Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-06-11T14:18:01.342Z Has data issue: false hasContentIssue false

16 - Complex Life Histories and Senescence in Plants

Avenues to Escape Age-Related Decline?

from Part III - Senescence in Plants

Published online by Cambridge University Press:  16 March 2017

Richard P. Shefferson
Affiliation:
University of Tokyo
Owen R. Jones
Affiliation:
University of Southern Denmark
Roberto Salguero-Gómez
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ally, D., Ritland, K. & Otto, S. P. (2010). Aging in a long-lived clonal tree. PLoS Biology, 8(8).CrossRefGoogle Scholar
Baudisch, A., Salguero-Gómez, R., Jones, O. R., et al. (2013). The pace and shape of senescence in angiosperms. Journal of Ecology, 101(3), 596606.CrossRefGoogle Scholar
Becker, G. F., Busso, C. A., Montani, T., et al. (1997). Effects of defoliating Stipa tenuis and Piptochaetium napostaense at different phenological stages: tiller demography and growth. Journal of Arid Environments, 35(2), 251–68.Google Scholar
Bierzychudek, P. (1982). Life histories and demography of shade-tolerant temperate forest herbs: a review. New Phytologist, 90(4), 757–76.CrossRefGoogle Scholar
Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation (Sunderland, MA, Sinauer Associates).Google Scholar
Caswell, H. & Salguero-Gómez, R. (2013). Age, stage and senescence in plants. Journal of Ecology, 101(3), 585–95.CrossRefGoogle ScholarPubMed
Chen, Y. T., Shen, C. H., Lin, W. D., et al. (2013). Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biology, 15(1), 2736.CrossRefGoogle ScholarPubMed
Chu, C. & Adler, P. B. (2014). When should plant population models include age structure? Journal of Ecology, 102(2), 531–43.CrossRefGoogle Scholar
Cochran, M. E. & Ellner, S. (1992). Simple methods for calculating age-based life-history parameters for stage-structured populations. Ecological Monographs, 62(3), 345–64.CrossRefGoogle Scholar
Colman, R. J., Beasley, T. M., Kemnitz, J. W., et al. (2014). Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nature Communications, 5.CrossRefGoogle ScholarPubMed
Dalgleish, H. J., Koons, D. N., Hooten, M. B., et al. (2011). Climate influences the demography of three dominant sagebrush steppe plants. Ecology, 92(1), 7585.CrossRefGoogle ScholarPubMed
Darlington, H. & Steinbauer, G. P. (1961). Eighty-year period for Dr. Beal’s seed viability experiment. American Journal of Botany, 48(4), 321.Google Scholar
Dawson, T. E., Mambelli, S., Plamboeck, A. H., et al. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507–59.CrossRefGoogle Scholar
Easterling, M. R., Ellner, S. P. & Dixon, P. M. (2000). Size-specific sensitivity: applying a new structured population model. Ecology, 81(3), 694708.CrossRefGoogle Scholar
Ehlers, B. K. & Olesen, J. M. (2004). Flower production in relation to individual plant age and leaf production among different patches of Corydalis intermedia. Plant Ecology, 174(1).CrossRefGoogle Scholar
Ehrlén, J. (2000). The dynamics of plant populations: does the history of individuals matter? Ecology, 81(6), 1675–84.CrossRefGoogle Scholar
Ehrlén, J. & Lehtilä, K. (2002). How perennial are perennial plants? Oikos, 98(2), 308–22.CrossRefGoogle Scholar
Ellis, M. M., Williams, J. L., Lesica, P., et al. (2012). Matrix population models from 20 studies of perennial plant populations. Ecology, 93(4), 951.CrossRefGoogle Scholar
Ellner, S. P. & Rees, M. (2006). Integral projection models for species with complex demography. American Naturalist, 167(3).CrossRefGoogle ScholarPubMed
Finch-Savage, W. E. & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–23.CrossRefGoogle ScholarPubMed
Finkel, T. & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239–47.CrossRefGoogle ScholarPubMed
Garcia, M. B., Dahlgren, J. P. & Ehrlén, J. (2011). No evidence of senescence in a 300-year-old mountain herb. Journal of Ecology, 99(6), 1424–30.CrossRefGoogle Scholar
Goodman, L. A. (1969). Analysis of population growth when birth and death rates depend upon several factors. Biometrics, 25(4), 659.CrossRefGoogle ScholarPubMed
Gremer, J. R., Crone, E. E. & Lesica, P. (2012). Are dormant plants hedging their bets? Demographic consequences of prolonged dormancy in variable environments. American Naturalist, 179(3), 315–27.CrossRefGoogle ScholarPubMed
Gremer, J. R. & Sala, A. (2013). It is risky out there: the costs of emergence and the benefits of prolonged dormancy. Oecologia, 172(4), 937–47.CrossRefGoogle ScholarPubMed
Gremer, J. R., Sala, A. & Crone, E. E. (2010). Disappearing plants: why they hide and how they return. Ecology, 91(11), 3407–13.CrossRefGoogle ScholarPubMed
Hackett, W. P. (1985). Juvenility, maturation, and rejuvenation in woody plants. Horticultural Reviews, 7, 109–55.Google Scholar
Hutchings, M. J. (1987). The population biology of the early spider orchid, Ophrys sphegodes Mill: II. Temporal patterns in behaviour. Journal of Ecology, 75, 729–42.CrossRefGoogle Scholar
Jäkäläniemi, A. (2011). Narrow climate and habitat envelope affect the survival of relict populations of a northern Arnica Angustifolia. Environmental and Experimental Botany, 72(3), 415–21.Google Scholar
Jäkäläniemi, A., Crone, E. E., Närhi, P. & Tuomi, J. (2011). Orchids do not pay costs at emergence for prolonged dormancy. Ecology, 92(7), 1538–43.CrossRefGoogle Scholar
Jäkäläniemi, A., Kauppi, A., Pramila, A. & Vähätaini, K. (2004). Survival strategies of Silene tatarica (Caryophyllaceae) in riparian and ruderal habitats. Canadian Journal of Botany, 82(4), 491502.CrossRefGoogle Scholar
Kalisz, S. & McPeek, M. A. (1993). Extinction dynamics, population-growth and seed banks: an example using an age-structured annual. Oecologia, 95(3), 314–20.CrossRefGoogle ScholarPubMed
Kirkwood, T. B. L. (1977). Evolution of aging. Nature, 270(5635), 301–4.CrossRefGoogle Scholar
Kuss, P., Rees, M., Aegisdottir, H. H., et al. (2008). Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model. Journal of Ecology, 96(4), 821–32.CrossRefGoogle Scholar
Lanner, R. M. & Connor, K. F. (2001). Does bristlecone pine senesce? Experimental Gerontology, 36(4–6).CrossRefGoogle ScholarPubMed
Lesica, P. & Crone, E. E. (2007). Causes and consequences of prolonged dormancy for an iteroparous geophyte, Silene spaldingii. Journal of Ecology, 95(6), 1360–9.CrossRefGoogle Scholar
Lesica, P. & Steele, B. M. (1994). Prolonged dormancy in vascular plants and implications for monitoring studies. Natural Areas Journal, 14, 209–12.Google Scholar
Martin, J. G. A. & Festa-Bianchet, M. (2011). Age-independent and age-dependent decreases in reproduction of females. Ecology Letters, 14(6), 576–81.CrossRefGoogle ScholarPubMed
Masoro, E. J. (2005). Overview of caloric restriction and ageing. Mechanisms of Ageing and Development, 126(9), 913–22.CrossRefGoogle ScholarPubMed
Mattison, J. A., Roth, G. S., Beasley, T. M., et al. (2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature, 489(7415), 318–21.CrossRefGoogle ScholarPubMed
McNamara, J. M., Houston, A. I., Barta, Z., et al. (2009). Deterioration, death and the evolution of reproductive restraint in late life. Proceedings of the Royal Society if London Series B: Biological Sciences, 276(1675), 4061–6.Google ScholarPubMed
Mencuccini, M., Oñate, M., Peñuelas, J., et al (2014). No signs of meristem senescence in old Scots pine. Journal of Ecology, 102(3), 555–65.CrossRefGoogle Scholar
Merow, C., Dahlgren, J. P., Metcalf, C. J. E., et al. (2014). Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 5(2), 99110.CrossRefGoogle Scholar
Moriuchi, K. S., Venable, D. L., Pake, C. E. & Lange, T. (2000). Direct measurement of the seed bank age structure of a Sonoran Desert annual plant. Ecology, 81(4), 1133–8.CrossRefGoogle Scholar
Munné-Bosch, S. (2008). Do perennials really senesce? Trends in Plant Science, 13(5), 216–20.CrossRefGoogle ScholarPubMed
Nilsson, P., Tuomi, J. & Åström, M. (1996). Bud dormancy as a bet-hedging strategy. American Naturalist, 147(2), 269–81.CrossRefGoogle Scholar
Oñate, M. & Munné-Bosch, S. (2008). Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the mediterranean shrub, Cistus clusii. Plant Biology, 10, 148–55.CrossRefGoogle Scholar
Ott, J. P. & Hartnett, D. C. (2012). Contrasting bud bank dynamics of two co-occurring grasses in tallgrass prairie: implications for grassland dynamics. Plant Ecology, 213(9), 1437–48.CrossRefGoogle Scholar
Pedersen, B. (1999). Senescence in Plants: Life History Evolution in Plants, ed. Vuorisalo, T. O. & Mutikainen, P. K. (pp. 239–74) (Dordrecht: Kluwer).CrossRefGoogle Scholar
Peñuelas, J. & Munné-Bosch, S. (2010). Potentially immortal? New Phytologist, 187(3), 564–7.CrossRefGoogle ScholarPubMed
Rabotnov, T. A. (1969). On coenopopulations of perennial herbaceous plants in natural coenoses. Vegetatio, 19(1–6), 8795.CrossRefGoogle Scholar
Reintal, M., Tali, K., Haldna, M. & Kull, T. (2010). Habitat preferences as related to the prolonged dormancy of perennial herbs and ferns. Plant Ecology, 210(1), 111–23.CrossRefGoogle Scholar
Rice, K.J. & Dyer, A. R. (2001). Seed aging, delayed germination and reduced competitive ability in Bromus tectorum. Plant Ecology, 155(2), 237–43.CrossRefGoogle Scholar
Ricklefs, R. E. (2000). Intrinsic aging-related mortality in birds. Journal of Avian Biology, 31(2), 103–11.CrossRefGoogle Scholar
Roach, D. A. (1993). Evolutionary senescence in plants. Genetica, 91(1–3).CrossRefGoogle Scholar
Roach, D. A. (2004). Evolutionary and demographic approaches to the study of whole plant senescence. In Plant Cell Death Processes, ed. Nooden, L. D. (pp. 341–8) (New York: Academic Press).Google Scholar
Roach, D. A., Ridley, C. E. & Dudycha, J. L. (2009). Longitudinal analysis of Plantago: age-by-environment interactions reveal aging. Ecology, 90(6).CrossRefGoogle ScholarPubMed
Saatkamp, A., Affre, L., Dutoit, T. & Poschlod, P. (2009). The seed bank longevity index revisited: limited reliability evident from a burial experiment and database analyses. Annals of Botany, 104(4), 715–24.CrossRefGoogle ScholarPubMed
Salguero-Gómez, R. & Casper, B. B. (2010). Keeping plant shrinkage in the demographic loop. Journal of Ecology, 98(2), 312–23.CrossRefGoogle Scholar
Salguero-Gómez, R., Shefferson, R. P. & Hutchings, M. J. (2013). Plants do not count … or do they? New perspectives on the universality of senescence. Journal of Ecology, 101(3), 545–54.CrossRefGoogle ScholarPubMed
Schaal, B. A. & Levin, D. A. (1976). The demographic genetics of Liatris cylindracea Michx. (Compositae). American Naturalist, 110, 191206.CrossRefGoogle Scholar
Shefferson, R. P. (2009). The evolutionary ecology of vegetative dormancy in mature herbaceous perennial plants. Journal of Ecology, 97(5), 1000–9.CrossRefGoogle Scholar
Shefferson, R. P., Proper, J., Beissinger, S. R. & Simms, E. L. (2003). Life history trade-offs in a rare orchid: the costs of flowering, dormancy, and sprouting. Ecology, 84(5), 11991206.CrossRefGoogle Scholar
Shefferson, R. P., Kull, T. & Tali, K. (2006). Demographic response to shading and defoliation in two woodland orchids. Folia Geobotanica, 41(1), 95106.CrossRefGoogle Scholar
Shefferson, R. P., Kull, Y., Tali, K. & Kellett, K. M. (2012). Linking vegetative dormancy to fitness in two long-lived herbaceous perennials. Ecosphere, 3(2).CrossRefGoogle Scholar
Shefferson, R. P. & Roach, D. A. (2013). Longitudinal analysis in Plantago: strength of selection and reverse age analysis reveal age-indeterminate senescence. Journal of Ecology, 101(3), 577–84.CrossRefGoogle ScholarPubMed
Shefferson, R. P. & Tali, K. (2007). Dormancy is associated with decreased adult survival in the burnt orchid, Neotinea ustulata. Journal of Ecology, 95(1), 217–25.CrossRefGoogle Scholar
Shefferson, R. P., Kull, T. & Tali, K. (2005). Adult whole-plant dormancy induced by stress in long-lived orchids. Ecology, 86(11), 30993104.CrossRefGoogle Scholar
Shefferson, R. P., Warren, R. J. & Pulliam, H. R. (2014). Life-history costs make perfect sprouting maladaptive in two herbaceous perennials. Journal of Ecology, 102(5), 1318–28.CrossRefGoogle Scholar
Silvertown, J., Franco, M. & Perez-Ishiwara, R. (2001). Evolution of senescence in iteroparous perennial plants. Evolutionary Ecology Research, 3(4), 393412.Google Scholar
Silvertown, J., Franco, M., Pisanty, I. & Mendoza, A. (1993). Comparative plant demography: relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology, 81(3), 465–76.CrossRefGoogle Scholar
Sohal, R. S. & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 5963.CrossRefGoogle ScholarPubMed
Stephenson, N. L., Das, A. J., Condit, R., et al. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507(7490), 90–3.CrossRefGoogle ScholarPubMed
Taiz, L. & Zeiger, E. (eds.) (2006). Plant Physiology (Sunderland, MA, Sinauer Associates).Google Scholar
Tamm, C. O. (1972). Survival and flowering of some perennial herbs: II. The behaviour of some orchids on permanent plots. Oikos, 23(1), 23–8.Google Scholar
Tatar, M., Chien, S. A. & Priest, N. K. (2001). Negligible senescence during reproductive dormancy in Drosophila melanogaster. American Naturalist, 158(3), 248–58.CrossRefGoogle ScholarPubMed
Thomas, H. (2002). Ageing in plants. Mechanisms of Ageing and Development, 123(7), 747–53.CrossRefGoogle ScholarPubMed
Tuomi, J., Crone, E. E., Gremer, J. R., et al. (2013). Prolonged dormancy interacts with senescence for two perennial herbs. Journal of Ecology, 101(3), 566–76.CrossRefGoogle Scholar
Vega, E. & Montana, C. (2004). Spatio-temporal variation in the demography of a bunch grass in a patchy semiarid environment. Plant Ecology, 175(1), 107–20.CrossRefGoogle Scholar
Wendling, I., Trueman, S. J. & Xavier, A. (2014). Maturation and related aspects in clonal forestry: II. Reinvigoration, rejuvenation and juvenility maintenance. New Forests, 45(4), 473–86.CrossRefGoogle Scholar
Williams, G. C. (1957). Pleiotropy, natural-selection, and the evolution of senescence. Evolution, 11(4).CrossRefGoogle Scholar
Wyka, T. P. (1999). Storage, growth and reproduction in an alpine herbaceous plant, Oxytropis sericea. PhD dissertation, University of Missouri.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×