Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-08T22:19:24.736Z Has data issue: false hasContentIssue false

Chapter Sixteen - Dynamics of plant secondary metabolites and consequences for food chains and community dynamics

Published online by Cambridge University Press:  05 August 2012

Marcel Dicke
Affiliation:
Laboratory of Entomology, Wageningen University
Rieta Gols
Affiliation:
Laboratory of Entomology, Wageningen University
Erik H. Poelman
Affiliation:
Laboratory of Entomology, Wageningen University
Glenn R. Iason
Affiliation:
James Hutton Institute, Aberdeen
Marcel Dicke
Affiliation:
Wageningen Universiteit, The Netherlands
Susan E. Hartley
Affiliation:
University of York
Get access

Summary

Introduction

A central issue in ecology is to identify the mechanisms driving and maintaining community diversity. Studies of plant–insect associations have played an important role in understanding ecological and evolutionary processes that underlie community dynamics (Whitham et al., 2006; Poelman et al., 2008b). Plants are autotrophic organisms that produce organic matter from carbon dioxide, water and sunlight, and as such they are at the base of most food webs. There is a wealth of animals that feed on plants, and insects are by far the most speciose of these. There are an estimated 6 million insect species, of which half are herbivorous (Schoonhoven et al., 2005). Terrestrial plant–animal communities, therefore, represent a large proportion of the communities on Earth.

Plants produce a multitude of organic compounds ranging from simple molecules such as ethylene and methanol to complex terpenoids and nitrogen-containing alkaloids. More than 100 000 chemical products are known to be produced by plants (Schoonhoven et al., 2005) with estimates ranging up to 200 000 (Pichersky & Gang, 2000), and these compounds affect many interactions with community members. Recent studies have provided ample information on the molecular basis and ecology of plant defences against insects (Kessler & Baldwin, 2002; Arimura et al., 2005; Dicke et al., 2009). Constitutive defences of plants differentially affect various insect herbivores. These defences can affect the behaviour of herbivores during host-plant selection and their performance after plant tissues have been ingested (Kessler et al., 2004; Schoonhoven et al., 2005).

Type
Chapter
Information
The Ecology of Plant Secondary Metabolites
From Genes to Global Processes
, pp. 308 - 328
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A. A. 2000 Benefits and costs of induced plant defense for (Brassicaceae)Ecology 81 1804CrossRefGoogle Scholar
Agrawal, A. A. 2001 Phenotypic plasticity in the interactions and evolution of speciesScience 294 321CrossRefGoogle ScholarPubMed
Agrawal, A. A.Kurashige, N. S. 2003 A role for isothiocyanates in plant resistance against the specialist herbivore Journal of Chemical Ecology 29 1403CrossRefGoogle ScholarPubMed
Aliabadi, A.Renwick, J. A. A.Whitman, D. W. 2002 Sequestration of glucosinolates by harlequin bug Journal of Chemical Ecology 28 1749CrossRefGoogle ScholarPubMed
Arimura, G.Kost, C.Boland, W. 2005 Herbivore-induced, indirect plant defencesBiochimica et Biophysica Acta 1734 91CrossRefGoogle ScholarPubMed
Bailey, J. K.Wooley, S. C.Lindroth, R. L.Whitham, T. G. 2006 Importance of species interactions to community heritability: a genetic basis to trophic-level interactionsEcology Letters 9 78Google ScholarPubMed
Bangert, R. K.Allan, G. J.Turek, R. J. 2006 From genes to geography: a genetic similarity rule for arthropod community structure at multiple geographic scalesMolecular Ecology 15 4215CrossRefGoogle ScholarPubMed
Bangert, R. K.Turek, R. J.Rehill, B. 2006 A genetic similarity rule determines arthropod community structureMolecular Ecology 15 1379CrossRefGoogle ScholarPubMed
Barton, K. E.Koricheva, J. 2010 The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysisAmerican Naturalist 175 481CrossRefGoogle ScholarPubMed
Bidart-Bouzat, M. G.Kliebenstein, D. J. 2008 Differential levels of insect herbivory in the field associated with genotypic variation in glucosinolates in Journal of Chemical Ecology 34 1026CrossRefGoogle Scholar
Blande, J. D.Pickett, J. A.Poppy, G. M. 2007 A comparison of semiochemically mediated interactions involving specialist and generalist -feeding aphids and the braconid parasitoid Journal of Chemical Ecology 33 767CrossRefGoogle ScholarPubMed
Bridges, M.Jones, A. M. E.Bones, A. M. 2002 Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plantProceedings of the Royal Society B, Biological Sciences 269 187CrossRefGoogle ScholarPubMed
Broekgaarden, C.Poelman, E. H.Steenhuis, G. 2007 Genotypic variation in genome-wide transcription profiles induced by insect feeding: interactionsBMC Genomics 8 239CrossRefGoogle ScholarPubMed
Broekgaarden, C.Poelman, E. H.Voorrips, R. E.Dicke, M.Vosman, B. 2010 Intraspecific variation in herbivore community composition and transcriptional profiles in field-grown cultivarsJournal of Experimental Botany 61 807CrossRefGoogle ScholarPubMed
Bruinsma, M.Posthumus, M. A.Mumm, R. 2009 Jasmonic acid-induced volatiles of attract parasitoids: effects of time and dose, and comparison with induction by herbivoresJournal of Experimental Botany 60 2575CrossRefGoogle ScholarPubMed
Bukovinszky, T.van Veen, F. J. F.Jongema, Y.Dicke, M. 2008 Direct and indirect effects of resource quality on food web structureScience 319 804CrossRefGoogle ScholarPubMed
Bukovinszky, T.Poelman, E. H.Gols, R. 2009 Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitismOecologia 160 299CrossRefGoogle ScholarPubMed
Chen, F.Liu, C. J.Tschaplinski, T. J.Zhao, N. 2009 Genomics of secondary metabolism in Populus: interactions with biotic and abiotic environmentsCritical Reviews in Plant Sciences 28 375CrossRefGoogle Scholar
de Vos, M.van Oosten, V. R.van Poecke, R. M. P. 2005 Signal signature and transcriptome changes of during pathogen and insect attackMolecular Plant–Microbe Interactions 18 923CrossRefGoogle ScholarPubMed
de Vos, M.van Zaanen, W.Koornneef, A. 2006 Herbivore-induced resistance against microbial pathogens in ArabidopsisPlant Physiology 142 352CrossRefGoogle ScholarPubMed
de Vos, M.Kriksunov, K. L.Jander, G. 2008 Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Plant Physiology 146 916CrossRefGoogle Scholar
Denno, R. F.McClure, M. S.Ott, J. R. 1995 Interspecific interaction in phytophagous insects: competition reexamined and resurrectedAnnual Review of Entomology 40 297CrossRefGoogle Scholar
Denno, R. F.Peterson, M. A.Gratton, C. 2000 Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivoresEcology 81 1814CrossRefGoogle Scholar
Dicke, M.Baldwin, I. T. 2010 The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’Trends in Plant Science 15 167CrossRefGoogle ScholarPubMed
Dicke, M.van Loon, J. J. A.Soler, R. 2009 Chemical complexity of volatiles from plants induced by multiple attackNature Chemical Biology 5 317CrossRefGoogle ScholarPubMed
Eigenbrode, S. D.Ding, H. J.Shiel, P.Berger, P. H. 2002 Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, (Homoptera: Aphididae)Proceedings of the Royal Society of London B: Biological Sciences 269 455CrossRefGoogle Scholar
Fatouros, N. E.van Loon, J. J. A.Hordijk, K. A.Smid, H. M.Dicke, M. 2005 Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoidsJournal of Chemical Ecology 31 2033CrossRefGoogle ScholarPubMed
Fatouros, N. E.Broekgaarden, C.Bukovinszkine’Kiss, G. 2008 Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defenseProceedings of the National Academy of Sciences USA 105 10033CrossRefGoogle ScholarPubMed
Fox, L. R.Eisenbach, J. 1992 Contrary choices: possible exploitation of enemy-free space by herbivorous insects in cultivated vs. wild crucifersOecologia 89 574CrossRefGoogle ScholarPubMed
Fraenkel, G. S. 1959 The of secondary plant substancesScience 129 1466CrossRefGoogle ScholarPubMed
Francis, F.Lognay, G.Wathelet, J. P.Haubruge, E. 2001 Effects of allelochemicals from first (Brassicaceae) and second ( and ) trophic levels on Journal of Chemical Ecology 27 243CrossRefGoogle Scholar
Galis, I.Gaquerel, E.Pandey, S. P.Baldwin, I. T. 2009 Molecular mechanisms underlying plant memory in JA-mediated defence responsesPlant Cell and Environment 32 617CrossRefGoogle ScholarPubMed
Gaquerel, E.Weinhold, A.Baldwin, I. T. 2009 Molecular Interactions between the specialist herbivore (Lepidoptera, Sphingidae) and its natural host . VIII. An unbiased GCxGC-ToFMS analysis of the plant’s elicited volatile emissionsPlant Physiology 149 1408CrossRefGoogle Scholar
Girling, R. D.Hassall, M. 2008 Behavioural responses of the seven-spot ladybird to plant headspace chemicals collected from four crop and , infested with Agricultural and Forest Entomology 10 297CrossRefGoogle Scholar
Goheen, J. R.Palmer, T. M. 2010 Defensive plant-ants stabilize megaherbivore-driven landscape change in an African savannaCurrent Biology 20 1768CrossRefGoogle Scholar
Gols, R.Harvey, J. A. 2009 Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoidsPhytochemistry Reviews 8 187CrossRefGoogle Scholar
Gols, R.Wagenaar, R.Bukovinszky, T. 2008 Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoidsEcology 89 1616CrossRefGoogle Scholar
Gols, R.Witjes, L. M. A.van Loon, J. J. A. 2008 The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoidEntomologia Experimentalis et Applicata 128 99CrossRefGoogle Scholar
Gols, R.van Dam, N. M.Raaijmakers, C. E.Dicke, M.Harvey, J. A. 2009 Are population differences in plant quality reflected in the preference and performance of two endoparasitoid wasps?Oikos 118 733CrossRefGoogle Scholar
Gruner, D. S.Taylor, A. D. 2006 Richness and species composition of arboreal arthropods affected by nutrients and predators: a press experimentOecologia 147 714CrossRefGoogle ScholarPubMed
Harvey, J. A. 2000 Dynamic effects of parasitism by an endoparasitoid wasp on the development of two host species: implications for host quality and parasitoid fitnessEcological Entomology 25 267CrossRefGoogle Scholar
Harvey, J. A. 2005 Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexityEntomologia Experimentalis et Applicata 117 1CrossRefGoogle Scholar
Harvey, J. A.van Dam, N. M.Gols, R. 2003 Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoidJournal of Animal Ecology 72 520CrossRefGoogle Scholar
Harvey, J. A.Biere, A.Fortuna, T. 2010 Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Biological Invasions 12 3045CrossRefGoogle Scholar
Heidel, A. J.Baldwin, I. T. 2004 Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of to attack by insects from multiple feeding guildsPlant Cell and Environment 27 1362CrossRefGoogle Scholar
Heil, M. 2008 Indirect defence via tritrophic interactionsNew Phytologist 178 41CrossRefGoogle ScholarPubMed
Hilker, M.Meiners, T. 2006 Early herbivore alert: insect eggs induce plant defenseJournal of Chemical Ecology 32 1379CrossRefGoogle ScholarPubMed
Hochwender, C. G.Fritz, R. S. 2004 Plant genetic differences influence herbivore community structure: evidence from a hybrid willow systemOecologia 138 547CrossRefGoogle ScholarPubMed
Holopainen, J. K.Gershenzon, J. 2010 Multiple stress factors and the emission of plant VOCsTrends in Plant Science 15 176CrossRefGoogle ScholarPubMed
Hopkins, R. J.van Dam, N. M.van Loon, J. J. A. 2009 Role of glucosinolates in insect–plant relationships and multitrophic interactionsAnnual Review of Entomology 54 57CrossRefGoogle ScholarPubMed
Jansen, J. J.Allwood, J. W.Marsden-Edwards, E. 2009 Metabolomic analysis of the interaction between plants and herbivoresMetabolomics 5 150CrossRefGoogle Scholar
Johnson, M. T. J.Agrawal, A. A. 2005 Plant genotype and environment interact to shape a diverse arthropod community on evening primrose ()Ecology 86 874CrossRefGoogle Scholar
Kabouw, P.Biere, A.van der Putten, W. H.van Dam, N. M. 2010 Intra-specific differences in root and shoot glucosinolate profiles among white cabbage ( var. capitata) cultivarsJournal of Agricultural and Food Chemistry 58 411CrossRefGoogle ScholarPubMed
Kaplan, I.Denno, R. F. 2007 Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theoryEcology Letters 10 977CrossRefGoogle ScholarPubMed
Kaplan, I.Halitschke, R.Kessler, A. 2008 Physiological integration of roots and shoots in plant defense strategies links above- and belowground herbivoryEcology Letters 11 841CrossRefGoogle ScholarPubMed
Karban, R. 2008 Plant behaviour and communicationEcology Letters 11 727CrossRefGoogle Scholar
Kessler, A.Baldwin, I. T. 2002 Plant responses to insect herbivory: the emerging molecular analysisAnnual Review of Plant Biology 53 299CrossRefGoogle ScholarPubMed
Kessler, A.Baldwin, I. T. 2004 Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Plant Journal 38 639CrossRefGoogle ScholarPubMed
Kessler, A.Halitschke, R. 2007 Specificity and complexity: the impact of herbivore-induced plant responses on arthropod community structureCurrent Opinion in Plant Biology 10 409CrossRefGoogle ScholarPubMed
Kessler, A.Halitschke, R.Baldwin, I. T. 2004 Silencing the jasmonate cascade: induced plant defenses and insect populationsScience 305 665CrossRefGoogle ScholarPubMed
Kim, J. H.Lee, B. W.Schroeder, F. C.Jander, G. 2008 Identification of indole glucosinolate breakdown products with antifeedant effects on (green peach aphid)Plant Journal 54 1015CrossRefGoogle Scholar
Lee, H. S.Wang, J. L.Tian, L. 2004 Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related speciesPlant Biotechnology Journal 2 45CrossRefGoogle ScholarPubMed
Loreto, F.Schnitzler, J. P. 2010 Abiotic stresses and induced BVOCsTrends in Plant Science 15 154CrossRefGoogle ScholarPubMed
Lucas-Barbosa, D.van Loon, J. J. A.Dicke, M. 2011 The effects of herbivore-induced plant volatiles on interactions between plants and visiting insectsPhytochemistry 72 1647CrossRefGoogle ScholarPubMed
Mattiacci, L.Dicke, M.Posthumus, M. A. 1995 Beta-glucosidase: an elicitor of herbivore-induced plant odor that attracts host-searching parasitic waspsProceedings of the National Academy of Sciences USA 92 2036CrossRefGoogle ScholarPubMed
Mercke, P.Kappers, I. F.Verstappen, F. W. A. 2004 Combined transcript and metabolite analysis reveals genes involved in spider mite induced volatile formation in cucumber plantsPlant Physiology 135 2012CrossRefGoogle ScholarPubMed
Mitchell-Olds, T. 2001 and its wild relatives: a model system for ecology and evolutionTrends in Ecology and Evolution 16 693CrossRefGoogle Scholar
Muller, C. 2009 Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Phytochemistry Reviews 8 121CrossRefGoogle Scholar
Mumm, R.Hilker, M. 2005 The significance of background odour for an egg parasitoid to detect plants with host eggsChemical Senses 30 337CrossRefGoogle ScholarPubMed
Mumm, R.Burow, M.Bukovinszkine’Kiss, G. 2008 Formation of simple nitriles upon glucosinolate hydrolysis affects direct and indirect defense against the specialist herbivore, Journal of Chemical Ecology 34 1311CrossRefGoogle Scholar
Newton, E.Bullock, J. M.Hodgson, D. 2009 Bottom-up effects of glucosinolate variation on aphid colony dynamics in wild cabbage populationsEcological Entomology 34 614CrossRefGoogle Scholar
Newton, E. L.Bullock, J. M.Hodgson, D. J. 2009 Glucosinolate polymorphism in wild cabbage () influences the structure of herbivore communitiesOecologia 160 63CrossRefGoogle ScholarPubMed
Nielsen, J. K. 1997 Variation in defences of the plant and in counteradaptations by the flea beetle Entomologia Experimentalis et Applicata 82 25CrossRefGoogle Scholar
Nishida, R. 2002 Sequestration of defensive substances from plants by LepidopteraAnnual Review of Entomology 47 57CrossRefGoogle ScholarPubMed
Ode, P. J. 2006 Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactionsAnnual Review of Entomology 51 163CrossRefGoogle ScholarPubMed
Ohgushi, T. 2008 Herbivore-induced indirect interaction webs on terrestrial plants: the importance of non-trophic, indirect, and facilitative interactionsEntomologia Experimentalis et Applicata 128 217CrossRefGoogle Scholar
Pichersky, E.Gang, D. R. 2000 Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspectiveTrends in Plant Science 5 439CrossRefGoogle Scholar
Pieterse, C. M. J.Dicke, M. 2007 Plant interactions with microbes and insects: from molecular mechanisms to ecologyTrends in Plant Science 12 564CrossRefGoogle ScholarPubMed
Pieterse, C. M. J.Leon-Reyes, A.van der Ent, S.van Wees, S. C. M. 2009 Networking by small-molecule hormones in plant immunityNature Chemical Biology 5 308CrossRefGoogle ScholarPubMed
Poelman, E. H.Broekgaarden, C.van Loon, J. J. A.Dicke, M. 2008 Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the fieldMolecular Ecology 17 3352CrossRefGoogle ScholarPubMed
Poelman, E. H.van Loon, J. J. A.Dicke, M. 2008 Consequences of variation in plant defense for biodiversity at higher trophic levelsTrends in Plant Science 13 534CrossRefGoogle ScholarPubMed
Poelman, E. H.Oduor, A. M. O.Broekgaarden, C. 2009 Field parasitism rates of caterpillars on plants are reliably predicted by differential attraction of parasitoidsFunctional Ecology 23 951CrossRefGoogle Scholar
Poelman, E. H.van Dam, N. M.van Loon, J. J. A.Vet, L. E. M.Dicke, M. 2009 Chemical diversity in affects biodiversity of insect herbivoresEcology 90 1863CrossRefGoogle ScholarPubMed
Poelman, E. H.van Loon, J. J. A.van Dam, N. M.Vet, L. E. M.Dicke, M. 2010 Herbivore-induced plant responses in prevail over effects of constitutive resistance and result in enhanced herbivore attackEcological Entomology 35 240CrossRefGoogle Scholar
Ramsey, J. S.Wilson, A. C. C.de Vos, M. 2007 Genomic resources for : EST sequencing, SNP identification, and microarray designBmc Genomics 8 423CrossRefGoogle ScholarPubMed
Ratzka, A.Vogel, H.Kliebenstein, D. J.Mitchell-Olds, T.Kroymann, J. 2002 Disarming the mustard oil bombProceedings of the National Academy of Sciences USA 99 11223CrossRefGoogle ScholarPubMed
Renwick, J. A. A. 2002 The chemical world of crucivores: lures, treats and trapsEntomologia Experimentalis et Applicata 104 35CrossRefGoogle Scholar
Roda, A. L.Baldwin, I. T. 2003 Molecular technology reveals how the induced direct defenses of plants workBasic and Applied Ecology 4 15CrossRefGoogle Scholar
Root, R. B. 1973 Organization of a plant–arthropod association in simple and diverse habitats: the fauna of collards ()Ecological Monographs 43 95CrossRefGoogle Scholar
Saedler, R.Baldwin, I. T. 2004 Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors in Journal of Experimental Botany 55 151CrossRefGoogle Scholar
Schaller, A. 2008 Induced Plant Resistance to HerbivoryBerlinSpringerCrossRefGoogle Scholar
Schoonhoven, L. M.van Loon, J. J. A.Dicke, M. 2005 Insect–Plant BiologyOxfordOxford University PressGoogle Scholar
Schroeder, R.Hilker, M. 2008 The relevance of background odor in resource location by insects: a behavioral approachBioscience 58 308CrossRefGoogle Scholar
Schweitzer, J. A.Madritch, M. D.Bailey, J. K. 2008 From genes to ecosystems: the genetic basis of condensed tannins and their role in nutrient regulation in a Populus model systemEcosystems 11 1005CrossRefGoogle Scholar
Smallegange, R. C.van Loon, J. J. A.Blatt, S. E.Harvey, J. A.Dicke, M. 2008 Parasitoid load affects plant fitness in a tritrophic systemEntomologia Experimentalis et Applicata 128 172CrossRefGoogle Scholar
Snoeren, T. A. L.de Jong, P. W.Dicke, M. 2007 Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecologyJournal of Ecology 95 17CrossRefGoogle Scholar
Snoeren, T. A. L.van Poecke, R. M. P.Dicke, M. 2009 Multidisciplinary approach to unravelling the relative contribution of different oxylipins in indirect defense of Journal of Chemical Ecology 35 1021CrossRefGoogle Scholar
Snoeren, T. A. L.Mumm, R.Poelman, E. H. 2010 The herbivore-induced plant volatile methyl salicylate negatively affects attraction of the parasitoid Journal of Chemical Ecology 36 479CrossRefGoogle ScholarPubMed
Soler, R.Bezemer, T. M.van der Putten, W. H.Vet, L. E. M.Harvey, J. A. 2005 Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant qualityJournal of Animal Ecology 74 1121CrossRefGoogle Scholar
Soler, R.Bezemer, T. M.Cortesero, A. M. 2007 Impact of foliar herbivory on the development of a root-feeding insect and its parasitoidOecologia 152 257CrossRefGoogle ScholarPubMed
Soler, R.Harvey, J. A.Kamp, A. F. D. 2007 Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signalsOikos 116 367CrossRefGoogle Scholar
Soler, R.Schaper, S. V.Bezemer, T. M. 2009 Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field studyEcological Entomology 34 339CrossRefGoogle Scholar
Strauss, S. Y. 1991 Direct, indirect, and cumulative effects of 3 native herbivores on a shared host plantEcology 72 543CrossRefGoogle Scholar
Tahvanainen, J. O.Root, R. B. 1972 The influence of vegetational diversity on the population ecology of a specialized herbivore, (Coleoptera: Chrysomelidae)Oecologia 10 321CrossRefGoogle Scholar
Textor, S.Gershenzon, J. 2009 Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significancePhytochemistry Reviews 8 149CrossRefGoogle Scholar
Utsumi, S.Ando, Y.Miki, T. 2010 Linkages among trait-mediated indirect effects: a new framework for the indirect interaction webPopulation Ecology 52 485CrossRefGoogle Scholar
van der Putten, W. H.Vet, L. E. M.Harvey, J. A.Wäckers, F. L. 2001 Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonistsTrends in Ecology and Evolution 16 547CrossRefGoogle Scholar
van Leur, H.Raaijmakers, C. E.van Dam, N. M. 2006 A heritable glucosinolate polymorphism within natural populations of Phytochemistry 67 1214CrossRefGoogle Scholar
van Loon, J. J. A.De Boer, J. G.Dicke, M. 2000 Parasitoid–plant mutualism: parasitoid attack of herbivore increases plant reproductionEntomologia Experimentalis et Applicata 97 219CrossRefGoogle Scholar
van Poecke, R. M. P.Dicke, M. 2004 Indirect defence of plants against herbivores: using as a model plantPlant Biology 6 387CrossRefGoogle ScholarPubMed
van Zandt, P. A.Agrawal, A. A. 2004 Community-wide impacts of herbivore-induced plant responses in milkweed ()Ecology 85 2616CrossRefGoogle Scholar
Viswanathan, D. V.Lifchits, O. A.Thaler, J. S. 2007 Consequences of sequential attack for resistance to herbivores when plants have specific induced responsesOikos 116 1389CrossRefGoogle Scholar
Voelckel, C.Baldwin, I. T. 2004 Herbivore-induced plant vaccination. Part II. Array-studies reveal the transience of herbivore-specific transcriptional imprints and a distinct imprint from stress combinationsPlant Journal 38 650CrossRefGoogle Scholar
Walling, L. L. 2009 Adaptive defense responses to pathogens and insectsPlant Innate Immunity 51 551Google Scholar
Wheat, C. W.Vogel, H.Wittstock, U. 2007 The genetic basis of a plant–insect coevolutionary key innovationProceedings of the National Academy of Sciences USA 104 20427CrossRefGoogle ScholarPubMed
Whitham, T. G.Martinsen, G. D.Floate, K. D. 1999 Plant hybrid zones affect biodiversity: tools for a genetic-based understanding of community structureEcology 80 416CrossRefGoogle Scholar
Whitham, T. G.Bailey, J. K.Schweitzer, J. A. 2006 A framework for community and ecosystem genetics: from genes to ecosystemsNature Reviews Genetics 7 510CrossRefGoogle ScholarPubMed
Whitham, T. G.DiFazio, S. P.Schweitzer, J. A. 2008 Extending genomics to natural communities and ecosystemsScience 320 492CrossRefGoogle ScholarPubMed
Wimp, G. M.Martinsen, G. D.Floate, K. D.Bangert, R. K.Whitham, T. G. 2005 Plant genetic determinants of arthropod community structure and diversityEvolution 59 61CrossRefGoogle ScholarPubMed
Wimp, G. M.Wooley, S.Bangert, R. K. 2007 Plant genetics predicts intra-annual variation in phytochemistry and arthropod community structureMolecular Ecology 16 5057CrossRefGoogle ScholarPubMed
Wittstock, U.Agerbirk, N.Stauber, E. J. 2004 Successful herbivore attack due to metabolic diversion of a plant chemical defenseProceedings of the National Academy of Sciences USA 101 4859CrossRefGoogle ScholarPubMed
Zarate, S. I.Kempema, L. A.Walling, L. L. 2007 Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defensesPlant Physiology 143 866CrossRefGoogle ScholarPubMed
Zhang, P. J.Zheng, S. J.van Loon, J. J. A. 2009 Whiteflies interfere with indirect plant defense against spider mites in Lima beanProceedings of the National Academy of Sciences USA 106 21202CrossRefGoogle ScholarPubMed
Zheng, S. J.Dicke, M. 2008 Ecological genomics of plant–insect interactions: from gene to communityPlant Physiology 146 812CrossRefGoogle Scholar
Zheng, S. J.Snoeren, T. A. L.Hogewoning, S. W.van Loon, J. J. A.Dicke, M. 2010 Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly New Phytologist 186 733CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×