Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-09T01:38:39.752Z Has data issue: false hasContentIssue false

Chapter Seven - Atmospheric change, plant secondary metabolites and ecological interactions

Published online by Cambridge University Press:  05 August 2012

Richard L. Lindroth
Affiliation:
Department of Entomology, University of Wisconsin-Madison
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

Fifty years ago, when Fraenkel (1959) first placed plant secondary metabolites into an ecological context, the myriad of anthropogenic forces that today influence ecosystem processes at a global scale were poorly recognised, if not altogether unknown. We now know that factors such as atmospheric change, climate warming, invasive species, terrestrial and aquatic eutrophication, and land use are having profound and extensive impacts on the Earth’s ecosystems. Less well appreciated, however, are the central roles played by PSMs in many of those processes.

Plant secondary metabolites respond to global environmental change; perpetuate, via interaction networks, the consequences of global change; and feed back to influence future global change (Lindroth, 2010). For example, the carbon cycle, which strongly influences climate, is itself influenced by the chemical matrices into which plants deposit carbon. Rates of photosynthesis are affected by atmospheric CO2 levels, and subsequent allocation of photosynthates to carbohydrate, cellulose, lignin and tannin pools influences long-term carbon sequestration.

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 120 - 153
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, J.McDonald, E. P.Lindroth, R. L. 2000 Effects of CO2 and light on tree phytochemistry and insect performanceOikos 88 259CrossRefGoogle Scholar
Agrell, J.Anderson, P.Oleszek, W.Stochmal, A.Agrell, C. 2004 Combined effects of elevated CO2 and herbivore damage on alfalfa and cottonJournal of Chemical Ecology 30 2309CrossRefGoogle ScholarPubMed
Agrell, J.Kopper, B.McDonald, E. P.Lindroth, R. L. 2005 CO2 and O3 effects on host plant preferences of the forest tent caterpillar ()Global Change Biology 11 588CrossRefGoogle Scholar
Ashmore, M. R. 2005 Assessing the future global impacts of ozone on vegetationPlant, Cell and Environment 28 949CrossRefGoogle Scholar
Asshoff, R.Hättenschwiler, S. 2005 Growth and reproduction of the alpine grasshopper feeding on CO2-enriched dwarf shrubs at treelineOecologia 142 191CrossRefGoogle ScholarPubMed
Awmack, C. S.Harrington, R.Lindroth, R. L. 2004 Aphid individual performance may not predict population responses to elevated CO2 or O3Global Change Biology 10 1414CrossRefGoogle Scholar
Bale, J. S.Masters, G. J.Hodkinson, I. D. 2002 Herbivory in global climate change research: direct effects of rising temperature on insect herbivoresGlobal Change Biology 8 1CrossRefGoogle Scholar
Bezemer, T. M.Jones, T. H. 1998 Plant–insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effectsOikos 82 212CrossRefGoogle Scholar
Bezemer, T. M.Knight, K. J.Newington, J. E.Jones, T. H. 1999 How general are aphid responses to elevated atmospheric CO2?Annals of the Entomological Society of America 92 724CrossRefGoogle Scholar
Bezemer, T. M.Jones, T. H.Newington, J. E. 2000 Effects of carbon dioxide and nitrogen fertilization on phenolic content in LBiochemical Systematics and Ecology 28 839CrossRefGoogle Scholar
Bidart-Bouzat, M. G.Imeh-Nathaniel, A. 2008 Global change effects on plant chemical defenses against insect herbivoresJournal of Integrative Plant Biology 50 1339CrossRefGoogle ScholarPubMed
Bidart-Bouzat, M. G.Mithen, R.Berenbaum, M. R. 2005 Elevated CO2 influences herbivory-induced defense responses of Oecologia 145 415CrossRefGoogle Scholar
Blande, J. D.Tiiva, P.Oksanen, E.Holopainen, J. K. 2007 Emission of herbivore-induced volatile terpenoids from two hybrid aspen ( × ) clones under ambient and elevated ozone concentrations in the fieldGlobal Change Biology 13 2538CrossRefGoogle Scholar
Boerner, R. E. J.Rebbeck, J. 1995 Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O3 and/or CO2Plant and Soil 170 149CrossRefGoogle Scholar
Booker, F. L. 2000 Influence of carbon dioxide enrichment, ozone and nitrogen fertilization on cotton ( L.) leaf and root compositionPlant, Cell and Environment 23 573CrossRefGoogle Scholar
Booker, F. L.Maier, C. A. 2001 Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine () needlesTree Physiology 21 609CrossRefGoogle ScholarPubMed
Booker, F. L.Anttonen, S.Heagle, A. S. 1996 Catechin, proanthocyanidin and lignin contents of loblolly pine () needles after chronic exposure to ozoneNew Phytologist 132 483CrossRefGoogle ScholarPubMed
Booker, F. L.Prior, S. A.Torbert, H. A 2005 Decomposition of soybean grown under elevated concentrations of CO2 and O3Global Change Biology 11 685CrossRefGoogle Scholar
Bryant, J. P.Chapin, F. S.Klein, D. R. 1983 Carbon/nutrient balance of boreal plants in relation to vertebrate herbivoryOikos 40 357CrossRefGoogle Scholar
Calfapietra, C.Mugnozza, G. S.Karnosky, D. F.Loreto, F.Sharkey, T. D. 2008 Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3New Phytologist 179 55CrossRefGoogle ScholarPubMed
Castells, E.Roumet, C.Peñuelas, J.Roy, J. 2002 Intraspecific variability of phenolic concentrations and their responses to elevated CO2 in two Mediterranean perennial grassesEnvironmental and Experimental Botany 47 205CrossRefGoogle Scholar
Ceulemans, R.Janssens, I. A.Jach, M. E. 1999 Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studiesAnnals of Botany 84 577CrossRefGoogle Scholar
Chen, F. J.Ge, F.Parajulee, M. N. 2005 Impact of elevated CO2 on tri-trophic interaction of , , and Environmental Entomology 34 37CrossRefGoogle Scholar
Coley, P. D.Massa, M.Lovelock, C. E.Winter, K. 2002 Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical treeOecologia 133 62CrossRefGoogle ScholarPubMed
Constable, J. V. H.Litvak, M. E.Greenberg, J. P.Monson, R. K. 1999 Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warmingGlobal Change Biology 5 255CrossRefGoogle Scholar
Costa, S. D.Kennedy, G. G.Heagle, A. S. 2001 Effect of host plant ozone stress on Colorado potato beetlesEnvironmental Entomology 30 824CrossRefGoogle Scholar
Cotrufo, M. F.Briones, M. J.Ineson, P. 1998 Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate qualitySoil Biology and Biochemistry 36 1565CrossRefGoogle Scholar
Cotrufo, M. F.Drake, B.Ehleringer, J. R. 2005 Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope studySoil Biology and Biochemistry 37 1105CrossRefGoogle Scholar
Cotrufo, M. F.De Angelis, P.Polle, A. 2005 Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE)Global Change Biology 11 971CrossRefGoogle Scholar
Coviella, C.Trumble, J. T. 1999 Effects of elevated atmospheric CO2 on insect–plant interactionsConservation Biology 13 700CrossRefGoogle Scholar
Coviella, C.Stipanovic, R. D.Trumble, J. T. 2002 Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plantsJournal of Experimental Botany 53 323CrossRefGoogle Scholar
Davey, M. P.Bryant, D. N.Cummins, I. 2004 Effects of elevated CO2 on the vasculature and phenolic secondary metabolism of Phytochemistry 65 2197CrossRefGoogle ScholarPubMed
David, J.-F.Malet, N.Couteaûx, M.-M.Roy, J. 2001 Feeding rates of the woodlouse on herb litters produced at two levels of atmospheric CO2Oecologia 127 343CrossRefGoogle ScholarPubMed
Denman, K. L.Brasseur, G.Chidthaisong, A. 2007 Couplings between changes in the climate system and biogeochemistryClimate Change 2007: The Physical Science BasisNew YorkCambridge University Press499Google Scholar
Earth System Research Laboratory 2010 http://www.esrl.noaa.gov/gmd/ccgg/trends/
Ellison, A. M.Bank, M. S.Clinton, B. D. 2005 Loss of foundation species: consequences for the structure and dynamics of forested ecosystemsFrontiers in Ecology and Environment 3 479CrossRefGoogle Scholar
Fajer, E. D.Bowers, M. D.Bazzaz, F. A. 1992 The effect of nutrients and enriched CO2 environments on production of carbon-based allelochemicals in : a test of the carbon/nutrient balance hypothesisAmerican Naturalist 140 707CrossRefGoogle ScholarPubMed
Fares, S.Bartaa, C.Brillia, F. 2006 Impact of high ozone on isoprene emission, photosynthesis and histology of developing leaves directly or indirectly exposed to the pollutantPhysiologia Plantarum 128 456CrossRefGoogle Scholar
Fares, S.Oksanen, E.Lännenpää, M.Julkunen-Tiitto, R.Loreto, F. 2010 Volatile emissions and phenolic compound concentrations along a vertical profile of leaves exposed to realistic ozone concentrationsPhotosynthesis Research 104 61CrossRefGoogle ScholarPubMed
Findlay, S.Carreiro, M.Krischik, V.Jones, C. G. 1996 Effects of damage to living plants on leaf litter qualityEcological Applications 6 269CrossRefGoogle Scholar
Finzi, A. C.Allen, A. S.DeLucia, E. H.Ellsworth, D. S.Schlesinger, W. H. 2001 Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichmentEcology 82 470Google Scholar
Fraenkel, G. S. 1959 The of secondary plant substancesScience 129 1466CrossRefGoogle ScholarPubMed
Francini, A.Nali, C.Picchi, V.Lorenzini, G. 2007 Metabolic changes in white clover clones exposed to ozoneEnvironmental and Experimental Botany 60 11CrossRefGoogle Scholar
Freiwald, V.Haikio, E.Julkunen-Tiitto, R.Holopainen, J. K.Oksanen, E. 2008 Elevated ozone modifies the feeding behaviour of the common leaf weevil on hybrid aspen through shifts in developmental, chemical, and structural properties of leavesEntomologia Experimentalis et Applicata 128 66CrossRefGoogle Scholar
Gao, F.Zhu, S. R.Sun, Y. C. 2008 Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of , , and Environmental Entomology 37 29CrossRefGoogle Scholar
Gebauer, R. L. E.Strain, B. R.Reynolds, J. P. 1998 The effect of elevated CO2 and N availability on tissue concentrations and whole plant pools of carbon-based secondary compounds in loblolly pine ()Oecologia 113 29CrossRefGoogle Scholar
Gleadow, R. M.Foley, W. J.Woodrow, I. E. 1998 Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic F. MuellPlant, Cell and Environment 21 12CrossRefGoogle Scholar
Goverde, M.Erhardt, A.Stocklin, J. 2004 Genotype-specific response of a lycaenid herbivore to elevated carbon dioxide and phosphorus availability in calcareous grasslandOecologia 139 383CrossRefGoogle ScholarPubMed
Hahlbrock, K.Scheel, D. 1989 Physiology and molecular-biology of phenylpropanoid metabolismAnnual Review of Plant Physiology and Plant Molecular Biology 40 347CrossRefGoogle Scholar
Haikio, E.Makkonen, M.Julkunen-Tiitto, R. 2009 Performance and secondary chemistry of two hybrid aspen (.) clones in long-term elevated ozone exposureJournal of Chemical Ecology 35 664CrossRefGoogle ScholarPubMed
Hall, M. C.Stiling, P.Moon, D. C.Drake, B. G.Hunter, M. D. 2005 Effects of elevated CO2 on foliar quality and herbivore damage in a scrub oak ecosystemJournal of Chemical Ecology 31 267CrossRefGoogle Scholar
Hall, M. C.Stiling, P.Moon, D. C.Drake, B. G.Hunter, M. D. 2006 Elevated CO2 increases the long-term decomposition rate of leaf litterGlobal Change Biology 12 568CrossRefGoogle Scholar
Hamilton, J. G.Zangerl, A. R.Berenbaum, M. R. 2004 Insect herbivory in an intact forest understory under experimental CO2 enrichmentOecologia 138 566Google Scholar
Hartley, S. E.Jones, C. G.Couper, G. C.Jones, T. H. 2000 Biosynthesis of plant phenolic compounds in elevated atmospheric CO2Global Change Biology 6 497CrossRefGoogle Scholar
Hättenschwiler, S.Bretscher, D. 2001 Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil typesGlobal Change Biology 7 565CrossRefGoogle Scholar
Hättenschwiler, S.Schafellner, C. 1999 Opposing effects of elevated CO2 and N deposition on larvae feeding on spruce treesOecologia 118 210CrossRefGoogle Scholar
Hättenschwiler, S.Schafellner, C. 2004 Gypsy moth feeding in the canopy of a CO2-enriched mature forestGlobal Change Biology 10 1899CrossRefGoogle Scholar
Hättenschwiler, S.Bühler, S.Körner, C. 1999 Quality, decomposition and isopod consumption of tree litter produced under elevated CO2Oikos 85 271CrossRefGoogle Scholar
Heller, W.Rosemann, D.Osswald, W. 1990 Biochemical response of Norway spruce ( (L.) Karsts) towards 14-month exposure to ozone and acid mist. 1. Effects on polyphenol and monoterpene metabolismEnvironmental Pollution 64 353CrossRefGoogle Scholar
Herms, D. A.Mattson, W. J. 1992 The dilemma of plants: to grow or defendQuarterly Review of Biology 67 283CrossRefGoogle Scholar
Heyworth, C. J.Iason, G. R.Temperton, V.Jarvis, P. G.Duncan, A. J. 1998 The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in LOecologia 115 344CrossRefGoogle Scholar
Hillstrom, M. L.Lindroth, R. L. 2008 Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community compositionInsect Conservation and Diversity 1 233CrossRefGoogle Scholar
Himanen, S. J.Nissinen, A.Auriola, S. 2008 Constitutive and herbivore-inducible glucosinolate concentrations in oilseed rape () leaves are not affected by Bt Cry1Ac insertion but change under elevated atmospheric CO2 and O3Planta 227 427CrossRefGoogle Scholar
Holton, M. K.Lindroth, R. L.Nordheim, E. V. 2003 Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotypeOecologia 137 233CrossRefGoogle ScholarPubMed
Hunt, M. G.Rasmussen, S.Newton, P. C. D.Parsons, A. J.Newman, J. A. 2005 Near-term impacts of elevated CO2, nitrogen and fungal endophyte-infection on L. growth, chemical composition and alkaloid productionPlant, Cell and Environment 28 1345CrossRefGoogle Scholar
Jackson, D. M.Heagle, A. S.Eckel, R. V. W. 1999 Ovipositional response of tobacco hornworm moths (Lepidoptera: Sphingidae) to tobacco plants grown under elevated levels of ozoneEnvironmental Entomologist 28 566CrossRefGoogle Scholar
Jackson, D. M.Rufty, T. W.Heagle, A. S.Severson, R. F.Eckel, R. V. W. 2000 Survival and development of tobacco hornworm larvae on tobacco plants grown under elevated levels of ozoneJournal of Chemical Ecology 26 1CrossRefGoogle Scholar
Johnson, R. H.Lincoln, D. E. 1990 Sagebrush and grasshopper responses to atmospheric carbon dioxide concentrationOecologia 84 103CrossRefGoogle ScholarPubMed
Jones, C. G.Coleman, J. S. 1988 Plant stress and insect behavior: cottonwood, ozone and the feeding and oviposition preference of a beetleOecologia 76 51CrossRefGoogle ScholarPubMed
Julkunen-Tiitto, R.Tahvanainen, J.Silvola, J. 1993 Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in (Salisb.)Oecologia 95 495CrossRefGoogle Scholar
Kainulainen, P.Holopainen, J. K.Hyttinen, H.Oksanen, J. 1994 Effect of ozone on the biochemistry and aphid infestation of Scots pinePhytochemistry 35 39CrossRefGoogle Scholar
Kainulainen, P.Holopainen, J. K.Holopainen, T. 1998 The influence of elevated CO2 and O3 concentrations on Scots pine needles: changes in starch and secondary metabolites over three exposure yearsOecologia 114 455CrossRefGoogle ScholarPubMed
Kainulainen, P.Holopainen, T.Holopainen, J. K. 2003 Decomposition of secondary compounds from needle litter of Scots pine grown under elevated CO2 and O3Global Change Biology 9 295CrossRefGoogle Scholar
Kangasjärvi, J.Talvinen, J.Utriainen, M.Karjalainen, R. 1994 Plant defence systems induced by ozonePlant, Cell and Environment 17 783CrossRefGoogle Scholar
Kangasjärvi, J.Jaspers, P.Kollist, H. 2005 Signalling and cell death in ozone-exposed plantsPlant, Cell and Environment 28 1021CrossRefGoogle Scholar
Kanoun, M.Goulas, M. J. P.Biolley, J. P. 2001 Effect of a chronic and moderate ozone pollution on the phenolic pattern of bean leaves ( L. cv Nerina), relations with visible injury and biomass productionBiochemical Systematics and Ecology 29 443CrossRefGoogle Scholar
Kanowski, J. 2001 Effects of elevated CO2 on the foliar chemistry of seedlings of two rainforest trees from north-east Australia: implications for folivorous marsupialsAustral Ecology 26 165CrossRefGoogle Scholar
Karl, T. R.Melillo, J. M.Peterson, T. C. 2009 Global Climate Change Impacts in the United StatesNew YorkCambridge University PressGoogle Scholar
Karnosky, D. F.Pregitzer, K. S.Zak, D. R. 2005 Scaling ozone responses of forest trees to the ecosystem level in a changing climatePlant, Cell and Environment 28 965CrossRefGoogle Scholar
Karowe, D. N.Seimens, D. H.Mitchell-Olds, T. 1997 Species-specific response of glucosinolate content to elevated atmospheric CO2Journal of Chemical Ecology 23 2569CrossRefGoogle Scholar
Kasurinen, A.Riikonen, J.Oksanen, E.Vapaavuori, E.Holopainen, T. 2006 Chemical composition and decomposition of silver birch leaf litter produced under elevated CO2 and O3Plant and Soil 282 261CrossRefGoogle Scholar
Kasurinen, A.Peltonen, P. A.Julkunen-Tiitto, R. 2007 Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofaunaPlant and Soil 292 25CrossRefGoogle Scholar
Keen, N. T.Taylor, O. C. 1975 Ozone injury in soybeans: isoflavonoid accumulation is related to necrosisPlant Physiology 55 731CrossRefGoogle Scholar
Kinney, K. K.Lindroth, R. L.Jung, S. M.Nordheim, E. V. 1997 Effects of CO2 and NO3-availability on deciduous trees, phytochemistry and insect performanceEcology 78 215Google Scholar
Knepp, R. G.Hamilton, J. G.Mohan, J. E. 2005 Elevated CO2 reduces leaf damage by insect herbivores in a forest communityNew Phytologist 167 207CrossRefGoogle Scholar
Koike, T.Tobita, H.Shibata, T. 2006 Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of CO2 and nitrogenPopulation Ecology 48 23CrossRefGoogle Scholar
Kopper, B. J.Lindroth, R. L. 2003 Responses of trembling aspen () phytochemistry and aspen blotch leafminer () performance to elevated level of CO2 and O3Agricultural and Forest Entomology 5 17CrossRefGoogle Scholar
Kopper, B. J.Lindroth, R. L. 2003 Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivoreOecologia 134 95CrossRefGoogle ScholarPubMed
Koricheva, J.Larsson, S.Haukioja, E.Keinänen, M. 1998 Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysisOikos 83 212CrossRefGoogle Scholar
Kretzschmar, F. D.Aidar, M. P. M.Salgado, I.Braga, M. R. 2009 Elevated CO2 atmosphere enhances production of defense-related flavonoids in soybean elicited by NO and a fungal elicitorEnvironmental and Experimental Botany 65 319CrossRefGoogle Scholar
Kuokkanen, K.Julkunen-Tiitto, R.Keinänen, M.Niemelä, P.Tahvanainen, J. 2001 The effect of elevated CO2 and temperature on the secondary chemistry of seedlingsTrees – Structure and Function 15 378CrossRefGoogle Scholar
Kuokkanen, K.Yan, S. C.Niemela, P. 2003 Effects of elevated CO2 and temperature on the leaf chemistry of birch (Roth) and the feeding behaviour of the weevil Agricultural and Forest Entomology 5 209CrossRefGoogle Scholar
Laothawornkitkul, J.Taylor, J. E.Paul, N. D.Hewitt, C. N. 2009 Biogenic volatile organic compounds in the Earth systemNew Phytologist 183 27CrossRefGoogle ScholarPubMed
Lavola, A.Julkunen-Tiitto, R. 1994 The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, (Roth)Oecologia 99 315CrossRefGoogle Scholar
Lavola, A.Julkunen-Tiitto, R.Pääkkönen, E. 1994 Does ozone stress change the primary or secondary metabolites of birch ( Roth.)?New Phytologist 126 637CrossRefGoogle Scholar
Lawler, I. R.Foley, W. J.Woodrow, I. E.Cork, S. J. 1997 The effects of elevated CO2 on the nutritional quality of foliage and its interaction with soil nutrient and light availabilityOecologia 109 59CrossRefGoogle Scholar
Lincoln, D. E.Couvet, D. 1989 The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermintOecologia 78 112CrossRefGoogle ScholarPubMed
Lindroth, R. L. 2010 Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamicsJournal of Chemical Ecology 36 2CrossRefGoogle ScholarPubMed
Lindroth, R. L.Kinney, K. K.Platz, C. L. 1993 Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performanceEcology 74 763CrossRefGoogle Scholar
Lindroth, R. L.Roth, S.Kruger, E. L.Volin, J. C.Koss, P. A. 1997 CO2-mediated changes in aspen chemistry: effects on gypsy moth performance and susceptibility to virusGlobal Change Biology 3 279CrossRefGoogle Scholar
Lindroth, R. L.Roth, S.Nordheim, E. V. 2001 Genotypic variation in response of quaking aspen () to atmospheric CO2 enrichmentOecologia 126 371CrossRefGoogle Scholar
Liu, L. L.King, J. S.Booker, F. L. 2009 Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO2: a microcosm studyGlobal Change Biology 15 441CrossRefGoogle Scholar
Loreto, F.Fares, S. 2007 Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studiesPlant Physiology 143 1096CrossRefGoogle Scholar
Loreto, F.Pinelli, P.Manes, F.Kollist, H. 2004 Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by leavesTree Physiology 24 361CrossRefGoogle ScholarPubMed
Loranger, G. I.Pregitzer, K. S.King, J. S. 2004 Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soilsSoil Biology and Biochemistry 36 1521CrossRefGoogle Scholar
Luo, Y.Su, B.Currie, W. S. 2004 Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxideBioscience 54 731CrossRefGoogle Scholar
Manninen, A. M.Holopainen, T.Lyytikäinen-Saarenmaa, P.Holopainen, J. K. 2000 The role of low-level ozone exposure and mycorrhizas in chemical quality and insect herbivore performance on Scots pine seedlingsGlobal Change Biology 6 111CrossRefGoogle Scholar
Matros, A.Amme, S.Kettig, B. 2006 Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus YPlant, Cell and Environment 29 126CrossRefGoogle ScholarPubMed
Mattson, W. J.Kuokkanen, K.Niemelä, P. 2004 Elevated CO2 alters birch resistance to Lagomorpha herbivoresGlobal Change Biology 10 1402CrossRefGoogle Scholar
McDonald, E. P.Agrell, J.Lindroth, R. L. 1999 CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performanceOecologia 119 389Google ScholarPubMed
Meehan, T. D.Crossley, M. S.Lindroth, R. L. 2010 23
Mohan, J. E.Ziska, L. H.Schlesinger, W. H. 2006 Biomass and toxicity responses of poison ivy () to elevated atmospheric CO2Proceedings of the National Academy of Sciences USA 103 9086CrossRefGoogle ScholarPubMed
Mondor, E. B.Tremblay, M. N.Awmack, C. S.Lindroth, R. L. 2004 Divergent pheromone-mediated insect behaviour under global atmospheric changeGlobal Change Biology 10 1820CrossRefGoogle Scholar
Muntifering, R. B.Chappelka, A. H.Lin, J. C.Karnosky, D. F.Somers, G. L. 2006 Chemical composition and digestibility of exposed to elevated ozone and carbon dioxide in a free-air (FACE) fumigation systemFunctional Ecology 20 269CrossRefGoogle Scholar
Newman, D. J.Cragg, G. M.Snader, K. M. 2003 Natural products as sources of new drugs over the period 1981–2002Journal of Natural Products 66 1022CrossRefGoogle ScholarPubMed
Norby, R. J.Cotrufo, M. F.Ineson, P.O’Neill, E. G.Canadell, J. G. 2001 Elevated CO2, litter chemistry, and decomposition: a synthesisOecologia 127 153CrossRefGoogle ScholarPubMed
O’Neill, B. F.Zangerl, A. R.Dermody, O. 2010 Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean ( Linnaeus)Journal of Chemical Ecology 36 35CrossRefGoogle Scholar
Parsons, W. F. J.Lindroth, R. L.Bockheim, J. G. 2004 Decomposition of leaf litter under the independent and interactive effects of elevated CO2 and O3Global Change Biology 10 1666CrossRefGoogle Scholar
Parsons, W. F. J.Bockheim, J. G.Lindroth, R. L. 2008 Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forestEcosystems 11 505CrossRefGoogle Scholar
Peltonen, P. A.Vapaavuori, E.Julkunen-Tiitto, R. 2005 Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozoneGlobal Change Biology 11 1305CrossRefGoogle Scholar
Peltonen, P. A.Julkunen-Tiitto, R.Vapaavuori, E.Holopainen, J. K. 2006 Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolicsGlobal Change Biology 12 1670CrossRefGoogle Scholar
Peñuelas, J.Estiarte, M. 1998 Can elevated CO2 affect secondary metabolism and ecosystem function?Trends in Ecology and Evolution 13 20CrossRefGoogle Scholar
Peñuelas, J.Estiarte, M.Kimball, B. A. 1996 Variety of responses of plant phenolic concentration to CO2 enrichmentJournal of Experimental Botany 47 1463Google Scholar
Peñuelas, J.Estiarte, M.Llusià, J. 1997 Carbon-based secondary compounds at elevated CO2Photosynthetica 33 313CrossRefGoogle Scholar
Percy, K. E.Awmack, C. S.Lindroth, R. L. 2002 Altered performance of forest pests under atmospheres enriched by CO2 and O3Nature 420 403CrossRefGoogle ScholarPubMed
Peters, H. A.Baur, B.Bazzaz, F.Körner, C. 2000 Consumption rates and food preferences of slugs in a calcareous grassland under current and future CO2 conditionsOecologia 125 72CrossRefGoogle Scholar
Petit, J. R.Jouzel, J.Raynaud, D. 1999 Climate and atmospheric history of the past 420,000 years from the Vostok ice core, AntarcticaNature 399 429CrossRefGoogle Scholar
Pinto, D. M.Blande, J. D.Nykänen, R. 2007 Ozone degrades common herbivore-induced plant volatiles: does this affect herbivore prey location by predators and parasitoids?Journal of Chemical Ecology 33 683CrossRefGoogle ScholarPubMed
Pinto, D. M.Blande, J. D.Souza, S. R.Nerg, A.Holopainen, J. K. 2010 Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effectsJournal of Chemical Ecology 36 22CrossRefGoogle ScholarPubMed
Räisänen, T.Ryyppö, A.Kellomäki, S. 2008 Effects of elevated CO2 and temperature on monoterpene emission of Scots pine ( L.)Atmospheric Environment 42 4160CrossRefGoogle Scholar
Reddy, G. V. P.Tossavainen, P.Nerg, A. M.Holopainen, J. K. 2004 Elevated atmospheric CO2 affects the chemical quality of plants and the growth rate of the specialist, , but not the generalist, Journal of Agricultural and Food Chemistry 52 4185CrossRefGoogle Scholar
Reitz, S. R.Karowe, D. N.Diawara, M. M.Trumble, J. T. 1997 Effects of elevated atmospheric carbon dioxide on the growth and linear furanocoumarin content of celeryJournal of Agricultural and Food Chemistry 45 3642CrossRefGoogle Scholar
Rossi, A. M.Stiling, P.Moon, D. C.Cattell, M. V.Drake, B. G. 2004 Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2Journal of Chemical Ecology 30 1143CrossRefGoogle ScholarPubMed
Roth, S. K.Lindroth, R. L. 1995 Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect-parasitoid interactionsGlobal Change Biology 1 173CrossRefGoogle Scholar
Roth, S.McDonald, E. P.Lindroth, R. L. 1997 Atmospheric CO2 and soil water availability: consequences for tree–insect interactionsCanadian Journal of Forest Research 27 1281CrossRefGoogle Scholar
Roth, S.Lindroth, R. L.Volin, J. C.Kruger, E. L. 1998 Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performanceGlobal Change Biology 4 419CrossRefGoogle Scholar
Sager, E. P.Hutchinson, T. C.Croley, T. R. 2005 Foliar phenolics in sugar maple () as a potential indicator of tropospheric ozone pollutionEnvironmental Monitoring and Assessment 105 419CrossRefGoogle ScholarPubMed
Saleem, A.Loponen, J.Pihlaja, K.Oksanen, E. 2001 Effects of long-term open-field ozone exposure on leaf phenolics of European silver birch ( Roth)Journal of Chemical Ecology 27 1049CrossRefGoogle Scholar
Sallas, L.Kainulainen, P.Utriainen, J.Holopainen, T.Holopainen, J. K. 2001 The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine ( L.) seedlingsGlobal Change Biology 7 303CrossRefGoogle Scholar
Sandermann, H. 1996 Ozone and plant healthAnnual Review of Phytopathology 34 347CrossRefGoogle ScholarPubMed
Saxe, H.Ellsworth, D. S.Heath, J. 1998 Tree and forest functioning in an enriched CO2 atmosphereNew Phytologist 139 395CrossRefGoogle Scholar
Scherzer, A. J.Rebbeck, J.Boerner, R. E. J. 1998 Foliar nitrogen dynamics and decomposition of yellow-poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxideForest Ecology and Management 109 355CrossRefGoogle Scholar
Schonhof, I.Kläring, H. P.Krumbein, A.Schreiner, M. 2007 Interaction between atmospheric CO2 and glucosinolates in broccoliJournal of Chemical Ecology 33 105CrossRefGoogle ScholarPubMed
Shadkami, F.Helleur, R. J.Cox, R. M. 2007 Profiling secondary metabolites of needles of ozone-fumigated white pine () clones by thermally assisted hydrolysis/methylation GC/MSJournal of Chemical Ecology 33 1467CrossRefGoogle ScholarPubMed
Stiling, P.Cornelissen, T. 2007 How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performanceGlobal Change Biology 13 1823CrossRefGoogle Scholar
Stiling, P.Rossi, A. M.Hungate, B. 1999 Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attackEcological Applications 9 240Google ScholarPubMed
Stiling, P.Cattell, M.Moon, D. C. 2002 Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission ratesGlobal Change Biology 8 658CrossRefGoogle Scholar
Stiling, P.Moon, D. C.Hunter, M. D. 2003 Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forestOecologia 134 82CrossRefGoogle ScholarPubMed
Stiling, P.Moon, D.Rossi, A.Hungate, B. A.Drake, B. 2009 Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densitiesGlobal Change Biology 15 1895CrossRefGoogle Scholar
Strain, B. R.Bazzaz, F. A. 1983 Terrestrial plant communitiesLemon, E. R.The Response of Plants to Rising Levels of Atmospheric Carbon DioxideBoulder, COWestview Press177Google Scholar
Traw, M. B.Lindroth, R. L.Bazzaz, F. A. 1996 Decline in gypsy moth () performance in an elevated CO2 atmosphere depends upon host plant speciesOecologia 108 113CrossRefGoogle Scholar
Tylianakis, J. M.Didham, R. K.Bascompte, J.Wardle, D. A. 2008 Global change and species interactions in terrestrial ecosystemsEcology Letters 11 1351CrossRefGoogle ScholarPubMed
Valkama, E.Koricheva, J.Oksanen, E. 2007 Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysisGlobal Change Biology 13 184CrossRefGoogle Scholar
Vannette, R. L.Hunter, M. D. 2011 2 17 1277
Veteli, T. O.Kuokkanen, K.Julkunen-Tiitto, R.Roininen, H.Tahvanainen, J. 2002 Effects of elevated CO2 and temperature on plant growth and herbivore defensive chemistryGlobal Change Biology 8 1240CrossRefGoogle Scholar
Vingarzan, R. 2004 A review of surface ozone background levels and trendsAtmospheric Environment 38 3431CrossRefGoogle Scholar
Vuorinen, T.Nerg, A. M.Ibrahim, M. A.Reddy, G. V. P.Holopainen, J. K. 2004 Emission of -induced compounds from cabbages grown at elevated CO2 and orientation behavior of the natural enemiesPlant Physiology 135 1984CrossRefGoogle ScholarPubMed
Vuorinen, T.Nerg, A. M.Holopainen, J. K. 2004 Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signallingEnvironmental Pollution 131 305CrossRefGoogle Scholar
Wennberg, P. O.Dabdub, D. 2008 Rethinking ozone productionScience 319 1624CrossRefGoogle ScholarPubMed
Whittaker, J. B.Kristiansen, L. W.Mikkelsen, T. N.Moore, R. 1989 Responses to ozone of insects feeding on a crop and weed speciesEnvironmental Pollution 62 89CrossRefGoogle ScholarPubMed
Williams, R. S.Lincoln, D. E.Thomas, R. B. 1994 Loblolly pine grown under elevated CO2 affects early instar pine sawfly performanceOecologia 98 64CrossRefGoogle ScholarPubMed
Williams, R. S.Thomas, R. B.Strain, B. R.Lincoln, D. E. 1997 Effects of elevated CO2, soil nutrient levels, and foliage age on the performance of two generations of (Hymenoptera: Diprionidae) feeding on loblolly pineEnvironmental Entomology 26 1312CrossRefGoogle Scholar
Williams, R. S.Lincoln, D. E.Norby, R. J. 1998 Leaf age effects of elevated CO-grown white oak leaves on spring-feeding lepidopteransGlobal Change Biology 4 235CrossRefGoogle Scholar
Williams, R. S.Norby, R. J.Lincoln, D. E. 2000 Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performanceGlobal Change Biology 6 685CrossRefGoogle Scholar
Williams, R. S.Lincoln, D. E.Norby, R. J. 2003 Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperatureOecologia 137 114CrossRefGoogle ScholarPubMed
Wittig, V. E.Ainsworth, E. A.Naidu, S. L.Karnosky, D. F.Long, S. P. 2009 Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysisGlobal Change Biology 15 396CrossRefGoogle Scholar
Young, P. J.Arneth, A.Schurgers, G.Zeng, G.Pyle, J. A. 2009 The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projectionsAtmospheric Chemistry and Physics 9 2793CrossRefGoogle Scholar
Yuan, J. S.Himanen, S. J.Holopainen, J. K.Chen, F.Stewart, C. N. 2009 Smelling global climate change: mitigation of function for plant volatile organic compoundsTrends in Ecology and Evolution 24 323CrossRefGoogle ScholarPubMed
Zavala, J. A.Casteel, C. L.Delucia, E. H.Berenbaum, M. R. 2008 Anthropogenic increase in carbon dioxide compromises plant defense against invasive insectsProceedings of the National Academy of Sciences USA 105 5129CrossRefGoogle ScholarPubMed
Ziska, L. H.Emche, S. D.Johnson, E. L. 2005 Alterations in the production and concentration of selected alkaloids as a function of rising atmospheric carbon dioxide and air temperature: implications for ethno-pharmacologyGlobal Change Biology 11 1798CrossRefGoogle Scholar
Ziska, L.Panicker, S.Wojno, H. 2008 Recent and projected increases in atmospheric carbon dioxide and the potential impacts on growth and alkaloid production in wild poppy ( DC.)Climatic Change 91 395CrossRefGoogle Scholar
Zvereva, E. L.Kozlov, M. V. 2006 Consequences of simultaneous elevation of carbon dioxide and temperature for plant–herbivore interactions: a metaanalysisGlobal Change Biology 12 27CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×