amphiboliques aux environs de Vseruby. Casopis Narodniho Musea 97, 1–14.Google Scholar
Honegger, R. (1997) Metabolic interactions at the mycobiont-photobiont interface. In: Plant Relationships (eds. Carroll, G. C. and Tudzynki, P.), pp. 209–221. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Honey, M. R., Leigh, C. and Brooks, S. J. (1998) The fauna and flora of the newly created Wildlife Garden in the grounds of The Natural History Museum, London. The London Naturalist 77, 17–47.Google Scholar
Huneck, S. (1999) The significance of lichens and their metabolites. Naturwissenschaften 86, 559–570.CrossRefGoogle ScholarPubMed
Huneck, S. (2006) Der Flechten der Kupferschieferhalden um Eislebn, Mansfield und Sangerhausen. Mitteilungen zur floristischen Kartierung Sachsen-Anhalt 4, 1–62.Google Scholar
Huneck, S. and Yoshimura, I. (1996) Identification of Lichen Substances. Springer, Berlin.CrossRefGoogle Scholar
Jahns, H. (1988) The establishment, individuality and growth of lichen thalli. Botanical Journal of the Linnean Society 96, 21–29.CrossRefGoogle Scholar
James, P. W. (1973) The effect of air pollutants other than hydrogen fluoride and sulphur dioxide on lichens. In: Air Pollution and Lichen (eds. Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L.), pp. 143–175. Athlone Press, London.Google Scholar
James, P. W. and Davies, L. (2003) Conservation and management. Resurvey of the corticolous lichen flora of Epping Forest. Essex Naturalist (New Series) 20, 67–82.Google Scholar
James, P. W. and Wolseley, P. (2005) January meetings. Field visit to Royal Botanic Gardens Kew. British Lichen Society Bulletin 96, 17–22.Google Scholar
James, P. W., Hawksworth, D. L. and Rose, F. (1977) Lichen communities in the British Isles: a preliminary conspectus. In: Lichen Ecology (ed. Seaward, M. R. D., pp. 295–413. Academic Press, London.Google Scholar
James, P. W., Purvis, O. W. and Davies, L. (2002) Epiphytic lichens in London. Bulletin of the British Lichen Society 90, 1–3.Google Scholar
Jenkins, D. A., Johnson, A. H. and Freeman, C. (2000) Mynydd Parys Cu-Pb-Zn Mines: mineralogy, microbiology and acid mine drainage. In: Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (eds. Cotter-Howells, J. D., Campbell, L. S., Valsami-Jones, E. and Batchelder, M.), pp. 161–179. Mineralogical Society of Great Britain and Ireland, London.Google Scholar
Jones, D. (1988) Lichens and pedogenesis. In: Handbook of Lichenology. Vol. 3 (ed. Galun, M.), pp. 109–124. CRC, Boca Raton.Google Scholar
Kirschbaum, U. H. and Hanewald, K. (2001) Changes in the lichen vegetation at the long time investigated areas of Melsungen and Limburg, Hesses, Germany between 1997 and 1999. Journal of Applied Botany 75, 20–30.Google Scholar
Knops, J. M. H., Nash, T. H., Boucher, V. L. and Schlesinger, W. H. (1991) Mineral cycling and epiphytic lichens – implications at the ecosystem level. Lichenologist 23, 309–321.CrossRefGoogle Scholar
Kricke, R. and Loppi, S. (2002) Bioindication: the I.A.P. approach. In: Monitoring with Lichens-Monitoring Lichens (eds. Nimis, P. L., Scheidegger, C. and Wolseley, P. A.), pp. 21–37. Kluwer Academic, Dordrecht, the Netherlands.CrossRefGoogle Scholar
Lagreca, S. and Stuzman, B. W. (2006) Distribution and ecology of Lecanora conizaeoides (Lecanoraceae) in eastern Massachusetts. The Bryologist 109, 335–357.CrossRefGoogle Scholar
Lange, O. L. (1992) Pflanzenleben unter Streß. Flechten als Pioniere der Vegetation am Extremstandorten der Erde. University of Würzburg, Würzburg.Google Scholar
Lange, O. L. and Ziegler, H. (1963) Der schwermetallgehalt von flechten aus dem Acarosporetum sinopicae auf erzschlackenhalden des Harzes. I. Eisen und kupfer. Mitteilungen der Floristisch-soziologischen ArbeitsGemeinschaft 10, 156–183.Google Scholar
Larsen, R. S., Bell, J. N. B., James, P. W.et al. (2007) Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity. Environmental Pollution 146, 332–340.CrossRefGoogle ScholarPubMed
Larsen-Vilsholm, R., Wolseley, P. A., Søchting, U. and Chimonides, P. J. (2009) Biomonitoring with lichens on twigs, Lichenologist, 41, 189–202.CrossRefGoogle Scholar
Laundon, J. R. (1967) A study of the lichen flora of London. Lichenologist 3, 277–327.CrossRefGoogle Scholar
Laundon, J. R. (1970) London's lichens. London Naturalist 49, 20–69.Google Scholar
Laundon, J. R. (1973) Urban lichen studies. In: Air Pollution and Lichens (eds. Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L.), pp. 109–123. Athlone Press, London.Google Scholar
Laundon, J. R. (2003) Six lichens of the Lecanora varia group. Nova Hedwigia 76, 83–111.CrossRefGoogle Scholar
Laundon, J. R. and Waterfield, A. (2007) William Borrer's lichens in the Supplement to the English Botany 1826–1866. Botanical Journal of the Linnean Society 154, 381–392.CrossRefGoogle Scholar
Leigh, C. and Ware, C. (2003) The development of the flora, fauna and environment of the Wildlife Garden at The Natural History Museum, London. The London Naturalist 82, 75–134.Google Scholar
Leith, I. D., Dijk, N., Pitcairn, C. E. R., Wolseley, P. A., Whitfield, C. P. and Sutton, M. A. (2005) Biomonitoring Methods for Assessing the Impacts of Nitrogen Pollution: Refinements and Testing. JNCC Report. Joint Nature Conservancy Council, Peterborough, UK.Google Scholar
Lindeström, L. (2002) The Environmental History of the Falun Mine, Uppsala, Stiftelsen Stora Kopparberget & ÅF-Miljöforskargruppen AB.Google Scholar
Loppi, S. and Pirintsos, S. A. (2003) Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution 121, 327–332.CrossRefGoogle Scholar
Lounamaa, J. (1956) Trace elements in plants growing wild on different rocks in Finland. A semi-quantitative spectrographic study. Annales Botanici Societatis Zoologicae Botanicae Fennicae ‘Vananmo’ 29, 1–196.Google Scholar
Mabey, R. (1974) The Pollution Handbook: The ACE/Sunday Times Clean Air and Water Surveys.
Massara, A. C. (2004) The ecology and physiology of the pollution tolerant lichen, Lecanora conizaeoides. Department of Biology. Imperial College London, London.Google Scholar
McLean, J., Purvis, O. W., Williamson, B. J. and Bailey, E. H. (1998) Role for lichen melanins in uranium remediation. Nature 391, 649–650.CrossRefGoogle Scholar
Mikhailova, I. and Vorobeichik, E. L. (1995) Epiphytic lichenosynusia under conditions of chemical pollution: dose-effect dependencies. Russian Journal of Ecology 26, 425–431.Google Scholar
Nash, T. H.. (1973) The effect of air pollution on other plants, particularly vascular plants. In: Air Pollution and Lichen (eds. Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L.), pp. 192–223. Athlone Press, London.Google Scholar
Nash, T. H. (1996a) Lichen Biology. Cambridge University Press, Cambridge, UK.Google Scholar
Nash, T. H. (1996b) Nutrients and mineral cycling. In: Lichen Biology (ed. Nash, T. H.), pp. 136–153. Cambridge University Press, Cambridge, UK.Google Scholar
Nash, T. H. and Wirth, V. (1988) Lichens. Bryophytes and Air Quality. J. Cramer, Berlin.Google Scholar
,NEGTAP. (2001) Transboundary Air Pollution: Acidification, Eutrophication and Ground-level Ozone in the UK. NEGTAP. Department for Environment, Food and Rural Affairs, London.
Nimis, P. L., Scheidegger, C. and Wolsley, P. A. (2002) Monitoring with Lichens - Monitoring Lichens. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
Noeske, O., Läuchli, A., Lange, O. L. and Ziegler, H. (1970) Konzentration und lokalisierung von schwermetallen in flechten der erzschlackenhalden des Harzes. Deutsche Botanische Gesellschaft Neue Folge 4, 67–79.Google Scholar
,NSCA. (2002) The clean air revolution: 1952–2052. Marking 50 years since the great London smog. Clean Air and Environmental Protection32, 1–75.
,OPAL. (2007) Big Lottery Fund open air laboratories. http://www3.imperial.ac.uk/newsandeventspggrp/imperialcollege/newssummary/news_20-8-2007-13-21-51?newsid=15994.
Poelt, J. (1955) Flechten der Schwarzen Wand in der Grossarl. Verhandlung Zoologische-Botanische Gesellschaft. Wien 95, 107–113.Google Scholar
Poelt, J. and Huneck, S. (1969) Lecanora vinetorum nova spec., ihre Vergesellschaftung, ihre Ökologie und ihre Chemie. Österreichische Botanische Zeitschrift 115, 411–422.CrossRefGoogle Scholar
Poelt, J. and Ullrich, H. (1964) Über einige chalkophile Lecanora - Arten der Mittelueropäischen Flora (Lichenes, Lecanoraceae). Österreichische Botanische Zeitschrift 111, 257–268.CrossRefGoogle Scholar
Purvis, O. W. (1985) The effect of mineralization on lichen communities with special reference to cupriferous substrata. Unpublished PhD Thesis, Imperial College, London and British Museum (Natural History), London.Google Scholar
Purvis, O. W. (1987) Another foliose lichen found in Inner London. Bulletin of the British Lichen Society 61, 4.Google Scholar
Purvis, O. W. (1996) Interactions of lichens with metals. Science Progress 79, 283–309.Google Scholar
Purvis, O. W. (2000) Lichens. Natural History Museum, London.Google Scholar
Purvis, O. W. and Halls, C. (1996) A review of lichens in metal-enriched environments. Lichenologist 28, 571–601.CrossRefGoogle Scholar
Purvis, O. W. and James, P. W. (1985) Lichens of the Coniston Copper Mines. Lichenologist 17, 221–237.CrossRefGoogle Scholar
Purvis, O. W. and Pawlik-Skowrońska, B. (2008) Lichens and metals. In: Stress in Yeasts and Filamentous Fungi (eds. Avery, S. V., Stratford, M. and West, P.), pp. 175–200. Elsevier, Amsterdam.CrossRefGoogle Scholar
Purvis, O. W., Bailey, E. H., Mclean, J., Kasama, T. and Williamson, B. J. (2004) Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal 21, 159–167.CrossRefGoogle Scholar
Purvis, O. W., Chimonides, P. J., Jones, G. C.et al. (2004) Lichen biomonitoring near Karabash Smelter Town, Ural Mountains, Russia, one of the most polluted areas in the world. Proceedings of The Royal Society of London Series B-Biological Sciences 271, 221–226.CrossRefGoogle Scholar
Purvis, O. W., Chimonides, P. D. J., Jeffries, T. E., Jones, G. C., Rusu, A. M. and Read, H. (2007a) Multi-element composition of historical lichen collections and bark samples, indicators of changing atmospheric conditions. Atmospheric Environment 41, 72–80.CrossRefGoogle Scholar
Purvis, O. W., Coppins, B. J., Hawksworth, D. L. H., James, P. W. and Moore, D. M. (1992) The Lichen Flora of Great Britain and Ireland. Natural History Museum Publications in association with the British Lichen Society, London.Google Scholar
Purvis, O. W., Crewe, A. T., Wedin, M., Kearsley, A. and Cressey, G. (2008a) Mineralization in rust-coloured Acarospora. Geomicrobiology 25, 142–148.CrossRefGoogle Scholar
Purvis, O. W., Dubbin, W., Chimonides, P. D., Jones, G. C. and Read, H. (2008) The multi-element content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate. The Science of the Total Environment 390, 558–568.CrossRefGoogle ScholarPubMed
Purvis, O. W., Elix, J. A., Broomhead, J. A. and Jones, G. C. (1987) The occurrence of copper norstictic acid in lichens from cupriferous substrata. Lichenologist 19, 193–203.CrossRefGoogle Scholar
Purvis, O. W., Pawlik-Skowrońska, B., Cressey, G., Jones, G. C., Kearsley, A. and Spratt, J. (2008b) Mineral phases and element composition of the copper hyperaccumulator lichen Lecanora polytropa. Mineralogical Magazine 72, 539–548.CrossRefGoogle Scholar
Purvis, O. W., Seaward, M. R. D. and Loppi, S. (2007b) Lichens in a changing pollution environment: an introduction. Environmental Pollution 146, 291–292.CrossRefGoogle Scholar
Richardson, D. H. S. (1992) Pollution Monitoring with Lichens. Richmond Publishing, Slough, UK.Google Scholar
Riddell, J., Nash, T. H. and Padgett, P. (2008) The effect of HNO3 gas on the lichen Ramalina menziesii. Flora 203, 47–54.CrossRefGoogle Scholar
Rose, F. (1973) Detailed mapping in South-East England. In: Air Pollution and Lichen (eds. Ferry, B. W., Baddeley, M. S. and Hawksworth, D. L.), pp. 77–88. Athlone Press, London.Google Scholar
Rose, F. (1976) Lichenological indicators of age and environmental continuity in woodlands. In: Lichenology: Progress and Problems (eds. Brown, D. H., Hawksworth, D. L. and Bailey, R. H.), 279–307. Academic Press, London.Google Scholar
Rose, F. (1995) 1018 Parmelia soredians Nyl. In: Lichen Atlas of the British Isles (ed. Seaward, M. R. D.. British Lichen Society, London.Google Scholar
Rose, F. and Coppins, S. (2000) Site assessment of epiphytic habitats using lichen indices. NATO Advanced Research Workshop on Lichen Monitoring; Monitoring with Lichens: Monitoring Lichens. Orielton Field Centre. Kluwer Academic Publisher, London.Google Scholar
Rose, C. I. and Hawksworth, D. L. (1981) Lichen recolonization in London's cleaner air. Nature 289, 289–292.CrossRefGoogle Scholar
Ryan, B. D. and Nash, T. H. (1993) Lecanora section Placodium (lichenized ascomycotina) in North-America: new taxa in the L. garovaglii group. The Bryologist 96, 288–298.CrossRefGoogle Scholar
Ryback, G. and Tandy, P. (1992) Eighth supplementary list of British Isles minerals (English). Mineralogical Magazine 56, 261–275.CrossRefGoogle Scholar
Sampaio, G. (1920) Liquenes inéditos. 5–6.
Schade, A. (1933) Das Acarosporetum sinopicae als Charaktermerkmal der Flechtenflora sächsischer Bergwerkshalden. Sitzungsberichte und Abhandlungen der Naturwissenschaftlichen Gesellschaft Isis in Dresden 1932. pp. 131–160.
Schwab, A. J. (1986) Rostfärbene Arten der Sammelgattung Lecidea (Leanorales) Revision der Arten mittel-und Nordeuropas. Mitteilungen Botanishe Staatssamlung München 22, 221–476.Google Scholar
Seaward, M. R. D. (1976) Performance of Lecanora muralis in an urban environment. In: Lichenology: Progress and Problems (eds. Brown, D. H., Hawksworth, D. L. and Bailey, R. H.), pp. 323–357. Academic Press, London.Google Scholar
Seaward, M. R. D. (1998) Time-space analyses of the British lichen flora, with particular reference to air quality surveys. Folia Cryptogamica Estonica 32, 85–96.Google Scholar
Seaward, M. R. D. and Hitch, C. J. B. (1982) Atlas of the Lichens of the British Isles. Vol. 1. Natural Environment Research Council, Cambridge, UK.Google Scholar
Sernander, R. (1926) Stockholms Natur. Almquist and Wiksells, Uppsala, Sweden.Google Scholar
Sigal, L. L. and Nash, T. H. (1983) Lichen communities on conifers in southern California: an ecological survey relative to oxidant air pollution. Ecology 64, 1343–1354.CrossRefGoogle Scholar
Sipman, H. and Aptroot, A. (2001) Where are the missing lichens?Mycological Research 105, 1433–1439.CrossRefGoogle Scholar
Soare, L. C., Lemaitre, J., Bowen, P. and Hofmann, H. (2006) A thermodynamic model for the precipitation of nanostructured copper oxalates. Journal of Crystal Growth 289, 278–285.CrossRefGoogle Scholar
Souza-Egipsy, V., Ormo, J., Bowen, B. B., Chan, M. A. and Komatsu, G. (2006) Ultrastructural study of iron oxide precipitates: implications for the search for biosignatures in the Meridiani hematite concretions, Mars. Astrobiology 6, 527–545.CrossRefGoogle ScholarPubMed
Stadler, M. and Keller, N. P. (2008) Paradigm shifts in fungal secondary metabolite research. Mycological Research 112, 127–130.CrossRefGoogle ScholarPubMed
Stanley, C. J. (1979) Mineralogical Studies of Copper, Lead, Zinc and Cobalt Mineralization in the English Lake District. University of Aston, Birmingham, UK.Google Scholar
Sutton, M. A., Pitcairn, C. E. R. and Whitfield, C. P. (2004) Bioindicator and Biomonitoring Methods for Assessing the Effects of Atmospheric Nitrogen on Statutory Nature Conservation Sites. JNCC Report. Joint Nature Conservancy Council, Peterborough, UK.Google Scholar
Sutton, M. A., Tang, Y. S., Dragosits, U.et al. (2001) A spatial analysis of atmospheric ammonia and ammonium in the UK. In: International Nitrogen Conference; Optimizing Nitrogen Management in Food and Energy Production and Environmental Protection (ed. Galloway, J.). Balkema, Potomac, MD.Google Scholar
Sutton, M. A., Wolseley, P. A., Leith, I. D.et al. (2009) Estimation of the ammonia critical level for epiphytic lichens based on observations at farm, landscape and national scales. In: Atmospheric Ammonia – Detecting Emission Changes and Environmental Impacts – Results of an Expert Workshop under the Convention on Long-range Transboundary Air Pollution (eds. Sutton, M., Reis, S. and Baker, S.), 71–86. Springer Publishers, New York.Google Scholar
Tømmervik, H., Hogda, K. A. and Solheim, L. (2003) Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environment 85, 370–388.CrossRefGoogle Scholar
Tømmervik, H., Johansen, B. E. and Pedersen, J. P. (1995) Monitoring the effects of air-pollution on terrestrial ecosystems in Varanger (Norway) and Nikel-Pechenga (Russia) using remote-sensing. Science of the Total Environment 161, 753–767.CrossRefGoogle Scholar
Tømmervik, H., Johansen, M. E., Pedersen, J. P. and Guneriessen, T. (1998) Integration of remote sensed and in-situ data in an analysis of the air pollution effects on terrestrial ecosystems in the border areas between Norway and Russia. Environmental Monitoring and Assessment 49, 51–85.CrossRefGoogle Scholar
Tønsberg, T. (1992) The sorediate and isidiate, corticolous, crustose lichens in Norway. Sommerfeltia 14, 1–331.Google Scholar
,UNECE. (2004) Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. UNECE Convention on Long-range Transboundary Air Pollution.
Haluwyn, C. and Lerond, M. (1988) Lichénosociologie et qualité de l'air; protocole opératoire et limites. Cryptogamie Bryologie et Lichénologie 9, 313–336.Google Scholar
Herk, C. M. (1999) Mapping of ammonia pollution with epiphytic lichens in the Netherlands. Lichenologist 31, 9–20.Google Scholar
Herk, C. M. (2001) Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time. Lichenologist 33, 419–442.CrossRefGoogle Scholar
Herk, C. M. (2003) Long distance nitrogen air pollution effects on lichens in Europe. Lichenologist 35, 413–415.Google Scholar
Waterfield, A. (2002) Herbarium records of London lichens. The London Naturalist 81, 35–48.Google Scholar
Weber, W. A. (1962) Environmental modifications and the taxonomy of the crustose lichens. Svensk Botanisk Tidskrift 56, 293–333.Google Scholar
Wedin, M., Westberg, M., Crewe, A. T., Tehler, A. and Purvis, O. W. (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics 25, 1–12.CrossRefGoogle Scholar
,WG1. (2006) Workgroup 1: Critical levels for NH3. Expert Workshop under the UNECE Convention on Long-range Transboundary Air Pollution. Atmospheric Ammonia: Detecting Emission Changes and Environmental Impacts, 4–6 December 2006. Edinburgh, Scotland.
Whiting, S. N., Reeves, R. D., Richards, D.et al. (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology 12, 106–116.CrossRefGoogle Scholar
Whiting, S. N., Reeves, R. D., Richards, D.et al. (2005) Use of plants to manage sites contaminated with metals. In: Plant Nutritional Genomics (eds. Broadley, M. R. and White, P. J.), pp. 106–116. Blackwell Publishing, London.Google Scholar
Williamson, B. J., Purvis, O. W., Bartók, K.et al. (1996) Chronic pollution from mineral processing in the town of Zlatna, Apuseni Mountains (Romania). Studia Universitatis Babes-Bolyai, Geologia 41, 87–93.Google Scholar
Wirth, V. (1972) Die Silikatflechten. Gemeinshaften im ausseralpinen Zentraleuropa. Dissertationes Botanicae Lehre 17, 1–306, 109.Google Scholar
Wirth, V. (1985) Zur Ausbreitung, Herkunft und Ökologie anthropogen geförderter Rinden- und Holzflechten. Tuexenia II 5, 523–535.Google Scholar
Wirth, V. (1999) Beiträg zur kenntnis der dynamik epiphytischer flechtenbestände. Stuttgarter Beiträge zur Naturkunde A595, 1–17.Google Scholar
Wolseley, P. A. and Pryor, K. V. (1999) The potential of epiphytic twig communities on Quercus petraea in a Welsh woodland site (Tycanol) for evaluating environmental changes. Lichenologist 31, 41–61.Google Scholar
Wolseley, P. A., James, P. W., Theobald, M. R. and Sutton, M. A. (2006) Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources. Lichenologist 38, 161–176.CrossRefGoogle Scholar
Young, B. (1987) Glossary of the Minerals of the English Lake District and Adjoining Areas. British Geological Survey, Newcastle upon Tyne, UK.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×